
Practical post-quantum
cryptography

Joost Rijneveld

Cover design with Marlies Rijneveld
Printed by GVO drukkers & vormgevers

ISBN: 978-94-6332-568-4

This work has been supported by the European Commission
through the H2020 program under contract ICT-645622 (PQCRYPTO)

No rights reserved

Practical post-quantum
cryptography

Proefschrift
ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magni�cus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op

woensdag 20 november 2019
om 14:30 uur precies

door

Leendert Cornelis Joost Rijneveld

geboren op 11 december 1992
te Culemborg

Promotor:

prof. dr. Lejla Batina

Copromotor:

dr. Peter Schwabe

Manuscriptcommissie:

prof. dr. Joan Daemen (voorzitter)

dr. Diego Aranha
Aarhus Universitet, Denemarken

prof. dr.-ing. Tim Güneysu
Ruhr-Universität Bochum, Duitsland

prof. dr. ir. Ingrid Verbauwhede
Katholieke Universiteit Leuven, België

prof. dr. Bo-Yin Yang
Academia Sinica, Taiwan

If you’re gonna try and walk on water

make sure you wear your comfortable shoes

Arctic Monkeys, Piledriver Waltz

Thanks

Throughout the years I have often claimed that a large part of being able to do a
PhD involves being surrounded by a supportive group of people. I stand by that
claim, and, looking back, I feel immensely fortunate and grateful for everyone that
shaped these past years. There is no way I could have done this without you, and I
want to take this opportunity to make that explicit.

First and foremost, I am very thankful to have been Peter’s student. I distinctly
recall going into a meeting to discuss a research project I felt I had neglected, and
walking out with not only a master’s thesis subject, but also a PhD position. Over
the years countless such discussions followed, always o�ering new perspectives,
guidance, and motivation. I am grateful for your informal, pragmatic attitude, and
admire the way you combine academia and engineering. Thanks — for everything.

While there is only one name on the cover of this thesis, it would not have
existed without innumerable contributions by just as many coauthors. I thank Andy,
Dan, Ebo, Erik, Fang, Jan, Joeri, John, Ko, Matthias, Ming-Shing, Peter, Pol, Ruben,
Simona, and Stefan, as well as the numerous contributors to our standardization
e�orts. I want to thank Andy in particular, who has been like a second supervisor
to me. I cannot overstate how comforting it is to be able to rely on your thorough
understanding and expertise where proofs, practice, and paper-writing meet.

I thank Matthias, Mijco, Peter, Simona, and Wesley for proofreading various
parts of this thesis, and apologize for still sneaking a few typos past your red pens.

I have yet to meet a more welcoming group of colleagues than the Digital
Security department, and I fondly remember our co�ee-break discussions. I will
not attempt to list the many regulars, but want to speci�cally thank Fabian and
Ronny for their never-ending punctuality and perseverance, even in the face of
vacations and conferences. For atmopshere, anecdotes, advice, and teaching me to
teach, I thank Bart. For Fridays, I thank Dan, Guillaume, Jon, Ko, Matthias, and
Sander; may your stack of Brouwers never reach the ceiling, so that you must keep
trying. Regardless of how many times we ended up getting moved, I thank Benoît,

7

8 Thanks

Joost (for once we do not have to disambiguate), Ko, Niels, and Pedro for ‘our’
o�ce, and Barış and Rachel for making us part of so many special moments.

One of the undeniable perks of PhD life is the travel, of which I was fortunate
enough to enjoy plenty. It would not have been nearly half as fun without the usual
suspects from Eindhoven, and for the holidays, discussions, timely skepticism, and
that one beer at Lux, I thank Christine, Gustavo, Leon, and Lorenz.

For hosting me at Apple over the summer and giving me a glimpse at what
goes on behind closed doors, I thank Steve and Yannick.

Time outside of work weighs just as heavily, and well into my �rst year I was
happy to call K49 home. One year later, it still felt like it was. For the comfortable
refuge at the end of a long day, I thank Erwin, Koen, Luuk, and Wesley.

For obscene amounts of snacks and red wine; for spending months on a season;
for real conversations; for pubquizzes, dinner, board games, and quite literally
crawling through the mud, I thank Carmen, Koen, Luuk, and Nienke.

For a constant tether, wherever we may be, I thank #RU. It is truly a miracle we
got any work done at all. I look forward to many more weekends of board games,
movies, cake, and hot tubs, and will happily claim a spot in the castle. Really, every
PhD student should have a #promovendi. In particular I thank Judith for sage life
advice, and Annelies and Bas for opening up their home on countless occasions.

For all the encouragement, beta, and sweaty palms, I thank Annelies, Bart,
Bas, Daan, Daniëlle, Gerdriaan, Hannah, Jesse, Judith, Kimberley, Laurens, Margot,
Marlon, Pieter-Paul, Pol, Ramon, Rik, Thom, and Wouter. Aller!

For support and perspective throughout these �nal months, even when time
and timing was most inconvenient, I thank Leonie.

For all the beers, parties, games, and misery, I thank Erik, Feicko, Feiko, Guido,
Jaime, Jim, Kars, Koen, Lennard, Lucien, Olav, Rick, Roel, Roger, Roy, Teun, Timo,
and, for everything, Wesley. I count myself lucky to have known many of you for
so long, and look forward to many more years together as we embrace civilian life.

But most of all I thank my parents, Janny and Mijco, and my sister, Marlies. For
following along every step of the way, for trying to really understand, for bearing
with me as I traveled, and for your relentless and unconditional love and support.

Thank you all.

Joost Rijneveld
Cupertino, August 2019

Contents

Thanks 7

Contents 9

1 Introduction 13

1.1 Post-quantum cryptography . 14

1.2 Organization of this thesis . 15

1.3 Contributions . 16

1.3.1 So�ware availability and data management 21

2 Preliminaries 23

2.1 Definitions and notation . 23

2.1.1 The security parameter . 24

2.1.2 Symmetric primitives . 25

2.1.3 Digital signature schemes . 28

2.1.4 Key-encapsulation mechanisms 29

2.1.5 Algorithms and protocols . 32

2.2 NIST’s Post-�antum Cryptography Standardization project . . . 32

2.3 Cryptographic engineering . 34

2.3.1 Programming abstractions . 34

2.3.2 Side-channel resistance . 37

2.4 Platforms and architectures . 39

2.4.1 Intel x86, x86-64 and AVX2 . 40

2.4.2 ARMv7 on the Cortex-M series 40

2.4.3 Java Card . 42

9

10 Contents

3 Hash-based signatures 43

3.1 One-time signature schemes . 44

3.1.1 Lamport’s one-time signature scheme 45

3.1.2 Winternitz’ improvement . 48

3.2 Merkle trees . 52

3.2.1 Many-time digital signature schemes 52

3.2.2 From one to many . 53

3.2.3 Treehash . 55

3.2.4 Secret seeds . 60

3.2.5 Tree traversal . 61

3.3 XMSS and XMSSMT . 62

3.3.1 Collision resilience . 62

3.3.2 The hypertree . 63

3.3.3 Multi-target a�acks . 64

3.3.4 Comparing XMSS and XMSS-T concretely 67

3.3.5 RFC 8391 . 70

3.4 XMSSMT on the Java Card . 72

3.4.1 Java Card platform and limitations 73

3.4.2 Implementation . 75

3.4.3 Java Card API recommendations and considerations 80

3.5 SPHINCS . 85

3.5.1 Eliminate the state . 85

3.5.2 HORST . 87

3.5.3 High-performance hash functions 90

3.6 ARMed SPHINCS . 91

3.6.1 The Cortex-M3 . 92

3.6.2 Implementing SPHINCS-256 on the Cortex-M3 93

3.6.3 Performance . 96

3.6.4 Comparing to XMSSMT . 99

3.7 SPHINCS+ . 101

3.7.1 Tweakable hash functions . 102

3.7.2 FORS . 104

3.7.3 Instances . 106

3.7.4 Performance . 111

Contents 11

4 MQ-based signatures 113

4.1 Identification schemes . 114

4.1.1 The Fiat-Shamir transform 117

4.2 The MQ problem . 119

4.3 The [SSH11] 5-pass identification scheme 120

4.4 Fiat-Shamir for 5-pass identification schemes 123

4.4.1 The [EDV+12] proof . 124

4.4.2 A Fiat-Shamir transform for most (2n + 1)-pass IDS 128

4.5 MQDSS . 130

4.5.1 The 5-pass scheme over F31 131

4.6 MQDSS-31-64 . 136

4.6.1 Parameter selection . 136

4.6.2 Implementation details . 138

4.6.3 Performance . 141

4.6.4 The NIST submission . 142

4.7 MQ-based signatures in the QROM 145

4.7.1 Unruh’s transform . 147

4.8 SOFIA . 148

4.8.1 Tweaks and optimizations . 154

4.9 SOFIA-4-128 . 156

4.9.1 Parameter selection . 156

4.9.2 Implementation details . 159

4.9.3 Performance . 162

Appendices to Chapter 4 165

4.A The 3-pass scheme over F2 . 165

4.A.1 Parameter selection . 168

4.A.2 Implementation details . 169

4.A.3 Performance . 169

5 La�ice-based KEMs 171

5.1 NTRU-HRSS . 172

5.1.1 Parameters . 173

5.1.2 CPA-secure NTRU encryption 174

5.1.3 Fujisaki-Okamoto and an IND-CCA2-secure KEM 176

5.1.4 The NIST submission . 177

12 Contents

5.2 High-speed key encapsulation . 180

5.2.1 Polynomial multiplication . 180

5.2.2 Inverting polynomials . 184

5.2.3 Performance and comparison 188

5.3 Polynomials in Z2m [x] . 189

5.3.1 Kindi, NTRUEncrypt, RLizard, and Saber 192

5.3.2 ARM Cortex-M4 . 196

5.4 Multiplication in Z2m [x] . 199

5.4.1 Revisiting Karatsuba and Toom-Cook 199

5.4.2 Small schoolbook multiplications 201

5.5 Measuring multiplication performance 203

5.5.1 Isolated multiplications . 204

5.5.2 Encapsulation and decapsulation 208

5.5.3 Profiling optimized implementations 212

Outlook 215

Bibliography 217

Symbols and acronyms 251

Summary 255

Samenva�ing 257

About the author 259

Chapter 1

Introduction

Ever since mankind has been communicating, there seems to have been a desire to
do so in secret. Dating back to the ancient Egyptians and their Greek counterparts
across the Mediterranean, the Romans, the Arabs, late-medieval Italian leaders and
linguists, a French alchemist, and all the way to the beheading of Mary Queen of
Scots, history is riddled with tales and traces of hidden messages and codes [Kah96;
Sin99; Sal05]. If information is power, so is its obfuscation. And with the rise of
communication comes an ever-increasing interest in its security.

Historically, cryptography —the art of ‘hidden writing’— has been a cloak-
and-dagger �eld for spies, conspirators, diplomats and military strategists; its
complement, cryptanalysis, the domain of linguists. It was ad-hoc, it was pen-and-
paper, and it was tedious. The previous century changed this dramatically. With
the construction of automatic encryption machines (most famously the Enigma),
cryptography was quickly industrialized. Cryptanalysis followed in lockstep: the
�rst programmable electronic computer was Colossus [Cop06], a massive apparatus
designed speci�cally to counter the war-time cipher machines.

It took several more decades for cryptography to outgrow its air of militarism
and politics, but, still deeply intertwined with the surging development in auto-
mated computing, it is now so commonplace that it would be hard to imagine a
functioning digital society without it. Yet, be�tting of its heritage in obscurity and
gloom, real-world use of cryptography goes largely unnoticed.

It seems almost impossible to write an introduction to any thesis in cryptogra-
phy without citing the groundbreaking work by Di�e and Hellman [DH76]. In
1976, their introduction of public-key cryptography opened up a wide range of
applications beyond communicating hidden messages. Most notably, in particu-
lar in the context of this thesis, Di�e and Hellman describe two new primitives:
publicly veri�able digital signatures and key exchange over an insecure channel.
Subsequent work by Merkle [Mer90] and Rivest, Shamir, and Adleman [RSA78]

13

14 Chapter 1. Introduction

provides further practical constructions. The former will be discussed extensively
in Chapter 3; the latter makes a brief reappearance below.

Digital signatures provide a way to ensure authenticity and integrity of mes-
sages. Given a message (e.g., a letter, statement, or contract), a signer uses their
secret key to produce a signature to pair it with. Anyone in possession of the
signer’s corresponding public key is then able to verify the origin and correctness
of the message. This complements secrecy of messages, which is achieved by �rst
establishing a shared key through a key exchange, and then encrypting messages
using this established key. Together, these fundamental primitives form the basis
of essentially all of the secure communication on the internet of today.1

Cryptography predating the work by Di�e and Hellman is sometimes referred
to as classic or traditional; everything after “New Directions” is typically modern. In
this thesis, the term ‘classical’ will refer to the cryptography of today. With the com-
puter on the brink of a potential revolution of quantum computing, cryptography,
too, is gearing up for another large overhaul.

1.1 Post-quantum cryptography

For years, physicists have been predicting the imminent construction of a large-
scale universal quantum computer: a computer that makes use of properties from
quantum mechanics to perform computations far beyond the reach of classical
computers. Although sometimes portrayed as a catch-all solution to solve the
world’s most pressing problems, so far, quantum algorithms are highly specialized.
Unfortunately, one such specialized algorithm [Sho97] solves exactly the problems
that classical cryptography requires to be hard to solve. In particular, Shor’s al-
gorithm can be used to e�ciently split large composite numbers into their prime
factors, as well as solve the related discrete-logarithm problem. These problems
underly the Di�e-Hellman key exchange, RSA, and all of the elliptic-curve cryp-
tography currently in use. Together, these schemes encompass essentially all of
the public-key cryptography deployed right now.

A quantum computer that is able to run Shor’s algorithm for cryptographically
relevant inputs is yet to be built, and it is unclear when (and even if) this will happen.
Still, the cryptographic community watches in tense anticipation; developing and
deploying new cryptographic schemes and protocols is no easy task either.

1 This thesis almost exclusively focuses on public-key cryptography. Symmetric-key cryptography, while
similarly crucial and fundamental, is largely out of scope.

1.2. Organization of this thesis 15

Cryptography that remains secure in the presence of an adversary with access
to a quantum computer is called post-quantum cryptography.2 The crucial di�er-
ence between post-quantum cryptography and traditional cryptography lies in
the problems on which it is based3 — problems for which no e�cient quantum
algorithm is known. The problems proposed so far can roughly be categorized in
�ve classes, each with their own characteristic strengths and weaknesses. These
relate to hash functions, multivariate quadratic equations, lattices, error-correcting
codes and supersingular isogenies. For now, we merely make a passing mention of
these categories; the former three form the basis of the remainder of this thesis.

Over the last decade, research in the �eld of post-quantum cryptography has
steadily progressed. While it used to be experimental, large and slow (indeed,
the logo of the EU PQCRYPTO project is an aptly chosen tortoise), post-quantum
cryptography is rapidly becoming more practical. This is both a consequence of and
a stimulus for standardization e�orts. Most notably, in 2016, the American National
Institute for Standards and Technology (NIST) started a multi-year project towards
standardizing post-quantum cryptography. With hundreds of participants from
both academia and industry and a clock eerily ticking away towards uncertainty,
practical post-quantum cryptography is now more relevant than ever.

1.2 Organization of this thesis

Following this introduction, Chapter 2 provides some general context for the
material presented in this thesis. We begin by establishing a number of common
de�nitions and notation, and follow with general discussion on cryptographic
engineering, software implementations, the relevant development platforms, and
NIST’s Post-Quantum Cryptography Standardization project.

The main matter of this thesis consists of three technical chapters. Chapters 3, 4,
and 5 each address one of the hash-based,MQ-based and lattice-based classes
— the �rst two consider digital signatures, and the latter discusses key exchange.
Each of these are self-contained and can be read separately.

2 Also known as quantum-safe cryptography, post-quantum cryptography does not require a quantum
computer. It should run e�ciently on a classical computer, but an adversary should be unable to
attack the scheme using both classical and quantum computation. This is quite di�erent from quantum
cryptography, where also the honest participants are required to have speci�c, expensive equipment.

3 In modern cryptography, breaking a cryptosystem is typically shown to be equivalent to solving a hard
mathematical problem. This relation forms the basis of ‘security reductions’, proving the security of a
scheme in terms of the di�culty of solving speci�c instances of the related problem.

16 Chapter 1. Introduction

1.3 Contributions

All the work presented in this thesis is the result of collaboration with a wide
range of coauthors. While it is not always easy to credit contributions to individual
authors, the following subsections provide an overview of the work each chapter
was based on, explicitly highlighting my own contributions. As is common for
publications in sub�elds of mathematics, authors are ordered alphabetically.

Chapter 3: Hash-based signatures

In Chapter 3, we examine hash-based digital signature schemes. The chapter
contains a thorough discussion of historical constructions, leading up to the recent
XMSS, SPHINCS, and SPHINCS+ schemes. We discuss scheme design, and describe
several implementations, in particular on embedded platforms. This chapter �nds
its basis in four academic papers and two technical documents.

Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. “ARMed
SPHINCS – Computing a 41KB signature in 16KB of RAM.” in: Public
Key Cryptography – PKC 2016. Vol. 9614. LNCS. Springer, 2016.

In this work, we implement the SPHINCS-256 scheme as proposed in [BHH+15] on
the Cortex-M3 Discovery board. The idea of applying the Treehash algorithm was
already proposed in [BHH+15]. Part of this work was done as part of my master’s
thesis “Implementing SPHINCS with restricted memory”. Andreas Hülsing and Peter
Schwabe acted as supervisors, providing context, explanation and suggestions. I
evaluated and implemented the required changes based on the implementation
presented in [BHH+15],

Andreas Hülsing, Joost Rijneveld, and Fang Song. “Mitigating Multi-
Target Attacks in Hash-based Signatures.” In: Public Key Cryptogra-
phy – PKC 2016. Vol. 9614. LNCS. Springer, 2016.

This work introduces XMSS-T and describes how to mitigate multi-target attacks,
precisely analyzing the attack complexity in a multi-target setting. I was only
tangentially involved in this work by modifying my implementation of XMSS to
�t the new de�nitions and providing a performance comparison.

Ebo van der Laan, Erik Poll, Joost Rijneveld, Joeri de Ruiter, Peter
Schwabe, and Jan Verschuren. “Is Java Card ready for hash-based
signatures?” In: Advances in Information and Computer Security –
IWSEC 2018. Vol. 11049. LNCS. Springer, 2018.

1.3. Contributions 17

This work was the result of a larger collaboration with the NLNCSA, where we
implement XMSSMT on the Java Card smart-card platform. Discussions with Ebo
van der Laan and Jan Verschuren were crucial towards parameter selection for the
relevant use-case, and Joeri de Ruiter provided pointers with regards to Java Card
programming. I wrote the implementation, performed measurements and wrote
the paper, with Erik Poll and Peter Schwabe acting as supervisors providing useful
discussion on parallelism and performance expectations.

Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld,
and Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. Re-
quest for Comments 8391. IETF, 2018.

This informational RFC describes XMSS and XMSSMT. I got involved in a later
stage by signi�cantly rewriting and contributing to the reference implementation,
e�ectively taking co-ownership of the code.

Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott
Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, and Pe-
ter Schwabe. SPHINCS+. Submission to the NIST Post-Quantum
Cryptography Standardization project. 2017.

At the time of writing, SPHINCS+ is a second-round candidate in NIST’s Post-
Quantum Cryptography Standardization project. While the list of authors is long,
it is only natural that a much smaller group participated prominently in the dis-
cussions regarding the details of the design, parameter selection, and writing the
speci�cation — I contributed signi�cantly to this. Most importantly, I wrote and
maintain the reference implementation and most of the optimized implementations,
with notable contributions by Stefan Kölbl.

Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederha-
gen, Joost Rijneveld, and Peter Schwabe. “The SPHINCS+ signature
framework.” In: Conference on Computer and Communications Secu-
rity – CCS ‘19. To appear. ACM, 2019.

This paper accompanies the SPHINCS+ submission to NIST’s Post-Quantum Cryp-
tography Standardization project, de�ning it as a generic framework and providing
a more thorough security analysis by presenting a uni�ed approach that applies
more generically to hash-based signature schemes. As with the submission to NIST,
I contributed to the design, writing, and software.

18 Chapter 1. Introduction

Chapter 4:MQ-based signatures

This chapter takes a non-standard approach towards designing signature schemes
based on theMQ problem. Its main contributions are the introduction of the
MQDSS and SOFIA schemes; it is primarily based on two academic papers, and
also makes brief note of a subsequent technical document.

Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. “From 5-PassMQ-Based Identi�cation to
MQ-Based Signatures.” In: Advances in Cryptology – ASIACRYPT
2016. Vol. 10032. LNCS. Springer, 2016.

This work provides security proofs for a more generic Fiat-Shamir transform,
and subsequently instantiates it as MQDSS. I contributed to �nding faults in
earlier work, but more notably to design discussions regarding MQDSS and the
MQDSS-31-64 instance. Contributing to parameter selection and performance
measurements, I implemented both the reference implementation and the optimized
implementation of MQDSS-31-64; the latter with contributions by Ming-Shing
Chen. Writing the paper was joint work by all authors.

Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. MQDSS. Submission to NIST’s Post-Quantum
Cryptography Standardization project. 2017.

At the time of writing, MQDSS is a second-round candidate in NIST’s Post-
Quantum Cryptography Standardization project. I was only marginally involved in
preparing the submission, primarily contributing by adjusting the implementation
and making it amenable to the additional parameter set.

Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. “SOFIA: MQ-based signatures in the
QROM.” in: Public Key Cryptography – PKC 2018. Vol. 10770. LNCS.
Springer, 2018.

Following up on the MQDSS work, this paper proposes a similar scheme using
a di�erent transform: SOFIA. The scheme design follows from Unruh’s trans-
form [Unr15], but we present several signi�cant optimizations for this speci�c
instantiation. I contributed to these design discussions, as well as the parameter-
space exploration. I subsequently implemented the scheme and collaborated with
Ming-Shing Chen to implement several optimized instances for the various param-
eter choices. As before, writing the paper was joint work by all authors.

1.3. Contributions 19

Chapter 5: La�ice-based KEMs

The �nal technical chapter of this work concerns lattice-based key-encapsulation
mechanisms. We focus on NTRU in particular, introducing the NTRU-HRSS scheme,
but examine optimized implementations of related structures as well. Just like
Chapter 4, this chapter is based on two academic papers and brie�y discusses
subsequent standardization e�orts.

Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
“High-speed key encapsulation from NTRU.” in: Cryptographic Hard-
ware and Embedded Systems – CHES 2017. Vol. 10529. LNCS. Springer,
2017.

In this work, we revisit the NTRU scheme, and choose parameters that result
in a key-encapsulation mechanism that is competitive with more recent lattice-
based schemes. We demonstrate feasibility by providing record-setting software; I
primarily contributed by implementing the optimized polynomial arithmetic and
writing the related parts of the paper.

Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
NTRU-KEM-HRSS: Algorithm Speci�cation and Supporting Documen-
tation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project. 2017.

We submitted NTRU-HRSS to NIST’s Post-Quantum Cryptography Standardization
project. I made minor contributions by slightly adjusting the optimized NTRU-

HRSS implementation; John Schanck took ownership of the reference software.
In round 2, the NTRU and NTRUEncrypt submissions merged to form the NTRU

submission. The result of this is listed separately.

Cong Chen, Oussama Danba, Je�rey Ho�stein, Andreas Hülsing,
Joost Rijneveld, John M. Schanck, Peter Schwabe, William Whyte,
and Zhenfei Zhang. NTRU: Algorithm Speci�cation and Supporting
Documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project. 2019.

At the time of writing, NTRU is a second-round candidate in NIST’s Post-Quantum
Cryptography Standardization project. I did not have signi�cant contributions in
the second-round submission other than performing updated benchmarks; Ous-
sama Danba extended the optimized implementation to encompass the new pa-
rameter sets introduced in round 2.

20 Chapter 1. Introduction

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. “Faster
multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC candi-
dates.” In: Applied Cryptography and Network Security – ACNS 2019.
Vol. 11464. LNCS. Springer, 2019.

This work describes optimizing polynomial multiplication on the Cortex-M4. We
optimize multiplication in Z2m [x], targeting several submission to NIST’s Post-
Quantum Cryptography Standardization project — one of which is the aforemen-
tioned NTRU-HRSS. Together, Matthias Kannwischer and I wrote the software
and performed the measurements, frequently pair-programming and sharing a
whiteboard. Writing the paper was joint work by all authors.

O�-by-many

If there is one practical commonality throughout the work described in this thesis,
it is indexing. Whether nodes in a tree, a vector of �eld elements, or terms of a
polynomial, every item gets a label. For readability, many indices in this work
run from 1 to n. This, of course, is in stark contradiction to the well-established
practice of starting from 0 and counting to n − 1, which often allows for easier
computation. This mixing of conventions has doubtlessly led to errors, all of which
I claim as my own. These and other errata will be collected and accounted for in
the digital version of this work at https://joostrijneveld.nl/thesis as they
become apparent.

Changing perspective

An issue that often comes up in discussions related to thesis-writing is the form
of narrative. In particular, when a thesis is composed of a collection of already-
published collaborative work with several coauthors, it is not immediately obvious
what perspective to use: while the presented work is jointly authored, a single
name is listed on the cover. This is sometimes resolved by avoiding �rst-person
pronouns altogether, and using passive voice throughout.

Up to this point, I have been writing in �rst-person singular. For the remainder
of this thesis, we will use the plural form. Here, we may refer to us, the authors
of the discussed work, but also to you, the reader, and I, the author of this thesis.
Occasionally, it will refer to all of us: you, the reader, and us, the authors. We (i.e.,
you, the reader, and I, the author) will have to rely on the assumption that this will
become clear from context.

https://joostrijneveld.nl/thesis

1.3. Contributions 21

1.3.1 So�ware availability and data management

All work described in this thesis is accompanied by software. The source code is
available online at https://joostrijneveld.nl/thesis, which will also include
versioned updates as appropriate. This also includes scripts to reproduce bench-
marks where relevant, as well as software that is only tangentially related to this
thesis. Unless explicitly stated otherwise, all software has been placed in the public
domain to the extent possible under law, and all copyright and related rights have
been waived by applying the CC0 1.0 Public Domain Dedication waiver. Software
accompanying a publication is implicitly coauthored by all authors.

In particular, this includes:

Ge�ing started on STM32. Examples that demonstrate how to get started with
programming STM32 Discovery boards, as well as wrappers around basic
�rmware functionality. See Section 2.4.2.

Merkle tree traversal algorithms. Python reimplementations of the Merkle tree
traversal algorithms described in [BDS09]. See Section 3.2.5.

The XMSS reference code. The implementation accompanying the informational
RFC 8391, specifying WOTS+, XMSS, and XMSSMT. It includes an imple-
mentation of the BDS tree traversal algorithm. This implementation was
coauthored with Andreas Hülsing. See Sections 3.2.5 and 3.3.5.

The XMSS-T code. The implementation of XMSS-T, leading to the XMSS reference
code. It contains tweaks that allow for comparison to SPHINCS-256 and to
XMSS at lowered security levels, and accompanied the paper “Mitigating
Multi-Target Attacks in Hash-based Signatures” [HRS16b]. See Section 3.3.3.

XMSSMT on the Java Card. An implementation of the XMSSMT scheme for the
Java Card platform. It accompanied the paper “Is Java Card ready for hash-
based signatures?” [LPR+18]. See Section 3.4.

The ARMed SPHINCS code. A modi�ed version of the SPHINCS reference im-
plementation and the XMSSMT reference implementation, targeting the
Cortex-M3. It accompanied the paper “ARMed SPHINCS – Computing a
41 KB signature in 16 KB of RAM” [HRS16a]. See Section 3.6.

https://joostrijneveld.nl/thesis

22 Chapter 1. Introduction

The ChaCha permutation for the Cortex-M. An ARMv7E-M assembly implemen-
tation of the πChaCha permutation function. This implementation was initially
used in ARMed SPHINCS [HRS16a]. See Section 3.6.

SPHINCS-256-py. A reimplementation of SPHINCS-256 in Python, aimed to pro-
vide a highly �exible framework for experimenting and comparison.

The SPHINCS+ reference code. The reference implementation of SPHINCS+, ac-
companying the SPHINCS+ submission to NIST’s Post-Quantum Cryptogra-
phy Standardization project [BDE+17]. See Section 3.7.

PySPX. Python bindings for the SPHINCS+ reference code, originally written for
integration into The Update Framework. Also available on PyPI as pyspx.

The MQDSS code. The reference and AVX2-optimized implementation of MQDSS,
accompanying the paper “From 5-pass MQ-based identi�cation to MQ-based
signatures” [CHR+16], and the software as part of the MQDSS submission to
NIST’s Post-Quantum Cryptography Standardization project. See Section 4.5.

The SOFIA code. The reference and optimized code accompanying the paper
“SOFIA: MQ-based signatures in the QROM” [CHR+18]. See Section 4.8.

The NTRU-HRSS code. The AVX2-optimized implementation of NTRU-HRSS, ac-
companying the paper “High-speed key encapsulation fromNTRU” [HRS+17a],
and the updated software as part of the NTRU-HRSS submission to NIST’s
Post-Quantum Cryptography Standardization project. See Sections 5.1 and 5.2.

Bit permutations. Simulator for a subset of x86-64 with AVX2 extensions, used to
construct e�cient permutations on bit sequences for NTRU-HRSS [HRS+17a].

PQM4. A library and benchmarking and testing framework for post-quantum
cryptography on the Cortex-M4, coauthored with Matthias Kannwischer,
Peter Schwabe, and Ko Sto�elen. See also [KRS+19].

The Z2m [x] code. Code generation scripts for polynomial multiplication, accom-
panying the paper “Faster multiplication in Z2m [x] on Cortex-M4 to speed up
NIST PQC candidates” [KRS19]. See Section 5.4.

PQClean. A testing framework and collection e�ort of clean implementations of
post-quantum cryptography, coauthored with Matthias Kannwischer, Peter
Schwabe, Douglas Stebila, and Thom Wiggers.

Chapter 2

Preliminaries

Before we go into the technical content of this thesis, we �rst establish some
context. This includes the necessary notation and security de�nitions, but also
leaves room to discuss more general aspects that a�ect all of the discussed work,
mostly related to cryptographic engineering. In particular, we brie�y address
various platforms and instruction sets, as well as more broadly applicable subjects
such as code generation and timing-attack-resistant programming.

2.1 Definitions and notation

While it is often more comfortable to follow (or, indeed, explain) schemes and
procedures in prose, there is no escaping the introduction of some ambiguity in
this way. To ensure consistency, the prose is accompanied by formal descriptions
that capture the same concepts. Throughout this thesis, we will require various
recurring de�nitions and notation fragments. They are summed up in this section,
accompanied, where relevant, by the appropriate security notions. For more
speci�c, one-o�, or varying de�nitions of symbols in di�erent contexts (such as n,
which is used to denote bit lengths, degrees of polynomials, numbers of variables,
etc.), refer to the overview of symbols and acronyms on page 251.

We write x = 42 to mean equality, but also for de�nitions, aliases and unpacking;
we use x ← 42 to denote variable assignment, typically as the result of computation.
Similarly, we use x $← X to draw uniformly random from a collection. When we
write log without explicit base, we assume log2. To represent an arbitrary value
that is polynomially related to n, we write poly(n). The notation ∥collection∥ is
used for the size of a collection, but also for the number of possible subscripted
elements (e.g., consider ∥node∥ in relation to nodei). As an in�x operator, ∥ signi�es
string concatenation. When we write for i ∈ collection do, we assume ordered
enumeration over the collection, although the order typically does not matter.

23

24 Chapter 2. Preliminaries

2.1.1 The security parameter

A recurring issue in the algorithmic de�nition of cryptographic schemes is the
relation to the desired security level. This is often captured by the notion of a
‘security parameter’, relating the targeted security of a scheme to its runtime and,
in particularly, to that of the algorithm describing the adversary.

The notion of a security parameter is strongly connected to the seemingly
colloquial classi�cation of problems as hard and easy. These terms are typically used
to convey a deeper mathematical idea: in this work, a problem is considered hard
when there is no known algorithm with a runtime polynomial in the security level,
and, conversely, easy, when such an e�cient algorithm exists. Unsurprisingly, such
algorithms are called polynomial-time algorithms. When their outcome depends on
random chance, they are called probabilistic (sometimes randomized, in literature).

The nature of this work allows us, in terms of de�nitions, to lean towards the
informal. As a consequence, algorithms and de�nitions in the following subsections
are described such that they provide a basic understanding and a correct intuition,
but may not be best suited as the basis for rigorous security proofs.

Closely related to the hardness of the underlying problems and the notion of
polynomial runtime, we use the term ‘negligible’ and the phrase negligible in the
security parameter to signify that the probability of some event diminishes exponen-
tially as the security parameter is increased. Formally, we say that p(x)∶N→ [0, 1]
is negligible if for any x > 0, there exists an nx such that for all n > nx , p(x) < 1

xn .
Not all cryptographic schemes allow the user to easily or granularly vary the

achieved security level. Furthermore, the exact security level that follows from
particular choices in the scheme design is not equally well-understood across
families of cryptographic schemes, and it would be pretense to suggest that all
concrete algorithms can be directly and unambiguously parameterized as such.

Still, in some contexts it is meaningful to be able to exactly quantify the security
level (see, e.g., Section 3.3.3). When this is the case, we use k to denote the security
parameter.1 In all other cases, it is left implicit as a design consideration.

We di�erentiate between classical and quantum security levels. This re�ects the
natural distinction between security against classical and quantum adversaries. In
particular, a quadratic di�erence typically follows from Grover’s algorithm [Gro96].

1 The security parameter is often denoted 1k rather than n or k . In complexity theory, ‘running in
polynomial time’ signi�es that the runtime is asymptotically polynomial in the length of the input. Pa-
rameterizing key generation with the unary string 1k achieves exactly this, albeit somewhat arti�cially.

2.1. Definitions and notation 25

2.1.2 Symmetric primitives

This thesis focuses exclusively on asymmetric constructions. Still, such schemes
typically require more fundamental primitives underlying their design. In this
section, we de�ne several such notions. We use various concrete instantiations
throughout this thesis, which we will introduce where relevant. To avoid trivial
cases, we implicitly assume e�cient evaluation for all primitives de�ned below.

One of the main building blocks of modern cryptography is the one-way
function. Intuitively, this is a function that is easy to compute, but, given an image,
hard to invert. Note that this is only holds in general, and there may be a negligible
number of images that are easy to invert. We formalize this as follows.

De�nition 2.1.1 (One-way function) A function f ∶{0, 1}∗ → {0, 1}∗ is called a
one-way function if the following conditions hold:

• Given x ∈ {0, 1}∗, there exists a polynomial-time algorithm to compute f (x) .

• For any probabilistic polynomial-time algorithm A, given f (x) for a random
choice of x ∈ {0, 1}poly(k), runningA on input f (x), the probability of �nding
any x ′ ∈ {0, 1}∗ such that f (x) = f (x ′) is negligible in k .

Building upon the more general one-way function, we de�ne the notion of a
cryptographic hash function. Notably, hash functions map an in�nite domain onto
a �nite range. We remark that not all uses of a hash function require it to satisfy
all properties listed below. For example, for schemes that are resilient against
collisions, a hash function that only satis�es (second-)preimage resistance su�ces.

De�nition 2.1.2 (Cryptographic hash function) LetH∶{0, 1}∗ → {0, 1}k be a
cryptographic hash function.

• We callH preimage resistant if, for any probabilistic polynomial-time algorithm
A, given f (x) for a random choice of x ∈ {0, 1}poly(k), running A on input
f (x), the probability of �nding any x ′ ∈ {0, 1}∗ such that f (x) = f (x ′) is
negligible in k .

• We callH second-preimage resistant if, for any probabilistic polynomial-time
algorithmA, given a randomly chosen x ∈ {0, 1}poly(k), runningA on input x ,
the probability of �nding any x ′ ∈ {0, 1}∗ such that x ≠ x ′ but f (x) = f (x ′)
is negligible in k .

26 Chapter 2. Preliminaries

• We callH collision resistant if, for any probabilistic polynomial-time algorithm
A, running A, the probability of �nding any x,x ′ ∈ {0, 1}∗ such that x ≠ x ′
and f (x) = f (x ′) is negligible in k .

At the basis of the construction of many symmetric-key primitives lies the
notion of the pseudorandom permutation. Pseudorandom permutations (PRPs) are
typically de�ned as a function family: a keyed function that forms a collection of
permutations. For this work we are only tangentially interested in PRPs, and limit
ourselves to de�ning individual length-preserving permutations. For completeness,
we explicitly de�ne permutation functions, and stress that this is di�erent from a
permutation on bits as used in Section 5.2: the latter rearranges bits within a bit
string, preserving its Hamming weight.

De�nition 2.1.3 (Permutation function) We call f a (length-preserving) permu-
tation on S if f ∶Sn → Sn is a bijective function.

In all schemes presented in this work, we make extensive use of randomly
sampled values. Ensuring access to su�cient and reliable randomness is a hard
problem on its own, and outside the scope of this work. To lessen the need for
random values and to optimize storage requirements, we rely on pseudorandom
generators (PRGs). Intuitively, a PRG takes a secret random seed, and expands this
to a sequence of bits that are indistinguishable from random noise.

De�nition 2.1.4 (Pseudorandom generator (PRG)) For ` polynomial in k , we
call a function д∶{0, 1}k → {0, 1}` a pseudorandom generator if, for any probabilistic
polynomial-time algorithm A, given U0 = д(x) for a random choice of x ∈ {0, 1}k ,
a random U1 ∈ {0, 1}` , and a random b ∈ {0, 1}, the success probability of running
A(Ub) to distinguish betweenUb =U0 andUb =U1 di�ers negligibly from guessing.

Note that the adversarial model of indistinguishability of a PRG does not include
making д or the input x available: the intended test is statistical on the output.

With the standardization of SHA-3 [NIST15b], a new primitive was popular-
ized: the extendable output function (XOF). XOFs strongly relate the use of hash
functions and PRGs, taking an input of arbitrary length to produce an output of
arbitrary length while still satisfying the properties of a hash function. De�ning
security in terms of indistinguishability is not appropriate for XOFs: the security
properties of hash functions include providing or even allowing free choice of the
input, allowing a distinguisher to simply recompute the output of the XOF. This

2.1. Definitions and notation 27

is addressed extensively in the literature on provable security of symmetric-key
cryptography [MRH04; CDM+05; AMP10], but out of scope for the de�nitions
presented here. For the purpose of this work, we simply consider a XOF to be a
hash function with arbitrary-length output, skipping over more intricate properties
relating to predictability of subsequent output. More formally, we de�ne:

De�nition 2.1.5 (Extendable output function (XOF)) H∶{0, 1}∗ → {0, 1}∗ is
an extendable output function if H′∶{0, 1}∗ → {0, 1}` , obtained by truncating the
output ofH, is a preimage resistant, second-preimage resistant and collision resistant
hash function for any output length `.

It may be somewhat counterintuitive to consider deterministic functions when
trying to construct (pseudo)random streams of data. The above de�nitions of a
pseudorandom generator and an extendable output function work well when trying
to expand a single random input to a stream of random data. When confronted
with multiple, structured inputs, however, these primitives are not a good �t.

Instead, rather than using a single function to derive randomness, we can
consider a family of pseudorandom functions. Rather than making an adversary
distinguish between the output of a single function and uniform random data, we
embrace the deterministic and pseudorandom nature and task the adversary to
distinguish between a speci�c function and a randomly drawn function from the
family. This speci�c function follows from choosing (and typically �xing) a key κ
and using this to select a function from the family. We de�ne this more formally,
below. For simplicity, we assume the PRF is length-preserving in terms of the seed.

De�nition 2.1.6 (Pseudorandom function (PRF)) Consider a family of length-
preserving functions F ∶{0, 1}k × {0, 1}n → {0, 1}n , that is, let Fκ ∶{0, 1}n → {0, 1}n

be a length-preserving function for a key κ ∈ {0, 1}k . We call F a pseudorandom
function if, for any probabilistic polynomial-time algorithmA and a randomly chosen
key κ ∈ {0, 1}k , the success probability of running A(Fκ) to distinguish between Fκ

and a random function f ∶{0, 1}n → {0, 1}n di�ers negligibly from random guessing.

As opposed to the PRG setting, the adversary is allowed oracle access to the
function it must classify. PRFs do inherit typical randomness properties, i.e., a
slight di�erence in the input should make the output uncorrelated.

In the remainder of this thesis, we only casually touch upon symmetric primi-
tives and their properties, simply assuming their existence and security. In particu-
lar, we select instantiations without justi�cation according to the above de�nitions.

28 Chapter 2. Preliminaries

2.1.3 Digital signature schemes

The introduction in the previous chapter already brie�y touched upon digital
signatures. We now give a more formal de�nition.

De�nition 2.1.7 (Digital signature scheme) A digital signature scheme is a tu-
ple of algorithms (KeyGen, Sign,Verify) de�ned as follows:

• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs
a public key pk and a secret key sk, i.e., a key pair (pk, sk).

• The signing algorithm Sign is a possibly probabilistic algorithm that takes as
input a messagem and a secret key sk to produce a signature σ .

• The veri�cation algorithmVerify is a deterministic algorithm that takes as input
a messagem, a signature σ and a public key pk. It outputs the Boolean value
True to indicate that the signature is accepted, or False to indicate rejection.

For correctness, we require that for all (pk, sk)← KeyGen(), all messagesm,
and all signatures σ ← Sign(m, sk), it holds that Verify(m,σ , pk) = True. Infor-
mally, this expresses that all properly generated signatures are indeed accepted.

The standard security notion for signature schemes is existential unforgeability
under adaptive chosen message attacks (EU-CMA) [GMR88]. Intuitively, this notion
captures the idea that an adversary should not be able to create valid signatures
for any message m (not necessarily of their speci�c choosing, as long as it has not
been signed before), even after obtaining signatures on numerous other messages
of their choice. We de�ne this more formally in De�nition 2.1.8.

De�nition 2.1.8 (EU-CMA) For a digital signature scheme (KeyGen, Sign,Verify),
consider the following game between a challenger C and an adversary A:

1. C runs (pk, sk)← KeyGen() and sends pk to A.

2. A sends a freely chosen messagemi to C.

3. C responds with σi ← Sign(mi , sk).

4. A repeats 2. and 3. for q iterations, with q polynomial in the security parameter.

5. A outputs a pair (m′,σ ′). This is a valid forgery if Verify(m′,σ ′, pk) = True

andm′ ≠mi for all i ∈ {1, . . . ,q}.

The signature scheme is said to be EU-CMA when any adversary A, running in
time polynomial in the security parameter, has negligible success probability.

2.1. Definitions and notation 29

2.1.4 Key-encapsulation mechanisms

In most classes of post-quantum cryptography, constructing a key exchange is not
as elegant and straight-forward as the classical protocol by Di�e and Hellman.
Instead of two parties performing analogous steps, one party generates a public key,
which the other uses to encrypt and share a secret. This relates closely to public-key
encryption; indeed, one follows from the other. We de�ne both primitives below.

De�nition 2.1.9 (Public-key encryption scheme (PKE)) A public-key encryp-
tion scheme is a tuple of algorithms (KeyGen,Enc,Dec) de�ned as follows:

• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs
a public key pk and a secret key sk, i.e., a key pair (pk, sk).

• The encryption algorithm Enc is a probabilistic algorithm that takes as input a
messagem and a public key pk to produce a ciphertext c.

• The decryption algorithm Dec is a deterministic algorithm that takes as input
a ciphertext c and a secret key sk to produce a messagem, or False for failure.

De�nition 2.1.10 (Key-encapsulation mechanism (KEM)) Akey-encapsulation
mechanism is a tuple of algorithms (KeyGen,Encaps,Decaps) de�ned as follows:2

• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs
a public key pk and a secret key sk, i.e., a key pair (pk, sk).

• The encapsulation algorithm Encaps is a probabilistic algorithm that takes as
input a public key pk to produce a shared secret ss and a ciphertext c.

• The decapsulation algorithm Decaps is a deterministic algorithm acting on a
ciphertext c and a secret key sk to output a shared secret ss′, or False for failure.

Key-encapsulation mechanisms are sometimes designed in such a way3 that
the recipient of an encapsulated secret is not guaranteed to be able to successfully
decapsulate the ciphertext. Depending on the construction, this leads to either
an incorrect shared secret, or False. This behavior is captured in the notions of
decryption and decapsulation failures. We de�ne this for KEMs in De�nition 2.1.11.
An analogous de�nition can be given for PKEs.

2 In De�nition 2.1.10, we derive ss as an output of Encaps. Alternative formalizations of (non-contributory)
key-encapsulation mechanisms sometimes list the shared secret as an input, instead. Encaps can then
be a deterministic algorithm. In this work, we consider sampling the secret to be part of Encaps.

3 Such failures are often permitted to improve performance, but are sometimes even unavoidable.

30 Chapter 2. Preliminaries

De�nition 2.1.11 (Decapsulation failure) A KEM is said to be correct when, for
all key pairs (pk, sk)← KeyGen(), and every run of Encaps, that is, given (ss, c)←
Encaps(pk) and ss′ ← Decaps(c, sk), it holds that ss = ss′. A decapsulation failure
refers to a run of Decaps that, for a given c and sk, returns False.

Two notions typically de�ne the security of public-key encryption schemes
(PKEs) and KEMs: indistinguishability under chosen-plaintext attacks (IND-CPA)
and indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2, to
explicitly stress adaptivity, but often simply IND-CCA). Tracing back to Goldwasser
and Micali [GM84], the literature contains many subtly di�erent interpretations of
both of these concepts, as well as equivalence proofs among some of their variants
(but not all).4 For the purpose of this work, we adhere to De�nition 2.1.12 and
De�nition 2.1.13, below.

We �rst look at IND-CPA, in the context of public-key encryption schemes.
The intuition here is that, even with knowledge of two candidates for the plaintext,
an adversary is unable to reliably link one of these to a given ciphertext. Note that,
in contrast to the EU-CMA game de�ned in De�nition 2.1.8, an adversary is able to
perform encryptions of the involved plaintexts; as Enc is probabilistic, this should
not lead to an advantage [KL14].

De�nition 2.1.12 (IND-CPA for PKEs) Given a public-key encryption scheme
(KeyGen,Enc,Dec), consider the following game between a challenger C and an
adversary A:

1. C runs (pk, sk)← KeyGen() and sends pk to A.

2. A may perform a polynomial number of calls to Enc and other operations.

3. A sends freely chosen messagesm0 andm1 to C.

4. C randomly chooses b ∈ {0, 1}, and responds with c← Enc(pk,mb).

5. A may perform a polynomial number of calls to Enc and other operations.

6. A outputs a guess b′. The attack is successful if b = b′.
The public-key encryption scheme is said to be IND-CPA secure when any ad-

versary A, running in time polynomial in the security parameter, has negligible
advantage over random guessing.

4 E.g., in [BHK15], Bellare, Hofheinz, and Kiltz show that the formalization of various interpretations of
the IND-CCA notion are equivalent for KEMs, but that this is not the case for PKEs.

2.1. Definitions and notation 31

We stress the fact that the adversary can make queries to Enc that include the
messagesm0 andm1. This is in stark contrast to the EU-CMA game for signatures,
but a necessity to ensure indistinguishability: an Enc routine that is not su�ciently
hiding for repeated encryptions of the same message should not meet the de�nition.

In the IND-CCA2 security game, the adversary is given access to an oracle that
allows it to decrypt all but the challenged ciphertext. Still, the adversary should
be unable to distinguish between two ciphertexts. The di�erence between IND-

CCA2 and IND-CCA here relates to whether the adversary is allowed to request
decryptions after having received the challenge ciphertext.

In the context of key encapsulation, the game is slightly di�erent. Rather than
the adversary picking two plaintexts for the challenger to encrypt, the challenger
produces a properly encapsulated shared secret, and picks a random element in the
same range. The adversary should then, given the ciphertext and both candidate
secrets, be unable to distinguish the shared secret from the random element. For
KEMs, there is no meaningful non-adaptivity notion.

De�nition 2.1.13 (IND-CCA2 security for KEMs) Given a key-encapsulation
mechanism (KeyGen,Encaps,Decaps), consider the following game between a chal-
lenger C and an adversary A:

1. C runs (pk, sk)← KeyGen().

2. C runs (ss0, c)← Encaps(pk).

3. C randomly selects ss1 in the range of Encaps(), as well as b ∈ {0, 1}.

4. C sends pk, ssb and c to A.

5. A may perform a polynomial number of operations, as well as queries to an
oracle computing Decaps(sk, c′) for ciphertexts c′ ≠ c.

6. A outputs a guess b′. The attack is successful if b = b′.
The key-encapsulation mechanism is said to be IND-CCA2 secure when any

adversary A, running in time polynomial in the security parameter, has negligible
advantage over random guessing.

32 Chapter 2. Preliminaries

2.1.5 Algorithms and protocols

Throughout this work, we use pseudocode to describe various algorithms and
protocols. See Algorithm 0 and Figure 0 for a description of the di�erent �elds,
and, e.g., Algorithm 1 on page 46 and Figure 4.1 on page 115 for concrete instances.

Algorithm 0 ¬ () ®

1: ¯

2: . . .

3: . . .

4: return °

¬ Algorithm name. Algorithm pa-
rameters; can vary per system or al-
gorithm instance. ® Scheme-de�ned
constants and functions. ¯ Pseudocode
statements. ° Output.

¬

®

¯ÐÐÐÐÐ→
°

±←ÐÐÐÐÐ
⋮ ⋮

Figure 0: Example protocol

¬ Protocol initiator; typically prover.
 Responder; typically challenger. ®

Operations(s) by initiator. ¯ Message
from initiator to responder. ° Oper-
ations(s) by responder. ± Message
from responder to initiator. Et cetera.

2.2 NIST’s Post-�antum Cryptography Standardization project

Cryptographic research, while often quite academic, is strongly connected to real-
world deployment. This is most clearly demonstrated by the ubiquity of protocols
such as TLS5 and EMV6, with billions of uses every day; perhaps without noticing,
society heavily relies on the correct and e�cient functioning of cryptographic
primitives. None of this would be possible without clear agreements on interactions
between all involved systems. To ensure interoperability, standardization bodies
issue cryptographic standards. One such body is the United States National Institute
of Standards and Technology: NIST.

5 Transport Layer Security; providing secure network communication, most famously underlying HTTPS.
6 The global payment standard for chip-based smart-card payments.

2.2. NIST’s Post-�antum Cryptography Standardization project 33

While NIST is an agency of the United States government, its standards have
worldwide impact. All federal agencies are required to be NIST-compliant through
the Federal Information Security Management Act (FISMA),7 and many interna-
tional organizations and companies adhere to the same recommendations.

In cryptography, NIST is notably responsible for the Advanced Encryption
Standard (AES) [NIST01] and the Secure Hashing Algorithms (SHA-1, SHA-2, and,
recently, SHA-3) [NIST15a; NIST15b]. While SHA-1 and SHA-2 were designed by
the National Security Agency (NSA), AES and SHA-3 are the result of a more open
process. To replace the then-common Data Encryption Standard (DES), NIST ran
an open competition and chose Rijndael [DR99] as AES in 2001. Keccak [BDP+11]
was selected as SHA-3 to complement SHA-1 and SHA-2 in 2015 in much the same
fashion. In 2016, NIST announced a project aiming to standardize post-quantum
cryptography [NIST16]. This announcement followed a workshop in early 2015,
with updated recommendations by the NSA heralding a transition to quantum-
resistant cryptography [NSA15]. In contrast to the previous standardization e�orts,
NIST expressed the intention to publish a broader portfolio of approved algorithms,
and explicitly refrains from labeling this project a competition.

NIST solicited submissions of public-key encryption schemes, key-encapsulation
mechanisms and digital signature schemes. In the �rst round, 82 schemes were
submitted, of which 69 were deemed ‘complete and proper’ [Moo18]. Of these, 26
subsequently survived to the second round [NIST19]. The work described in this
thesis relates to three such submissions: SPHINCS+, MQDSS and NTRU-HRSS (the
latter subsequently merged with NTRUEncrypt to form NTRU). It is worth noting
that NIST explicitly started a separate process to standardize stateful hash-based
signatures, following the IETF. The IETF has since published RFC 8391 [HBG+18]
and RFC 8554 [CMF19], the former of which will be discussed in Section 3.3.5.

In their call for proposals, NIST de�nes �ve categories to classify the security
levels of the submissions [NIST16, Sec. 4.A.5]. The security of AES, SHA-2, and SHA-

3 are used as a frame of reference, comparing the security to key-search attacks
against AES and collision-�nding attacks against SHA-2 and SHA-3. In increasing or-
der of di�culty, categories 1 through 5 equate security to AES-128, SHA-256/SHA3-

256, AES-192, SHA-384/SHA3-384, and AES-256, respectively. Throughout this
work, we simply refer to these as ‘category 1’ through ‘category 5’.

7 Public Law 107-347 (Title III); December 17, 2002. Revised as the Federal Information Security Modern-
ization Act as per Public Law 113-283; December 18, 2014.

34 Chapter 2. Preliminaries

2.3 Cryptographic engineering

The most obvious focus in the design of all schemes described in this thesis is
resistance against quantum computers, but there is another important commonal-
ity. All work discussed here centers around real-world software implementations.
Various sections in the upcoming chapters describe speci�c aspects of these im-
plementations, detailing optimization techniques and considerations. Here, we
discuss some aspects of cryptographic engineering in more general terms.

In general, cryptographic engineering is characterized by two —sometimes
competing— fundamental goals: optimal use of resources and security. Towards
optimality, we aim to minimize the computational costs (measured in clock cycles)
as well as the memory usage (measuring both volatile memory usage and code
size). While this may not matter for the average desktop user, large data centers
�lled with servers that terminate TLS connections may see the impact of every
percentage point. To achieve security, we can attempt to counter a variety of imple-
mentation attacks, ranging from passive timing side-channel attacks to disruptive
fault injection. There is extensive literature on both counts; we make no attempt
to summarize that here, but instead discuss some intuitions that underly this work.

2.3.1 Programming abstractions

This thesis describes code written at three di�erent abstract layers.8 At the highest
level of abstraction, we use Python for prototyping and experimental scripts; it
is both quick to write and easy to read. For the majority of the code, we rely
on C; it is portable and e�cient, and provides some control over memory usage.
For the nitty-gritty, we use assembly; while tedious and laborious to write, it
allows for very precise optimizations, as well as a high level of control towards
preventing side-channel leakage. Besides being able to meticulously schedule
instructions, controlling which data is loaded into registers or stored in memory
enables optimizations that are impossible in a compiled language like C.

Code generation

While on the subject of compilers, we must remark on code generation. When
writing C, the code is typically compiled to processor instructions by a general-

8 Four, if one insists to count the listed pseudocode separately.

2.3. Cryptographic engineering 35

purpose C compiler, such as GCC or Clang.9,10 These compilers are the result of
countless hours of engineering e�ort and extensive research and development. As
a result, the code produced by modern versions of these compilers is extremely
e�cient. We must note, however, that cryptographic code is typically quite di�erent
from most C code. Whereas typical C code may see many complex memory
accesses patterns, interrupts and context switches, cryptographic code is typically
an extremely monolithic and straight-lined sequence of arithmetic operations.11

On one hand, this is ideal for compilers: without runtime decisions, the code
paths are laid out at compile-time. On the other, it is clearly not the expectation
they were designed with. Consequently, their behavior is somewhat erratic, and
arithmetic that seems straight-forward sometimes gets mangled. Most importantly,
it is often impossible for a compiler to keep track of the bigger picture. This is
typically showcased by its decisions regarding which values to retain in registers,
and which to swap out to memory. Still, manually keeping track of this and writing
assembly by hand remains painful and error-prone.

It seems that there is value in a middle ground: code generation. None of the
assembly code discussed in this thesis was written directly, by hand; literally all
of it was produced by Python scripts. This comes with signi�cant advantages —
most relating to readability and ease of programming, but one should also not
underestimate the power of perhaps only a hint of post-processing (see, e.g., the
discussion in Section 5.4.1). The most noticeable bene�t is similar to using assembly
macros, but much more powerful: using an expressive language like Python allows
us to close the loop on programming abstractions, natively dealing with lists,
subroutines and objects while retaining the e�ciency of custom assembly. For
example, this allows us to transparently keep track of the ’state of rotation’ of the
words in the ChaCha permutation described in Section 3.6.3.

We should not forget that compilers are ever-improving. Recent experiments
with PQM4 [KRS+18] showed as much as a 20% improvement merely by updating
the compiler; for SHA-512 as used in [KRS19], we were hard-pressed to outperform
compiler-generated code. In general, as processors become more and more complex,
it becomes increasingly more di�cult to write assembly by hand and take into
account the various intricacies in one-o� code generation scripts. One may hope
that large compiler projects are able to account for this more thoroughly.

9 https://gcc.gnu.org
10 https://clang.llvm.org
11 We come back to this shortly, when discussing timing side-channels.

https://gcc.gnu.org
https://clang.llvm.org

36 Chapter 2. Preliminaries

Parallelism

Parallelism is a term that will return throughout this thesis in various forms.
Parallelism is most notably bene�ted from through vectorization, to the point
where it is sometimes tempting to use the two synonymously. We also use it
to describe independent, parallel data streams: while the computations cannot
actually occur at the same time, they happen independently and can be done in
arbitrary order. It is important to always keep the relevant platform in mind — this
will often underscore the relevant form of parallelism when this is not clear from
context. We will discuss these platforms separately in the next section.

Throughout this work, we do not concern ourselves with ‘high-level’ paral-
lelism, i.e., multi-threading and multi-core processors. For benchmarking purposes,
our code always runs on a single CPU core. Still, vectorization allows us to bene�t
from parallelism in the various algorithms. Many algorithms contain subrou-
tines that repeatedly apply the same operation (or sequence of operations) to
independent blocks of data. Consider, e.g., summing terms in polynomial multi-
plication. Rather than using separate clock cycles to perform an operation (e.g.,
an addition) on individual operands, vector instructions allow us to operate in
tuples of operands at the same time. This is achieved by replacing the narrow
general-purpose registers by wider vector registers and simple arithmetic by the
corresponding multi-operand instructions. It is important to realize that, e.g., 256-
bit vector registers do not immediately allow 256-bit additions: the operands are
still separate, and intermediate carry bits will be dropped. Indeed, an addition of
8 × 32 bits is exactly that: addition of eight operands of 32 bits.

Besides combining the arithmetic operation, the e�ect on memory operations
is perhaps even more important. The wide vector registers allow loading of large
blocks of memory at once, as well as maintaining many more intermediate values
in active registers. This pairs well with the fact that typical vector instruction
sets come with instructions that allow the operands to be moved around (such
as the vpshuf instructions on AVX2) and their size liberally reinterpreted (i.e.,
interpreting 4 × 64-bit blocks as 16 × 16-bit integers).

Not every scheme lends itself well to vectorization. The cost of repacking the
input data to �t the dimensions and memory layout suitable for vector registers can
be more costly than the saved operations. Finding subroutines that parallelize well
is what makes vectorization a versatile optimization technique. It is important to
keep this in mind already during scheme design. During implementation, singling

2.3. Cryptographic engineering 37

out the critical sections to implement in hand-optimized assembly combines well
with making use of any inherent parallelism; while compilers are ever-improving,
often a signi�cant improvement can still be made by manually exploiting algorithm-
level parallelism.

One should also not overlook the importance of operations that can be processed
‘in parallel’ because of data independence, even on platforms that do not support
vectorization. Recognizing such blocks of instructions is crucial for e�cient register
allocation. E�cient register allocation, i.e., the assignment of abstract variables
to concrete registers, directly leads to a reduction in the number of (expensive)
memory operations. Separating parallel streams of operations typically reduces the
number of operands that need to be kept available, reducing register pressure and
thus simplifying allocation. This is visualized in dependency graphs, and lies at the
root of more complex optimization problems such as the polynomial inversions
described in Section 5.2, but also plays a fundamental role in seemingly simpler
problems such as the schoolbook multiplication routines in Section 5.4.2.

Modern high-end processors typically perform out-of-order execution: by
isolating independent data streams and sequences of instructions, the processor
can e�ectively skip ahead to other instructions while it would otherwise be waiting
for results of previous operations (including arithmetic, but in particular also
memory accesses). This pairs well with algorithms designed with parallelism in
mind, but directly competes with hand-optimized assembly, where the programmer
carefully arranges the instructions in an order they consider optimal. While this
can imply that hand-optimized assembly does not see much improvement from
out-of-order execution, the ever-increasing complexity of processors sometimes
leads to quite eccentric routines that prove to be optimal. We do not consider this
e�ect in this thesis explicitly.

2.3.2 Side-channel resistance

This thesis will not at all touch upon the extensive and diverse �eld of side-channel
attacks. Still, it remains of the utmost importance to consider the possibility of side
channels when writing and publishing cryptographic code — one can never really
be certain where it will end up being used. While it is impossible to counter all
side channels without implementing countermeasures that �t the speci�c platform,
threat model, and usage scenario, adhering to several basic principles already goes
a long way. We brie�y touch upon some intuitions.

38 Chapter 2. Preliminaries

The schoolbook examples of side channels are timing and power leakage
due to the execution of di�erent instructions. This occurs most notably when
using branch instructions (e.g., if-statements) that depend on secret data. Here,
secret data is anything that follows from parts of the secret key — most data is
quickly ‘contaminated’ by interactions with secrets. Of course the �nal results of
a computation also depend on secrets. This is why it is important to rigorously
prove that the output and secret are su�ciently unrelated, for example by coupling
this relation to solving a mathematically ‘hard’ problem. No such proofs exist for
intermediate results: it is thus crucial not to reveal information about these values.

Branching on secrets

It often follows from secret data whether or not a certain arithmetic operation
(and thus, an instruction) must be performed. Actually performing a di�erent
sequence of instructions can lead to a di�erence in runtime behavior, as well as
di�erent power-consumption patterns. To prevent this, this conditional behavior
is captured in arithmetic that may lead to vacuous operations. For example, rather
than conditionally adding a value based on a secret bit, consider �rst multiplying
the value by the bit representing the condition and then adding the result.

Somewhat related, note that this kind of defensive coding requires a thorough
understanding of the speci�c instruction set. The DIV instruction on Intel proces-
sors is a well-known example of an instruction that takes variable time depending
on input values — the same is true for multiplication on some platforms.12 For
compiled code, modern compilers make it increasingly complex to give such guar-
antees without disassembling the result and carefully inspecting each instruction.
Secret-aware compilers could be an important step in cryptographic engineering.

Furthermore, we must remark on the fact that avoiding branches on secret data
can be directly at odds with performance optimization. For example, performing the
maximum possible number of loop iterations is a typical defensive-but-suboptimal
pattern. While this may be a reasonable trade-o� for highly speci�c industry
applications, we believe that open source software should be defensive by default.
In particular, although it remains hard to give evidence of absence, all software
described in this work is intended to be free of such secret-dependent branches.

12 This is the case on the ARM Cortex-M3. Such variable-time instructions are notoriously poorly
documented; for the Cortex-M3, time savings occur for operands below 65536 [ARMb], but also for
powers of two and speci�cally for zero [Gro15].

2.4. Platforms and architectures 39

Memory access

Closely related to secret-dependent branching is secret-dependent memory access.
Here, the underlying idea is to exploit di�erences in the behavior of di�erent
parts of memory (see, e.g., the extensive literature on cache-timing attacks). When
secrets are used to index parts of data structures that live in distinct parts of
memory, this di�erence in behavior may expose which part of the structure was
accessed. In turn, this reveals information about the index used to access it. Typical
countermeasures include randomizing the access pattern or simply retrieving the
entire data structure from memory for each access. It is not hard to imagine that
this, too, is detrimental to performance.

Not all platforms described in this thesis actually provide multiple levels of
memory — on embedded platforms, caches are often an optional peripheral. Still,
as it is hard to control where the code ends up in practice, all software presented
in this work aims to avoid such memory accesses.

Constant-time code

Underlying the above is the implicit suggestion that code must run in constant time.
While this is often the term used in practice, it is somewhat misleading. Rather
than demanding the exact same cycle count for every iteration, we require the
execution time not to be related to the secrets in a revealing way. This is typically
done by feeding the secret through a pseudo-random generator that leads to a
statistically independent stream of output. This is relevant in particular in the
context of post-quantum cryptography, where rejection sampling is a common
practice, but also occurs in classical systems that require certain properties of
random values (e.g., in primality testing).

Constant-time code is sometimes referred to as being isochronous. Perhaps
even more confusingly, this term is occasionally used to describe code that runs in
variable time, but where the timing does not depend on secret inputs. We will not
use this term throughout the remainder of this thesis.

2.4 Platforms and architectures

Throughout this thesis, we will make passing note of various platforms and archi-
tectures. This section serves as a central point of reference, where we go into each
one of them in some more detail.

40 Chapter 2. Preliminaries

2.4.1 Intel x86, x86-64 and AVX2

Found in most personal computers, laptops and servers, x86 is currently likely
the most widespread architecture for high-end processors. Originally a 16-bit
architecture from the 1970s, throughout this thesis we use x86-64, the modern
64-bit version. This architecture de�nes sixteen general-purpose registers of 64
bits each, the lower parts of which can be used as 32, 16 and 8-bit registers as well.

The x86 instruction set has seen numerous extensions. In this work, we are
particularly interested in the AVX2 vector extensions. The AVX2 extensions give us
access to another sixteen registers of 256 bits each, but these are far from general-
purpose. Through ‘single instruction, multiple data’ (SIMD) instructions, these
registers can be used as vectors of smaller values for e�cient parallelization (see
Section 2.3.1), but they also allow us to e�ciently work with arithmetic on blocks
of 16 × 256 bits. As with the general-purpose registers, the lower half of these
registers can be addressed explicitly. There is still a strong lane boundary between
the higher and the lower 128 bits, showing the 128-bit SSE heritage of AVX2: AVX2
instructions generally do not allow crossing between the high and low lanes, and
naively mixing SSE and AVX2 instructions results in large penalties.

Other relevant extensions include CLMUL for carry-less multiplication (i.e.,
multiplication of polynomials over F2), BMI-1 and BMI-2 for bit manipulation (i.e.,
extracting, shu�ing and inserting bits), and AES-NI for e�cient AES operations.
These will be brie�y mentioned where relevant.

Intel Core i7 Haswell

While development can be done on any platform o�ering the required instruction
set, accurate benchmarking requires somewhat more careful con�guration. Unless
otherwise speci�ed, all benchmarks in this work were performed on a single core
of an Intel Core i7-4770K Haswell running at 3.5 GHz. This core comes with 32 KiB
of L1 instruction cache and data cache, 256 KiB of L2 cache and 8 MB of L3 (shared)
cache. To aid comparison, we follow the standard practice of disabling TurboBoost
and hyper-threading (see, e.g., benchmarking instructions by [BL]).

2.4.2 ARMv7 on the Cortex-M series

On smaller, embedded devices, one is unlikely to �nd the large and expensive x86
processors. Instead, the ARM Cortex-M series has been rapidly gaining popularity.

2.4. Platforms and architectures 41

These microprocessors combine the ease of use and computational power of 32-bit
arithmetic with low cost and a small energy footprint, quickly replacing 8-bit
processors in small integrated controllers [ARMa].

In this work, we will discuss implementations targeting the Cortex-M3 and the
Cortex-M4. These platforms respectively implement the ARMv7-M and ARMv7E-

M architectures. Note that these processors are not sold and produced by ARM.
Instead, the architectures are licensed to manufacturers such as STMicroelectronics,
NXP Semiconductors and Atmel, each producing their own chips and develop-
ment boards. We rely on the STM32 Discovery boards by STMicroelectronics. In
particular, we use the STM32L100C and the STM32F407.

STM32 Discovery boards

The STM32L100C is ST’s Cortex-M3 Discovery board. It features a Cortex-M3
running at 32 MHz, no data or instruction caches, 16 KiB of RAM and 256 KiB of per-
sistent �ash memory. Notably, the board contains a direct-memory-access (DMA)
controller, allowing for fast access to memory through its serial communication
interface. It implements the ARMv7-M architecture.

The STM32F407 is ST’s Cortex-M4 Discovery board. Running at a maximum
speed of 168 MHz and implementing the ARMv7E-M architecture, it is somewhat
more powerful than the M3. In the context of this work, that becomes particularly
apparent in the form of its 192 KiB of RAM (see the discussion in Section 3.6 and
in [KRS+19], detailing how memory usage is typically the limiting factor). The
STM32F407 has no data caches (see Section 5.5.2), and boasts 1 MiB of ROM.

For both boards, we make use of the libopencm3 �rmware library.13 Originally
targeting the Cortex-M3, the library provides an abstraction layer for various
Cortex-M microcontrollers. This makes it easier to write cross-platform code with-
out worrying about speci�c microcontroller intricacies. Taking this one step further,
we provide usage examples and a wrapper around functionality that is relevant to
users implementing, testing and benchmarking cryptographic primitives (stm32-

ge�ing-started; see Section 1.3.1). The e�ectiveness of this approach is demon-
strated in its use in various subsequent projects (most notably PQM4 [KRS+18]) and
the yearly Cryptographic Engineering course at Radboud University. To compile
for these platforms, we use the GNU ARM Embedded Toolchain.14

13 https://github.com/libopencm3/libopencm3
14 https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

https://github.com/libopencm3/libopencm3
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

42 Chapter 2. Preliminaries

ARMv7-M

Several variants of the ARMv7 architecture exist. For the Cortex-M series, we are
interested in ARMv7-M and the ARMv7E-M variant. These architectures de�ne
sixteen 32-bit registers, three of which with a special purpose: R13 is the stack
pointer, R14 is the link register, and R15 contains the program counter. When
hand-writing assembly code, R14 is easily freed up for use as an additional general-
purpose register. To reduce code size, ARM introduced the compressed Thumb
instruction set containing a 16-bit-encoded subset of ARMv7. Thumb2 builds
upon this by allowing for a mix of 16-bit and 32-bit instructions. Instructions at a
non-32-bit o�set can introduce a penalty; this requires careful consideration (see
Section 5.4.1). ARMv7 speci�es a simple three-stage pipeline, making it feasible for
developers to reason about cycle-accurate execution times.

An important and distinguishing feature of ARMv7-M is the combined barrel
shifter. Besides allowing for two source registers and a separate destination register
when performing typical arithmetic instructions, one of the source registers can
optionally be rotated or shifted by a �xed distance. Crucially, this does not induce
a penalty over the standard cost of arithmetic. This is especially bene�cial in
cryptographic primitives, where rotations and shifts are often naturally surrounded
by arithmetic operations.

Having established that vectorization is an important optimization mechanism,
it is no surprise that ARMv7E-M introduces SIMD instructions. The DSP instruction
set, designed for signal processing, adds arithmetic on pairs of 16-bit and vectors
of 8-bit values, as well as a wide variety of instructions to combine multiplications
and additions. We make extensive use of this in the work described in Section 5.3.

2.4.3 Java Card

We use the Java Card platform for the work described in Section 3.4. The situation
here is quite di�erent from the platforms discussed above: Java Card de�nes an
environment standard rather than a precise architecture, specifying a Java API
rather than instructions, registers and pipelines. Consequently, manufacturers
have more freedom when designing the underlying hardware, and developers are
guaranteed portability — naturally, this comes at the cost of performance.

We describe this platform in some more detail in Section 3.4.1.

Chapter 3

Hash-based signatures

This chapter is based on the peer-reviewed papers “ARMed SPHINCS – Computing

a 41 KB signature in 16 KB of RAM” [HRS16a], “Mitigating Multi-Target Attacks in

Hash-based Signatures” [HRS16b], and “Is Java Card ready for hash-based signa-

tures?” [LPR+18], the preprint “SPHINCS+” [BHK+19], and the SPHINCS+ submission
to NIST’s Post-Quantum Cryptography Standardization project [BDE+17].

This is the �rst of two chapters on digital signatures. Here, we consider hash-based
signature schemes: signature schemes that rely solely on the existence of a secure
one-way function. The approach discussed here is often considered to be the most
conservative option available — not just when facing an adversary equipped with
a quantum computer, but also compared to its classical counterparts. In fact, it has
been shown that the existence of a secure one-way function is a provably minimal
requirement for the existence of any signature scheme [Rom90], and for hash-based
signature schemes it is also su�cient. Hash-based signatures are among the oldest
public-key cryptosystems, dating back to the publication of Lamport’s one-time
signature scheme in 1979 [Lam79], and their security is well-understood.

A natural question one may be asking at this point is why these schemes have
not been deployed already, to provide digital signatures in the presence of classical
adversaries. The reasons for this are, unfortunately, manifold. Historically, the
large signature size has been an important obstacle towards practical schemes.
As there are various time/memory trade-o�s to be made, this goes hand in hand
with poor performance. Perhaps the biggest obstacle, however, was of an entirely
di�erent nature: producers of hash-based signatures were required to maintain
and update a state. Rather than being able to generate a key pair once and then
use it arbitrarily and inde�nitely, the secret key e�ectively changes with every
signature. This seemingly innocuous di�erence has a serious impact on real-world
applications, and directly con�icts with typical user expectations.

43

44 Chapter 3. Hash-based signatures

The ever-growing threat of a large-scale quantum computer has renewed
interest in this �eld, and over the last decade there has been a considerable amount
of development. This resulted in XMSS [BDH11], demonstrating the viability of
hash-based signatures, and subsequently in SPHINCS [BHH+15], a variant that
does not need to maintain state. The former has since led to the publication of an
RFC [HBG+18], while the latter laid the groundwork for the SPHINCS+ submission
to NIST’s Post-Quantum Cryptography Standardization project.

The XMSS and SPHINCS constructions will be the main focus on this chapter,
and are explained in detail in Sections 3.3 and 3.5. The remainder of this chapter
concerns variations and tweaks to these schemes, as well as descriptions of practical
implementations. Notably, the SPHINCS+ framework is discussed in Section 3.7
Before getting to that, let us �rst consider the basic building block: one-time
signature schemes.

3.1 One-time signature schemes

In Chapter 1 and Section 2.1.3, the concept of digital signatures was introduced.
The signer produces a digital signature on a message of their choosing using their
secret key. Afterwards, a veri�er can use the corresponding public key to check
that the signature was produced with that particular secret key, and corresponds to
that speci�c message. This relation is fundamentally asymmetric: only the holder
of the secret key can produce the signature, while anyone with access to the public
key can verify the correctness of a signature for a given message.

For one-time signature schemes, an additional element of asymmetry is intro-
duced. As the name suggests, a signer can use their secret key only once, i.e., only
use it to produce a single signature. Security degrades when the same key pair is
used for more than one message.1 The situation for the veri�er is unchanged: they
can freely use the public key to verify multiple messages.

In terms of the EU-CMA security game speci�ed in De�nition 2.1.8, we require
only a slight modi�cation to cover this additional limitation. Rather than allowing
the adversary to query the challenger for q signatures, they are only allowed to do
so once. For completeness, we capture this formally in De�nition 3.1.1.

De�nition 3.1.1 (one-time EU-CMA) Given a signature scheme (KeyGen, Sign,

Verify), consider the following game between a challenger C and an adversary A:
1 Just how quickly security degrades for repeated use strongly depends on the speci�c scheme [BH17].

3.1. One-time signature schemes 45

1. C runs (pk, sk) = KeyGen() and sends pk to A.

2. A sends a freely chosen messagem to C.

3. C responds with σ = Sign(m, sk).

4. A outputs a pair (m′,σ ′). This is a valid forgery when Verify(m′,σ ′, pk) =
True andm′ ≠m.

The signature scheme is said to be one-time EU-CMA when any adversaryA, run-
ning in time polynomial in the security parameter, has negligible success probability.

3.1.1 Lamport’s one-time signature scheme

The �rst hash-based signature scheme is typically credited to a technical report
by Lamport [Lam79], although the same scheme is sometimes referred to as ‘the
Lamport-Di�e one-time signature scheme’ (notably in direct follow-up work by
Merkle [Mer90]). The description below is a slight reformulation,2 so as to match
presentation as is common in current literature. See Figure 3.1 for an illustration of
a signature generated as described below, and Algorithms 1, 2 and 3 for pseudocode.

We assume a message m ∈ {0, 1}n , i.e., binary messages m of n bits. De�ne
F ∶ {0, 1}k → {0, 1}k to be a one-way function,3 that is, given a value y = F(x), it
is infeasible to �nd an x ′ such that F(x ′) = y.

Before being able to produce signatures, the signer needs to generate a secret
key and the corresponding public key. The secret key consists of 2n random values
of k bits each. We label these si , j for i ∈ {1, . . . ,n} and j ∈ {0, 1}. The public key
consists of the result of applying F to each secret value. We write pi , j ← F(si , j),
and publish the public key pk = (p1,0,p1,1, . . . ,pn,0,pn,1).

Given a messagem, the signer selectively reveals the secrets si , j corresponding
to the values of the bits inm. More precisely, these are the values si ,mi , wheremi

is the ith bit of m. The list of these values make up the signature. Given such a
signature, the veri�er can also apply F to a revealed secret, and obtain F(si ,mi).
The signature is to be considered valid if indeed F(si ,mi) = pi ,mi for all i bits ofm.

2 To the familiar reader, the original description by Lamport may be of interest. Rather than explicitly
specifying messages to be a sequence of bits that indicate which secrets to reveal, they are more
generally mapped to subsets of the domain of the one-way function.

3 For now, we su�ce with this intuitive de�nition, and defer discussion on collision resistance and
multi-target attacks to Section 3.3.

46 Chapter 3. Hash-based signatures

Algorithm 1 Lamport.KeyGen () n,k, F

1: for i ∈ {1, . . . ,n} do
2: for j ∈ {0, 1} do
3: si , j

$← {0, 1}k

4: pi , j ← F(si , j)
5: end for
6: end for
7: return pk = (p1,0,p1,1, . . . ,pn,0,pn,1), sk = (s1,0, s1,1, . . . , sn,0, sn,1)

Algorithm 2 Lamport.Sign (m, si , j ∈ sk) n, F

1: (m1, . . . ,mn) =m ▷ Splitm such thatmi ∈ {0, 1}
2: for i ∈ {1, . . . ,n} do
3: σi = si ,mi

4: end for
5: return σ = (σ1, . . . ,σn)

Algorithm 3 Lamport.Verify (m,σi ∈ σ ,pi , j ∈ pk) n, F

1: (m1, . . . ,mn) =m ▷ Splitm such thatmi ∈ {0, 1}
2: for i ∈ {1, . . . ,n} do
3: if F(σi) ≠ pi ,mi then
4: return False

5: end if
6: end for
7: return True

3.1. One-time signature schemes 47

s0,0

s0,1

s1,0

s1,1

s2,0

s2,1

s3,0

s3,1

sk:

s0,0F ()

s0,1F ()

s1,0F ()

s1,1F ()

s2,0F ()

s2,1F ()

s3,0F ()

s3,1F ()
pk:

Figure 3.1: The Lamport signature scheme. Here, m = 1011 is used as an example
message and the grayed nodes indicate the revealed secrets.

As a consequence of the one-wayness of F , an outside forger cannot create
such a signature for any otherm′: they have no knowledge of any secrets si , j other
than the ones exactly corresponding to the bits of m. Changing as much as one bit
inm would require including an unrevealed secret in the signature.

Intuitively, it should now be straight-forward to see why such a secret key
cannot be used for multiple messages. If one was to also publish a signature for a
di�erent messagem′ based on the same secret values si , j , an outside observer would
learn the secrets si ,mi as well as si ,m′

i
. This not only allows them to reproduce

the signature for m and m′ (which is not a problem, as these have been legiti-
mately published already), but also for any messagem′′ that can be constructed by
combining bits4 ofm andm′, i.e., wherem′′

i ∈ {mi ,m
′
i} for all i .

Merkle’s improvement

Besides the unmistakable downside of only being able to sign once per key pair,
Lamport signatures are also quite large. At 2kn bits, signing a 256-bit hash with
k = 256 leads to signatures of 128 KiB each. In [Mer90], Merkle demonstrates a
slight improvement over Lamport’s scheme. Rather than revealing secrets for both
the 1-bits and 0-bits, only revealing the secrets corresponding to the 1-bits halves
the size of the signature on average.

To prevent forgeries that �ip 1-bits to 0 and simply omit the corresponding
secret from the signature, the total number of zeros in m is appended to m and
also signed. Flipping a 1 to a 0 in the original message will cause an inverse bit
�ip in this ‘checksum’ c : through carrying, the least signi�cant 0-bit will �ip to a 1.
Signing this new 1-bit requires the forger to include an unrevealed secret.

4 A similar problem is addressed in Lamport’s original description, where he brie�y examines a scheme
equivalent to revealing only the secrets corresponding to the 1-bits, enabling forgeries for messages
where 1-bits are �ipped to 0; this is naturally prevented by revealing secrets for both m and its
complement.

48 Chapter 3. Hash-based signatures

p0

s0

pk:

sk:

p1

s1

p2

s2

p3

s3

p4

s4

p5

s5

p6

s6

Figure 3.2: A Winternitz signature (marked in gray). This example illustrates n = 10
and w = 4, producing a signature form = 10 00 11 01 01. Thus, c = 8 = 10 00.

3.1.2 Winternitz’ improvement

Also in [Mer90], Merkle describes a variant credited to Winternitz that allows
reducing the size of the signature at the cost of additional runtime. The intuition
is that, rather than using the inclusion of a secret to authenticate one message bit,
multiple message bits can be covered using a single secret and a varying number
of applications of the one-way function. The applications of the one-way function
are commonly referred to as chains, and the function itself the chaining function.

As an example, let us look at the case where w = 24 = 16, i.e., the case where
bits are grouped in groups of four. For a message of n bits, we then need only n/4

secrets. For each such group, the signer applies the one-way function F as often
as the value of the group indicates. Note that the maximum value, and thus the
maximum number of required applications, is w − 1. Consequently, the public
values need to be pi = Fw−1(si) = F 15(si). To sign the group mi = 1101, i.e., the
decimal value 13, the signer needs to compute and reveal σi = F 13(si). This leaves
w−1−13 = 2 applications of F to the veri�er, after which they can check that indeed
pi = F 2(σi) = F 2(F 13(si)). A smaller example of this is illustrated in Figure 3.2.

Like in Merkle’s improvement described above, the naive scheme allows for
a trivial way to construct forgeries. A forger could construct a message m′ that
is equal tom except for the ith group of bits (we can choose any i and repeat this
procedure without loss of generality). For this group, they choose m′

i such that
m′

i >mi . They can then obtain σ ′i by simply applying F an additionalm′
i −mi times

to F(mi), and complete the forgery. The veri�er now applies one less iteration of
F and concludes that indeed pi = Fw−1−m′

i (Fm′
i−mi (Fmi (si))).

3.1. One-time signature schemes 49

As before, these forgeries can be prevented by including a negated checksum.5

Let us introduce `1 = ⌈ n
log(w) ⌉ for the number of values that are to be signed. The

checksum is then computed as c = Σ`1
i=1(w − 1 −mi). Expressed in base w , this

checksum requires `2 = ⌊ log(`1(w−1))
log(w) ⌋ + 1 values, signed in the same way as the

message. This implies that the keys must consist of ` = `1 + `2 values si and pi , in
order to cover both the message and the checksum.

The scheme resulting from the above construction is typically referred to as
the Winternitz One-Time Signature scheme (WOTS). See Algorithms 4, 5 and 6
for an algorithmic description. Note that the informal description presented above
implicitly suggests w to be a power of 2 (e.g., by operating on ‘groups of bits’).
This is purely an artifact of convenience of implementation, and in principle the
message can be converted to any base w . See Table 3.1 for a summary of common
parameter choices.

Algorithm 4 WOTS.KeyGen () `,k,w, F

1: for i ∈ {1, . . . , `} do
2: si

$← {0, 1}k

3: pi ← Fw−1(si , j)
4: end for
5: return pk = (p1, . . . ,p`), sk = (s1, . . . , s`)

Algorithm 5 WOTS.Sign (m, si ∈ sk) `1, `2,w, F

1: (m1, . . . ,m`1) =m ▷ Convertm to base-w , s.t. mi ∈ {0, . . . ,w − 1}
2: for i ∈ {1, . . . , `1} do
3: σi = Fmi (si)
4: end for
5: c = Σ`1

i=1(w − 1 −mi)
6: (c1, . . . ,c`2) = c ▷ Convert c to base-w , s.t. ci ∈ {0, . . . ,w − 1}
7: for i ∈ {1, . . . , `2} do
8: σ`1+i = F ci (s`1+i)
9: end for

10: return σ = (σ1, . . . ,σ`)

5 Including the number of 0-bits, as in Merkle’s improvement, can be seen as a speci�c instance of this.

50 Chapter 3. Hash-based signatures

Algorithm 6 WOTS.Verify (m,σi ∈ σ ,pi ∈ pk) `1, `2, `,w, F

1: (m1, . . . ,m`1) =m ▷ Convertm to base-w , s.t. mi ∈ {0, . . . ,w − 1}
2: for i ∈ {1, . . . , `1} do
3: if Fw−1−mi (σi) ≠ pi then
4: return False

5: end if
6: end for
7: c ← Σ`1

i=1(w − 1 −mi)
8: (c1, . . . ,c`2) = c ▷ Convert c to base-w , s.t. ci ∈ {0, . . . ,w − 1}
9: for i ∈ {1, . . . , `2} do

10: if Fw−1−ci (σ`1+i) ≠ p`1+i then
11: return False

12: end if
13: end for
14: return True

n k w `1 `2 ` bytes
128 128 4 64 4 68 1088
128 128 16 32 3 35 560
128 128 256 16 2 18 288
192 192 4 96 5 101 2424
192 192 16 48 3 51 1224
192 192 256 24 2 26 624
256 256 4 128 5 133 4256
256 256 16 64 3 67 2144
256 256 256 32 2 34 1088

Table 3.1: Common WOTS parameter sets and the resulting signature sizes. Note
that RFC 8391 [HBG+18] and the SPHINCS+ submission to NIST’s Post-Quantum
Cryptography Standardization project [BDE+17] only list parameters wherew = 16.

3.1. One-time signature schemes 51

Public-key recovery

Given a WOTS signature, one can fully reconstruct the public key corresponding
to the secret key that was used to produce the signature. In fact, the careful reader
may have observed that this is exactly what happens during the veri�cation routine
(compare Algorithm 6 to Algorithm 4). During veri�cation, the one-way function
is repeatedly applied to all included values. This continues exactly until the output
matches the public key; the actual ‘veri�cation’ comes down to comparing the
produced values to a previously obtained copy of the key to con�rm this. Note
that this can even be taken a step further by computing a digest over the public
key, and comparing that to a previously obtained authentic digest. This e�ectively
compresses the key to the size of a single digest.

In the next section, we will see how this seemingly unremarkable property is
extremely useful when constructing a multi-signature scheme from WOTS. For
now, we su�ce by explicitly de�ning public-key recovery in Algorithm 7 (and,
trivially, from the secret key in Algorithm 7b).

Algorithm 7 WOTS.RecoverPK (m,σi ∈ σ) `1, `2, `,w, F

1: (m1, . . . ,m`1) =m ▷ Convertm to base-w , s.t. mi ∈ {0, . . . ,w − 1}
2: for i ∈ {1, . . . , `1} do
3: pi ← Fw−1−mi (σi)
4: end for
5: c = Σ`1

i=1(w − 1 −mi)
6: (c1, . . . ,c`2) = c ▷ Convert c to base-w , s.t. ci ∈ {0, . . . ,w − 1}
7: for i ∈ {1, . . . , `2} do
8: p`1+i ← Fw−1−ci (σ`1+i)
9: end for

10: return pk = (p1, . . . ,p`)

Algorithm 7b WOTS.RecoverPK (si ∈ sk) `,w, F

1: for i ∈ {1, . . . , `} do
2: pi ← Fw−1(si)
3: end for
4: return pk = (p1, . . . ,p`)

52 Chapter 3. Hash-based signatures

3.2 Merkle trees

All signature schemes we have seen so far have been one-time signature schemes.
This is typically not the primitive that is useful in practice. We now discuss how
to construct a many-time signature scheme from a one-time signature scheme, as
proposed by Merkle [Mer90]. Note that a many-time signature scheme is still quite
di�erent from a digital signature scheme as de�ned in De�nitions 2.1.7 and 2.1.8:
the maximum number of signatures that can be produced is �xed, and the secret key
continuously evolves as it is used to produce signatures. This is de�ned in [BM99],
and formally addressed in the context of hash-based signature schemes in [Hül13a].

3.2.1 Many-time digital signature schemes

To properly express the correctness property and EU-CMA notion, we would have
to separately de�ne key updates. Instead, for ease of exposition, we make due
with a slightly more loose de�nition that more closely resembles De�nition 2.1.7
and real-world implementations (e.g., the API description in [HBG+18], discussed
in Section 3.3.5). Notably, we omit an explicit KeyUpdate routine, and instead
shoehorn this into the Sign algorithm.

De�nition 3.2.1 (Many-time digital signature scheme) A many-time digital
signature scheme is a tuple of algorithms (KeyGen, Sign,Verify), that, for a given
maximum number of signatures p, is de�ned as follows:

• The key-generation algorithm KeyGen is a probabilistic algorithm that outputs
a public key pk and a secret key sk0, i.e., a key pair (pk, sk0).

• The signing algorithm Sign is a possibly probabilistic algorithm that takes
as input a messagem and a secret key ski to produce a signature σ , and an
updated secret key ski+1 if i + 1 < p, or Fail otherwise.

• The veri�cation algorithmVerify is a deterministic algorithm that takes as input
a messagem, a signature σ and a public key pk. It outputs the Boolean value
True to indicate that the signature is accepted, or False to indicate rejection.

Here, the intuition for the correctness property is that Verify is agnostic to
the evolving of the secret key: for a key pair (pk, sk) ← KeyGen(), a signature
σ ← Sign(m, ski) on a message m should cause Verify(m,σ , pk) to return True as
long as ski has evolved from sk0 within p signatures.

3.2. Merkle trees 53

pk

1514131211109876543210

Figure 3.3: A binary hash tree. Here, p = 16. The marked nodes are included in the
authentication path that authenticates pk4.

3.2.2 From one to many

Assuming that the veri�er has access to the required public key, a one-time sig-
nature provides the same functionality that we expect of any digital signature
scheme. This assumption hits the sore spot, though: as a key pair can only be used
once, each signature veri�cation operation requires a di�erent public key. This is
easily remedied by attaching the relevant public key to the one-time signature, only
to reveal the real problem: authenticating the attached public keys. In [Mer90],
Merkle presents a construction to do precisely this.

For some p = 2h with h ∈ N, generate p key pairs of the underlying one
time signature scheme, i.e., pairs (pki , ski) with i ∈ {0, . . . , 2h − 1}. We then use
these to construct a binary tree of height h. For the leaf nodes, simply use one of
each of the public keys pki . The remainder of the tree can then be constructed
from the bottom up: each parent node is computed by applying a hash function
H ∶ {0, 1}k × {0, 1}k → {0, 1}k to the combination of its child nodes. This continues
all the way to the root of the tree, which we label pk. Let us for now de�ne pk to
be the public key of the many-time signature scheme, and sk0 = (sk0, . . . , skp−1)
to be the secret key. See Figure 3.3 for an illustration of an instance of such a tree,
where p = 16. We include algorithmic descriptions that follow this structure as
Algorithms 8, 9 and 10 on page 55.

Under the assumption that pk is externally authenticated, the problem of
authenticating any of the public keys pkj can now be solved: attach all of the public
keys pki to the signature, allowing the veri�er to reconstruct the entire tree and
compare the root pk. This is, of course, terribly ine�cient.

54 Chapter 3. Hash-based signatures

Authentication paths

The naive approach to authentication described above achieves the right goal (i.e.,
allowing the veri�er to reconstruct the root node pk from a signature), but greatly
increases the signature size in the process.

As always, [Mer90] provides a solution. Rather than focusing on reconstructing
the tree, start at the leaf node corresponding to a given signature, and add only the
nodes required to progress upwards towards pk. Given the leaf node that contains
the one-time public key pkj corresponding to a speci�c signature σj , this means
we require its sibling leaf-node to construct its parent. From there, we require
its parent’s sibling to construct its grandparent, et cetera. Again, consider the
example in Figure 3.3. Note that precisely one node is required per layer in the
tree – in other words, the number of required nodes is logarithmic in the number
of leaf nodes, i.e., the potential number of signatures. These nodes make up the
‘authentication path.’

To summarize, a signature σj on a message m must thus contain the one-
time signature on m produced using skj , the corresponding public key pkj , the
authentication path, as well as the index j to indicate which key pair was used. The
latter is necessary for the veri�er to correctly interpret the authentication path.

Note that for one-time signature schemes that allow for public-key recovery,
such as the WOTS scheme,pkj can be omitted from the signature; the veri�er simply
reconstructs it from the one-time signature. As we will see later, this is crucial
to achieve practical signature sizes (e.g., in XMSSMT and SPHINCS, described in
Sections 3.3 and 3.5): the uncompressed public keys of the one-time signature
schemes described so far are at least as large as their respective signatures.

The state

It was brie�y alluded to in the introductory text of this section and in De�ni-
tion 3.2.1: a many-time signature scheme, such as the Merkle signature scheme
described in this section, comes with an important footnote. As each of the OTS
key pairs can only be used once, the signer needs to keep track of which key pairs
have already been used. The most straight-forward approach to achieve this is
by including an index in the secret key, indicating which key pair is to be used
next. Thus, a secret key is of the form skj = (j; sk0, . . . , skp−1). The distinction
between stateful and stateless signature schemes (and their respective downsides
and merits) will be discussed in more detail in Sections 3.2.5 and 3.5.1.

3.2. Merkle trees 55

Merkle’s signature scheme

We describe the resulting signature scheme in Algorithms 8, 9 and 10, parameterized
by an abstract one-time signature scheme OTS . As before, h is the height of the
Merkle tree, allowing the signer to produce 2h signatures. We de�ne a subroutine to
construct Merkle trees in Algorithm 8b to avoid repetition. Furthermore, we assume
some way to retrieve an OTS public key based on the secret key;6 Algorithm 7b
de�nes this explicitly for the WOTS scheme.

Algorithm 8 Merkle.KeyGen () h,OTS,H

1: for i ∈ {0, . . . , 2h − 1} do
2: pki , ski ← OTS .KeyGen ()
3: end for
4: nodei , j ←Merkle.BuildTree(pk0, . . . ,pk2h−1) ▷ Let 0 ≤ i ≤ h and 0 ≤ j < 2h−i
5: pk← nodeh,0

6: return pk, sk0 = (0; sk0, . . . , sk2h−1)

Algorithm 8b Merkle.BuildTree (leaf0, . . . , leaf2h−1) h,H

1: for j ∈ {0, . . . , 2h − 1} do
2: node0, j ← leaf j
3: end for
4: for i ∈ {1, . . . ,h} do
5: for j ∈ {0, . . . , 2h−i − 1} do
6: nodei , j ← H(nodei−1,2j ,nodei−1,2j+1)
7: end for
8: end for
9: return nodei , j for i ∈ {0, . . . ,h}, j ∈ {0, . . . , 2h−i − 1}

3.2.3 Treehash

The key generation and signing routines described in Algorithms 8 and 9 are quite
expensive to execute, both in terms of computations and in terms of memory usage.
Let us �rst examine memory usage. It is quickly observed that the peak memory
requirement occurs when computing the Merkle tree.

6 In general, this can be achieved trivially by including pk as part of sk during key generation.

56 Chapter 3. Hash-based signatures

Algorithm 9 Merkle.Sign (m, skidx) h,OTS

1: (idx ; sk0, . . . , sk2h−1) = skidx
2: if idx > 2h − 1 then
3: return Fail

4: end if
5: skidx+1 ← (idx + 1; sk0, . . . , sk2h−1)
6: σOTS ← OTS .Sign (m, skidx)
7: for j ∈ {0, . . . , 2h − 1} do
8: pkj ← OTS .RecoverPK (skj)
9: end for

10: nodei , j ←Merkle.BuildTree(pk0, . . . ,pk2h−1) ▷ Let 0 ≤ i ≤ h and 0 ≤ j < 2h−i
11: for i ∈ {0, . . . ,h − 1} do
12: authi ← nodei ,⌊ idx2i ⌋⊕1
13: end for
14: σ = (idx,pkidx ,σOTS ,auth)
15: return σ , skidx+1

Algorithm 10 Merkle.Verify (m,σ , pk) h,OTS,H

1: (idx,pkidx ,σOTS ,auth) = σ
2: if ¬ OTS .Verify (m,σOTS ,pkidx) then
3: return False

4: end if
5: node0 ← pkidx

6: for i ∈ {0, . . . ,h − 1} do
7: if ⌊ idx2i ⌋ mod 2 = 0 then
8: nodei+1 ← H(nodei ,authi)
9: else

10: nodei+1 ← H(authi ,nodei)
11: end if
12: end for
13: return nodeh

?= pk

3.2. Merkle trees 57

By now the recurring pattern of this section must be clear: a solution is to be
found in [Mer90]. In Section 7 of [Mer90], Merkle describes an algorithm that has
become known as Treehash. This algorithm has since formed the basis of many
procedures that generate Merkle trees; whether all at once to �nd the root node,
as we assumed in the previous subsection, or incrementally, as we will see later.

Rather than building the tree layer by layer, Treehash incrementally considers
one leaf node at a time. The core idea is to grow subtrees from the leaves upwards,
gradually merging their roots. This allows us to only store the roots of each of
these subtrees; all nodes are used exactly once to compute a parent node and are
then no longer required (for the purpose of �nding the root node).

Let us consider this somewhat more concretely. Initially, when the �rst leaf
node is added, there are no heads of subtrees – the new leaf is considered to be a
new subtree of its own. As soon as the second node is added, it can be merged into
the initial subtree to compute a node on the second layer. The third leaf forms a
subtree of its own again, and the forth leaf node triggers not one but two merges:
it can be merged with the third leaf, and again with the head of the tree that had
already grown to the second layer. This procedure is naturally continued until all
leaf nodes have been added. See Figure 3.4 on the next page for an illustration.

When examining how the set of ‘relevant’ nodes evolves, we observe a strict
ordering in when these nodes are used: it is no coincidence that this ordering is
de�ned by their height in the tree, with the lowest nodes being used �rst. Similarly,
it is easily observed that the lowest nodes were the most recently added, and the
relevant nodes are consumed in a last-in-�rst-out manner; the set is really a stack.

As a consequence, note that there can never be two nodes of the same height on
the stack – they would necessarily need to be siblings in the tree, and would thus
immediately be merged to produce their parent node. This implies that the size of
the stack is linear in tree height (or: logarithmic in the number of leaf nodes).

After the algorithm has �nished and all leaf nodes have been processed, all
that remains on the stack is the root node. This is su�cient to replace the above-
described Merkle.BuildTree algorithm (Algorithm 8b) during key generation, but
not as part of signing. Here, we also require the authentication path leading from
one of the leaf nodes to the root. These nodes are generated during Treehash, but
are not preserved by default. We slightly tweak the algorithm to recognize these
nodes as they are produced, making use of the fact that the path contains exactly
one node on each layer of the tree. See Algorithm 11 for an algorithmic description.

58 Chapter 3. Hash-based signatures

Figure 3.4: Treehash, with h = 3. The current roots of subtrees are marked gray.
Each round introduces a leaf node, and updates the subtree roots where possible.

3.2. Merkle trees 59

Algorithm 11 Merkle.Treehash (idx, lea f0, . . . , lea f2h−1) h,H

1: stack ← []
2: for i ∈ {0, . . . , 2h − 1} do
3: node ← lea fi ▷ Leaves would typically be generated in-place.
4: if idx = i ⊕ 1 then ▷ If this is the sibling of idx ..
5: auth0 ← node

6: end if
7: ▷ We use the abstract height() to keep track of node heights.
8: while height(stack .head) = height(node) do
9: siblinд ← stack .pop()

10: if ⌊ i
2height(node) ⌋ mod 2 = 0 then

11: node ← H(node, siblinд)
12: else
13: node ← H(siblinд,node)
14: end if
15: if ⌊ idx

2height(node) ⌋ = ⌊ i
2height(node) ⌋⊕ 1 then

16: authheight(node) ← node

17: end if
18: end while
19: stack .push(node)
20: end for
21: root ← stack .head

22: return root,path = (auth0, . . . ,authh−1)

60 Chapter 3. Hash-based signatures

3.2.4 Secret seeds

Up to this point we have de�ned secret keys to be large sequences of secret values.
In Lamport’s OTS and in WOTS, we assumed all these values to be sampled during
key generation, stored as part of the secret key, and selectively revealed in the
signature. The Merkle tree construction implies storing an array of such sequences,
and ignored practical limitations: using WOTS, such keys consist of 2h ⋅ ` ⋅ n bits.

Rather than storing the entire keys, we can store a seed that allows us to
generate the key when it is needed. This reduces the storage space to a k-bit
seed, expanded at signing time using a pseudorandom generator (PRG; see De�ni-
tion 2.1.4). This is �rst de�ned explicitly in [BGD+06], but a similar construction
was described in [Gol87; Gol04].

The full construction is a bit more subtle. Simply expanding a seed to the full
secret key (i.e. the secret keys of all 2h WOTS instances) would require signi�cant
storage and computation, the output of which will mostly be discarded. Instead,
we introduce a level of indirection, and use a global secret seed combined with the
index i of a speci�c OTS key pair to derive the OTS-speci�c seed seedOTSi . This
OTS-speci�c seed can then be expanded as is required for that instance of the OTS.
This allows the signer to directly target the OTS key pair that is required, rather
than computing the secret keys for all 2h key pairs.

The careful reader may have observed that this is not entirely the computational
optimization it is made out to be. Notably, as part of a Merkle signature, the signer
will also have to compute an authentication path. Using the algorithms we have
seen so far, this requires computing all leaf nodes, which in turn requires computing
all OTS keys. We revisit this in Section 3.2.5 on tree traversal, as well as when
discussing the hypertree construction in Section 3.3.2.

Forward security

A related notion that is often mentioned in the same breath as Merkle signatures
is forward security. Informally, this expresses the idea that, when a secret key is
leaked at a certain moment t , an adversary should not be able to retroactively create
signatures that appear to originate before t . In Merkle signatures, the chronology
is intuitively captured by the evolving keys containing indices of the next OTS
key pair. The signing routine described in Algorithm 9 can be trivially made
forward-secure by changing line 5 to skidx+1 ← (idx + 1; skidx+1, . . . , sk2h−1).

3.2. Merkle trees 61

The global seed as introduced before breaks this. This seed remains �xed across
signatures, and can be used to derive old secret keys. This is remedied by adding
another level of indirection. The seed for sk0 can be used to derive seedOTS0 as
well as a seed for sk1, which is then used to derive seedOTS1 and a seed for sk2, et
cetera. See [BDH11; BBH13] for more details on forward-secure Merkle signatures.

3.2.5 Tree traversal

After considering memory usage above, we now brie�y examine computation time.
So far we considered every instance of Merkle.Sign separately; while the secret key
was updated to prevent reusing the index, no other state was kept across signatures.
For each signature, the vast majority of the computation is spent constructing the
same Merkle tree, so that the authentication path can be extracted.

If we stored this Merkle tree as part of the state, every authentication path
would be directly available. This has the obvious downside of additional storage
requirements — while the previous sections reduced runtime memory usage, this
would incur extreme persistent-memory costs.

There is ample space for trade-o�s between these two extremes, leading to a
class of so-called tree-traversal algorithms. By maintaining a state that contains
a carefully selected part of the tree, it is possible to achieve considerable perfor-
mance improvements at little cost. An important observation here is that the
authentication paths of subsequent signatures are often only slightly di�erent: a
node needs to change on the second layer for every second signature, on the third
layer for every forth signature, on the fourth layer for every eighth, et cetera. A
straight-forward optimization is achieved by only computing the changed nodes,
but this introduces a large variance in the running time of the signing algorithm.
As an example, consider the transition from the rightmost leaf of the left subtree
to the leftmost leaf of the right subtree, where the complete authentication path is
di�erent. This results in an additional optimization goal (and potential trade-o�)
for tree-traversal algorithms, as reducing these di�erences invariably comes at a
slight increase in cumulative cost — in terms of both memory and time.

Naturally, speci�c use-cases lend themselves well for speci�c algorithms, but
an often-cited algorithm is the BDS traversal algorithm described in [BDS08]. Here,
the core idea is to maintain several instances of Treehash (see Algorithm 11), each
working towards recomputing parts of the tree. During key generation, when the
entire tree invariably needs to be computed, the stacks of all of these Treehash

62 Chapter 3. Hash-based signatures

instances are primed so that a minimal number of new computations is required.
In addition to this, a number of nodes among the top layers of the tree is stored
separately, as these are particularly expensive to recompute. This allows for a
speci�c trade-o� between state size and performance through a parameter which
we will refer to as BDSk , representing the number of stored layers.7

Each Treehash instance is allocated a ration of so-called ‘updates’ whenever
a signature is created, so as to �atten out the runtime di�erences. These updates
represent calls to underlying hash-function primitives, and counting them leads to
a fairly accurate performance model. In [BDS08], the authors discuss lower bounds
for the required number of updates for certain hypertree structures, guaranteeing
that the correct nodes are available when an authentication path is put together.

The authors of [BDS08] remark that general-purpose tree-traversal algorithms
typically optimize for the least number of nodes computed; indeed, when moving
from one authentication path to the next, that seems like an intuitive heuristic.
When considering a Merkle signature tree, this is the wrong metric to consider.
It is crucial to observe that computing a parent node required just one call of H
— computing a leaf node is equivalent to WOTS key generation, at the cost of
hundreds of calls to F .

BDS traversal is implemented as part of the XMSSMT software described in
Section 3.3.5, as well as in the tree traversal scripts included in the software that is
part of this work.

3.3 XMSS and XMSSMT

Up to here, we have limited ourselves to the early days of hash-based signatures,
focusing on the foundations as laid out in the late 1970s and early 1980s. In this
section, we jump ahead to the current state of the art, fast-forwarding past decades
of gradual improvement and cherry-picking relevant results along the way.

3.3.1 Collision resilience

Intuitively, the security of the WOTS construction relies on the fact that it is hard
to �nd a preimage for the one-way function F . The same intuition for the function
H upholds the security of the Merkle tree construction [NSW05]. Unfortunately,

7 In [BDS08], this parameter is referred to as k . We rename it here to avoid ambiguity.

3.3. XMSS and XMSSMT 63

the security arguments for these constructions do not capture this, and instead
require a collision resistant hash function underlying the reduction [Gar05].

This is resolved by [DOT+08] and subsequently [BDE+11; Hül13b], proposing
collision-resilient8 variants of the hash-tree construction and WOTS. Both these
works include reductions from �nding preimages in the underlying hash function.
This is achieved by randomizing the inputs to the hash-function calls, using masks
that are included as part of the public key. In the case of WOTS, the resulting scheme
is named WOTS+. Note that the exact de�nition of WOTS+ has slightly evolved
throughout literature; collision resilience is the key di�erentiating characteristic.

In [BDH11], these results are combined to construct the ‘eXtended Merkle
Signature Scheme’: XMSS. XMSS is EU-CMA-secure in the standard model, with
a reduction from �nding preimages in the underlying hash function. We refrain
from giving a concrete speci�cation of XMSS and its functions F and H here, as
they are subsequently tweaked slightly in [HRS16b] (discussed in Section 3.3.3).

3.3.2 The hypertree

A recurring consideration with the Merkle tree construction is the fact that the
number of potential signatures has to be �xed during key generation. The total
number of signatures is a parameter that strongly in�uences the performance of
the signature scheme. In addition to the typical runtime, size and security triad, the
Merkle signature scheme introduces a limit to the number of signatures at which
point the performance becomes prohibitive; when the sheer number of leaf nodes
makes key generation infeasible. In [HRB13], this is mitigated by generalizing
XMSS. Rather than scaling up the single tree of XMSS to accommodate more OTS
key pairs, the authors construct a hypertree; a tree of XMSS trees.

On the lowest layer, an XMSS tree is used to sign a message as usual, using one
of its leaf nodes and providing an authentication path to its root. On the higher
layers, the leaf nodes are used to sign the root node of the tree below. An XMSSMT

signature thus contains several WOTS signatures, as well as several authentication
paths, allowing the veri�er to make its way all the way from the bottom to the top
of the hypertree. This e�ectively serves as a certi�cation tree: each tree certi�es
the root of the tree below, all the way to the public key anchor. See Figure 3.5 on
page 65 for an illustration.

8 Precisely the property informally described: to achieve the desired security goal without having to
assume the underlying hash function to be collision resistant. See also the discussion in [BDL+11].

64 Chapter 3. Hash-based signatures

Crucially, all leaf nodes of all intermediate trees are deterministically generated
WOTS+ public keys that do not depend on any of the trees below it. This means
that the complete hypertree is purely virtual: it never needs to be computed in
full. During key generation, only the top-most subtree is computed to derive the
public key. In the context of XMSSMT, we de�ne the total tree to be of height h and
the number of intermediate layers to be d , rede�ning the height of the subtrees to
be h/d . We can now naturally view the single-tree XMSS scheme as the class of
speci�c instances where d = 1.

This construction naively reduces the number of leaf-node computations for a
signature from 2h to d ⋅ 2h/d , but also opens up a range of time-memory trade-o�s
during tree traversal. In particular, this involves ensuring that the next tree is
su�ciently prepared to be ready for use after h/d signatures. In single-tree XMSS,
the BDS algorithm can make much stronger assumptions on the initial state, as the
key generation routine has all nodes available (and can, e.g., cache nodes high up
in the tree). In XMSSMT, the cost of computing the root of the next tree (and the
WOTS+ signature authenticating it) has to be spread out over signing operations.

All of this is also accompanied by an increase in the signature size: compared
to XMSS trees of height h, the signature now includes d − 1 additional WOTS+
signatures. For typical parameters, these make up the vast majority of the signature.

3.3.3 Multi-target a�acks

Cryptographic primitives usually do not exist in a single, isolated instance. There
may be multiple users relying on the same system parameters, or a system may
rely on a composition of multiple keys to ensure its security. In such scenarios, it
is important to consider the potential for multi-target attacks.

An example of this that makes its way into many introductory security courses
is password hashing; any second-year student will be able to produce a calcula-
tion showing the orders of magnitudes between cracking one in many unsalted
password hashes, and one of a salted set.9 Similar problems occur in many-user
settings such as TLS connections and software distribution. Solutions often include
some form of domain separation or pinning to user-speci�c public keys [BDL+11;
ADP+16], but rarely involve quanti�ed analysis.

9 For completeness: passwords are combined with large, user-speci�c random values (i.e., salts) before
being hashed. This ensures that an adversary performing a preimage search needs to commit to
attacking one speci�c user, as the preimages are e�ectively domain-separated.

3.3. XMSS and XMSSMT 65

pk

m

h = 9
d = 3

H node
WOTS+ node

Figure 3.5: An XMSSMT hypertree. The nodes that make up the authentication
path are marked in gray, and dashed lines signify a WOTS+ signature.

In the context of hash-based signatures, this is a much more pressing issue.
Rather than multiple instances creating an attack surface in a one-in-many setting,
a single XMSS signature consists of a myriad of hash-function calls. Intuitively,
given a hash function of output length k that is used q times, and assuming that
�nding a single preimage compromises security, the attack complexity e�ectively
downgrades from O(2k) to O(2k/q). There is a probability of q/2k that a given
preimage matches any one of the hashes, instead of the desired 1/2k . Where q

is typically small in most systems and completely disappears in the asymptotics,
it seriously a�ects practical parameter choices for hash-based signatures; in the
largest XMSSMT parameter set de�ned in [HBG+18], roughly 266 hash-function
calls are involved.

In [HRS16b], we introduce XMSS-T as a multi-target attack resistant variant of
the XMSS scheme presented in [BDH11; HRB13]. That work focuses on detailed
security analysis, introducing new notions to analyze the common properties of
hash functions (see De�nition 2.1.2) in the context of multi-target attacks. The
resulting single-function multi-target notions behave as one might expect, low-
ering the attack complexity linearly and by a square-root factor for classic and

66 Chapter 3. Hash-based signatures

quantum attacks, respectively. For generic attacks in a multi-function multi-target
setting, the complexity remains the same. In this chapter we limit ourselves to the
constructive consequences for XMSS (and, in later sections, SPHINCS).

The main di�erence is the use of independent function keys and bitmasks for
every call to a hash function, both inside the hash trees and inside WOTS. XMSSMT

already moved in this direction, with �xed keys for function families and di�erent,
random bitmasks for di�erent tree levels. As the keys and bitmasks are also needed
for veri�cation, they must be included as part of the public key. In XMSS-T, they
are derived pseudorandomly from an included seed.

Addressing scheme

XMSS-T requires an addressing scheme to distinguish the hash-function calls.
Every addressing scheme that assigns a unique address to every call to either F
or H within the XMSS-T hypertree can be used. We use a hierarchical addressing
scheme that enumerates sub-structures (e.g., a WOTS key pair) inside a larger
structure (e.g., a tree). This makes it easy to locally modify parts of addresses while
remaining agnostic towards the rest of the hypertree construction. The addressing
scheme is public and part of the overall scheme de�nition: the same addresses are
used across XMSS-T key pairs.

Modifying F and H

In the constructions we de�ned previously, we assumed the existence of the func-
tions F ∶ {0, 1}k → {0, 1}k and H ∶ {0, 1}k × {0, 1}k → {0, 1}k . To di�erentiate,
we supply a function-speci�c key as an additional k-bit input.10 We assume a
pseudorandom function F to derive this key based on the address and a public
seed. This public seed is �xed for an XMSS-T key pair, and is part of the public key;
the public key thus consists of this seed and the root of the XMSS-T hypertree.

Furthermore, before applying F andH , the inputs to these functions are masked.
We again use a PRF, F ′, with the address and the public seed as inputs; this time
to derive the masks. F and F ′ can be the instantiated using the same underlying
primitive, as long as they are domain-separated. This can easily be done through a
�eld in the address (see, e.g., the addressing scheme of [HBG+18]).

10 See Sections 3.3.5 and 3.7.3 for examples on how to handle this for concrete instantiations based on
SHA-2, SHAKE and Haraka.

3.3. XMSS and XMSSMT 67

For the remainder of this chapter, we assume their modi�ed de�nitions to
include the address as an input. Given the seed pkseed and an address addr , an
application of the one-way function F within WOTS would thus be

F(F(pkseed ,addr), si ⊕F ′(pkseed ,addr)).

Here, si is a part of the WOTS secret key. Suddenly writing WOTS chains as
repeated application of F is not as straight-forward anymore, as the address needs
to di�er between any two calls. Similarly, when applying H to two sibling nodes:

maskl ,maskr ← F ′(pkseed ,addr)

nodei , j ← H(F(pkseed ,addr),nodei−1,2j ⊕maskl ,nodei−1,2j+1 ⊕maskr).

3.3.4 Comparing XMSS and XMSS-T concretely

There is a non-negligible cost associated with the above-described alterations to
F and H . This is o�set by the increase in security level, a�ecting not only the
number of function calls but also the input sizes. In order to quantify this di�erence,
we implement XMSS and XMSS-T. We use the BDS traversal algorithm [BDS08]
discussed in Section 3.2.5 to make these schemes practical. For parameter sets and
the addressing scheme, we follow [HBG+18].

Matching parameters

First, we examine the schemes for two parameter sets — one single-tree and one
multi-tree set. We set h = 20 and d = 1 for the �rst benchmarks, and use the same
subtree height for the second con�guration, setting h = 60 and d = 3. We use
w = 16 and n = 256 in both cases, build on SHA-256 for F and H , and use ChaCha20

to instantiate F . For the BDS trade-o� (see Section 3.2.5), we set BDSk = 2.
For XMSS, this leads to a security level of 212 bits classically and 106 bits

quantumly for h = 20, using the formulas for bit security from [Hül13a]. The
h = 60 parameter set results in 170 and 85 bits, respectively. Following the security
analysis in [HRS16b], these parameters have a security level11 of at least 256 bits

11 Note that this ignores multi-target attacks against the message digest; a practicality we adjust for in
the next subsection when we more carefully match the security levels of XMSS and XMSS-T. This is
resolved more structurally in [HBG+18]. In fact, keeping the message digest at 256 bits actually gives
XMSS-T a security level of 190 bits classically and 95 quantumly in the context of multi-target attacks
across instances. This further skews this initial comparison, as XMSS-T could be downscaled to n = 190
to improve its performance without a�ecting its security level.

68 Chapter 3. Hash-based signatures

h d clock cycles

XMSS
20 1 11 322 614
60 3 12 547 967

XMSS-T
20 1 33 169 413
60 3 36 897 222

Table 3.2: Average signing runtime for n = 256.

classically, and 128 bits quantumly for XMSS-T. While this comparison does not
demonstrate the advantages of using the more secure XMSS-T, it provides some
insight into the increase of computation cost. The results for these benchmarks
are listed in Table 3.2. We used a single core of the Intel Core i7 described in
Section 2.4.1 to carry out these benchmarks, but the implementation was not
optimized speci�cally for this platform.

These results show that the di�erence in running time between XMSS and
XMSS-T for the same parameters is quite signi�cant. This was to be expected,
as the running time of the schemes is dominated by applications of F and H –
precisely the functions that were changed for XMSS-T. For plain XMSS with the
aforementioned parameters, these functions merely consist of calls to SHA-256

with inputs of 256 and 512 bits, respectively. Each of these inputs �ts within the
internal block size of SHA-256 (512 bits). When considering the Merkle-Damgård
construction [Mer79; Dam90] that de�nes the structure of SHA-256, this implies
a single application of the internal compression function. Transforming F and
H into keyed hash functions increases this input length. To ensure that the key
and the input are in separate blocks, the key is pre�xed with 256 zero-bits. This
results in inputs of 768 and 1024 bits into SHA-256, respectively, implying the need
for two blocks and two applications of the compression function. The straight-
forward calls to SHA-256 for F and H run in 1 072 and 1 924 cycles, while the keyed
variants take 1 932 and 2 812 cycles, respectively. An even bigger factor that weighs
down the calls to F and H is the time needed to generate the keys and bitmasks
pseudorandomly. Both these values require calls to the pseudorandom generator.
An application of F requires two output blocks of 256 bits each – H requires three.
At an expense of 560 cycles per output block, generating randomness for the masks
and keys carries a signi�cant cost. Altogether, these experiments show that, for the
same parameters, XMSS-T causes an increase in the runtime of roughly a factor 3.

3.3. XMSS and XMSSMT 69

Matching security levels

Arguably, the above comparison is not a fair or meaningful one. Rather than
running both schemes with the same parameters, we scale up XMSS to match the
security level of XMSS-T. For this we selected optimal parameters for XMSS and
XMSS-T separately, targeting 256 bits of classical and 128 bits of quantum security.
Before, we neglected multi-target attacks against the message digest required to
accommodate arbitrary-length messages – here, we parameterize the schemes
using ∥m∥ to represent the digest length.12

For XMSS-T, achieving this security level means increasing the message digest
length to ∥m∥ = 276 for h = 20 and ∥m∥ = 316 for h = 60, while keeping n = 256. For
XMSS, we not only have to increase the message digest size to ∥m∥ = 276 for h = 20
and ∥m∥ = 316 for h = 60, but also increase n to n = 300 for h = 20 and n = 342 for
h = 60 [Hül13a]. For n > 256 we instantiate F and H using SHA-512, truncating as
required. See Table 3.3 for the benchmarks and Table 3.4 for the resulting signature
and key sizes.

∥m∥ n h d clock cycles

XMSS
276 300 20 1 17 461 681
316 342 60 3 22 529 760

XMSS-T
276 256 20 1 35 499 651
316 256 60 3 44 882 383

Table 3.3: Average signing time for 256 bits classical and 128 bits quantum security.

Here, it turns out that the real increase in runtime for XMSS-T is only about a
factor of 2. This seems like a reasonable price to pay for a signi�cant decrease in
signature size. For h = 20, XMSS-T achieves a size reduction of 18%, and as much
as 36% for h = 60. The size reduction increases for greater values of d , as more
intermediate layers require more WOTS signatures: signing nodes with a lower n
implies a smaller `, and thus also smaller WOTS signatures.

12 Note that this length is often confusingly labeled m in the literature, at which point the message
(digest) is renamed M , d (creating more confusing of its own), md, msg or dgst. Throughout this
chapter we reserve m for the message or message digest and write ∥m∥ for its length. Unfortunately,
De�nition 4.2.1 makes it virtually unjusti�able to establish this convention everywhere.

70 Chapter 3. Hash-based signatures

∥m∥ n h d signature pk sk

XMSS
276 300 20 1 3.5k 1.5k 2.6k
316 342 60 3 13.7k 1.7k 21.4k

XMSS-T
276 256 20 1 2.9k 64 2.2k
316 256 60 3 8.8k 64 14.6k

Table 3.4: Signature and key sizes (in bytes) for 256 bits classical and 128 bits
quantum security. The secret key includes the BDS state but not the public key.

3.3.5 RFC 8391

As discussed in the introduction of this chapter, the security of hash-based signa-
tures is comparatively well-understood. While XMSS can be considered a recent
development, its foundations date back decades; the progress of the last years has
worked towards making it practical for real-world applications. This is a fairly
unique combination in the �eld of post-quantum cryptography, and has led to
standardization e�orts that precede NIST’s standardization project.

Already in late 2015, the IETF published an Internet Draft on what would in
May of 2018 become RFC 8391 [HBG+18]: “XMSS: eXtended Merkle Signature
Scheme.” This document is a so-called Informational Request For Comments, and
does not formally de�ne a standard that is approved for deployment. Still, it
aims to describe WOTS+, XMSS and XMSSMT in a level of detail that allows for
unambiguous interoperability between di�erent implementations, and provides a
reference implementation. This includes the naive approach that minimizes the
state and reconstructs entire trees for each signature, as well as a variant using the
BDS traversal algorithm [BDS08].

Previous sections have been littered with forward references to XMSS and
XMSSMT as de�ned by this RFC. XMSS has become somewhat of an overloaded
term for various instantiations and variations. With the publication of the RFC,
there is a more clear understanding of what the canonical scheme looks like.13

The XMSSMT scheme described in RFC 8391 only di�ers from XMSS-T [HRS16b]
in very subtle ways. In particular, the message digest is now also protected against
multi-target attacks across users, simplifying both the security analysis and imple-
mentation by letting n = ∥m∥ be equal to the security level.

13 Note that XMSS is used as a primitive in the SPHINCS+ speci�cation in a way that is not fully compatible.

3.3. XMSS and XMSSMT 71

`-trees

Besides Winternitz OTS key pairs in the leaf nodes and binary hash trees on top,
there is another building block to XMSS that has so far gone unmentioned. In the
note on public-key recovery in Section 3.1.2, we brie�y mentioned compression
of the public key. While WOTS+ public keys are not part of an XMSS signature
(as, indeed, they can be derived from the signature WOTS+), they do need to
be compressed before being used as input into H . In XMSS, this is done using
so-called14 `-trees.

An `-tree is an unbalanced binary tree, where the number of leaf nodes is not
necessarily a power of two. The function H is applied as usual for each pair of
nodes on a layer; when the number of nodes on a layer is odd, it is simply lifted
to the layer above it. See Algorithm 12 for an algorithmic description. For ease of
exposition, the key and mask construction for H is omitted. Note that in XMSS, all
instances of H within an `-tree are individually addressed, keyed and masked.

Algorithm 12 XMSS.LTree (pi ∈ pk) `,H

1: for j ∈ {0, . . . , ` − 1} do
2: nodej ← pkj

3: end for
4: while ∥node∥ > 1 do
5: for j ∈ {0, . . . , ⌈ ∥node∥2 ⌉ − 1} do
6: if 2j + 1 ≤ ∥node∥ then
7: nodej ← H(node2j ,node2j+1)
8: else
9: nodej ← node2j

10: end if
11: end for
12: end while
13: return node0

In fact, the use of an `-tree in XMSS is not strictly necessary. The reason for
using an `-tree is to reduce the required number of masks; historically, these masks
were not generated from a seed, but instead stored in the public key [BHH+15].

14 The origin of the term `-tree is unclear, and the construction is often referred to as an L-tree. We use
`-tree in this work, stressing the relation to the number of chain heads in a WOTS+ public key.

72 Chapter 3. Hash-based signatures

With the pseudorandomly generated masks introduced in [HRS16b], there is no
reason not concatenate, mask and hash all WOTS+ public keys at once. This is
observed in the SPHINCS+ submission to NIST [BDE+17], unfortunately postdating
RFC 8391.

3.4 XMSSMT on the Java Card

Perhaps the �rst images that come to mind when considering cryptographic soft-
ware in the real world are large data centers full of servers that terminate TLS, full
disk encryption on laptops, or intricate PKI systems. It is easy to forget that most
people carry several cryptographic devices in their pockets: smart cards. With
estimates of over 10 billion15 “secure elements” sold globally in 2018 [Eur17], this
is undeniably an important market.

Smart cards are often used as authentication token – in an asymmetric-key
setting, the card then stores the secret key and uses it to generate signatures. In
this section, we examine a practical use case: setting up VPN connections using
the popular OpenVPN application, for which we implement XMSSMT [HRB13;
HBG+18] (as described in Section 3.3) on the Java Card platform. Our implemen-
tation is compatible with XMSSMT as speci�ed in RFC 8391 [HBG+18], and we
refer to this document for a byte-level technical speci�cation. It is no coincidence
that we chose the stateful XMSSMT scheme; a smart-card implementation can
conveniently record the state alongside the key material, hiding the complexity
of the statefulness from applications that make use of its API. As before, we defer
more elaborate discussion on statefulness to Section 3.5.1. Section 3.4.1 describes
the Java Card platform and OpenVPN use case in more detail.

We are not the �rst to implement hash-based signatures on a smart card. In 2013,
Busold, Buchmann, and Hülsing implemented a variant of XMSS on an In�neon-
produced smart card [BBH13]; their work even makes on-card key generation
practical – something that cannot possibly be said of our implementation. This
builds upon earlier work [RED+08] that implements Merkle signatures with BDS
traversal (see Section 3.2.5) on an 8-bit AVR, and expands it to the multi-tree scheme
that would later evolve into XMSSMT. Crucially, the implementation by Busold,
Buchmann, and Hülsing uses low-level access to the underlying hardware, which
is not publicly available or portable across manufacturers.

15 Half of these are SIM cards — �nancial and governmental applications make up most of the remainder.

3.4. XMSSMT on the Java Card 73

The results presented here are perhaps somewhat demoralizing. With signa-
tures taking just shy of a minute (and a subsequent preparation step well over a
minute and a half), this is impractical for many use cases; see Section 3.4.2 for
a more detailed analysis. The main contribution here is clearly not to present
speed records, but instead to provide a proof-of-concept and directions on how to
improve the situation. Section 3.4.2 discusses our implementation of XMSSMT; the
issues we identify carry over into Section 3.4.3, where we provide suggestions for
future improvements that could help make hash-based signature schemes more
practical on the Java Card platform. The Java Card API has been extended in the
past to support new protocols (notably the SAC/PACE protocol used in passports
[ICAO14; BSI]), so we can expect future extensions when applications begin to
require support for post-quantum cryptography.

3.4.1 Java Card platform and limitations

Java Card de�nes a standardized, vendor-independent programming platform for
multi-application smart cards produced by di�erent manufacturers. While the
speci�cation is controlled by Oracle, many of the large smart-card manufacturers16

collaborate in the ‘Java Card Forum’ in de�ning the platform [For18]. The platform
has proven popular, with over 20 billion cards sold at the time of its twentieth
anniversary in 2016 [Sec17]. Java Card is often found in SIM cards and passports.

As the name suggests, Java Card is based on Java, but many language features
have been restricted due to the limited resources. This shows prominently in the
limited availability of types – a Java Card platform is only required to support 8-bit
byte and 16-bit short types. Similarly, Java Card inherits the class-based object-
oriented style of Java, but using objects is discouraged because of size constraints;
moreover, garbage collection is optional for Java Card.

The APIs for Java and Java Card di�er vastly. The Java Card API is extremely
limited, but does provide a range of high-level methods for standard cryptographic
use cases (e.g. signature generation, key storage, block encryption). This enables
developers to quickly construct applets to perform basic cryptographic operations.
The implementation of the API is left to the smart-card manufacturer, allowing
implementations in native code or directly in hardware. This is crucial for per-
formance: the Java Card virtual machine introduces considerable overhead, so

16 At the time of writing, the Java Card Forum consists of Gemalto, Giesecke & Devrient, IDEMIA, In�neon,
jNet ThingX, NXP Semiconductors and STMicroelectronics [For18]

74 Chapter 3. Hash-based signatures

implementing cryptographic primitives in Java Card bytecode would be unaccept-
ably slow. Still, considerable overhead remains when calling these API functions,
and this turns out to be a recurring theme throughout this work.

An important consideration is the limited amount of memory. Typical Java
Cards have in the order of tens of KiB persistent memory (EEPROM or Flash),
but the transient (RAM) memory is typically only a few KiB, presenting a seri-
ous bottleneck. Memory sizes can vary signi�cantly between cards, so memory
requirements should be carefully taken into account when developing applications.

Java Card is compatible with the ISO 7816 standard. This means that communi-
cation is done using APDUs (Application Protocol Data Units). These traditionally
support a payload of up to 256 bytes, although recent cards support extended-length
APDUs to push this limit. For compatibility, we avoid such extended APDUs.

In this work, we focus on compatibility with Java Card version 2.2.2 to 3.0.4.

Considerations for the OpenVPN use case

This work was done as part of a project involving a Java Card applet that was to
provide authentication when establishing a VPN connection, tightly integrated
into OpenVPN. The projected bene�t of this was twofold: increased security and
increased usability. Smart cards typically provide much more secure storage of
the key material. By selecting the Java Card platform, the cross-platform applet
can be easily combined with existing deployed systems. The tight integration
with OpenVPN serves to improve the user experience, in particular by simplifying
the setup process: we avoid third-party middleware (which would typically be
required for the use of more generic solutions, such as hardware tokens relying on
standards like PKCS#11 [PKCS11]) and store the con�guration �les for OpenVPN
on the card.

This use case implies a set of assumptions and limitations. There is some
margin in terms of signing time, as signing operations are fairly infrequent and
users would expect some latency when establishing a connection. More importantly,
the required throughput is low: after signing once, typical usage scenarios suggest
a period of time during which the card is connected and powered, but not used
to produce a new signature. Furthermore, we note that key generation can be
done during issuance, and even outside of the card (assuming a secure issuance
environment – this is arguably a reasonable assumption, as initialization also
involves PINs and network con�guration). In principle, there is a nice match

3.4. XMSSMT on the Java Card 75

between these properties and the XMSSMT signature scheme. There are many time-
memory trade-o�s that can be �exibly tweaked, and there is ample opportunity for
precomputation either during key generation or idle time. However, it is important
to reiterate that memory (in particular the fast RAM) is a scarce resource on the
card. The next section details these trade-o�s.

Parameter selection

XMSSMT o�ers several parameters that can be adjusted to make various trade-o�s.
For the remainder of this section, we �x a Winternitz parameter w = 16, which
implies `1 = 64 and `2 = 3, and thus ` = 67 chains (see also Table 3.1). Fixing
this parameter is important for ease of implementation, as it allows us to make
assumptions on the memory usage that would otherwise result in runtime decisions.
Similarly, we �x n = 256, i.e., 32 bytes, as dictated by the RFC [HBG+18]. We leave
the tree height h and number of layers of subtrees d con�gurable.17 Crucially,
di�erent use-cases will imply di�erent smart-card lifetimes, persistent memory
availability and usage intensity, and may bene�t from varying requirements on
the total numbers of signatures.

3.4.2 Implementation

When designing a smart-card application, it is important to consider natural ‘com-
mands’ that divide up and structure the computation. For a traditional RSA-2048
or ECC signature, signing a message could be a single command with a single
APDU as response. For XMSSMT, signatures are several kilobytes in size and must
be spread out over multiple 256-byte response APDUs. This behavior is typical for
hash-based signatures on small devices (as we will also see in Section 3.6); they are
too large to comfortably �t in RAM but are very sequential in their construction,
strongly suggesting an interface where the signature is streamed out incrementally.

There is much repetition of small subroutines to be found in the scheme. After
initializing the signing routine by computing a message digest, a signature consists
of a sequence of WOTS+ signatures and authentication paths. Internally, the
WOTS+ signatures can be decomposed further into their separate chains. The
` = 67 chains split naturally into 8 sets of 8 chains for the `1 = 64 message digest
chains, and `2 = 3 chains for the checksum. For hashes of 32 bytes and h/d ≤ 8,

17 This is naturally bounded by the storage available on speci�c cards.

76 Chapter 3. Hash-based signatures

init
WOTS+
chains

checksum
auth
path

prepare

8x

dx

2hx

m

R, index 8x 8 nodes 3 nodes h/d nodes

Figure 3.6: State diagram of the signing routine.

authentication paths within a subtree �t into one response APDU, and choosing
h/d > 8 is not realistic on this platform because of resource constraints.18 In order
to reduce the latency of signature generation, we ensure that all relevant leaf nodes
for the authentication path in each subtree on each layer are available in memory.
We address this later in this section, and for now only note that maintaining this
invariant introduces a preparation step after a signature is produced (and thus: a
leaf node is consumed).

Figure 3.6 represents these states visually. Note that each state is triggered by
a command APDU, of which only the initial command contains auxiliary data (i.e.,
the message). These have been omitted for simplicity.

Indices

As it is crucial that the smart card cannot be coerced into re-using a leaf, the
�rst operation should be to increment the state index. Because Java Card does
not guarantee a native 32-bit integer type, all indices are stored as tuples of two
shorts, interpreted as 15-bit unsigned values (e�ectively ignoring the high bit).
As a consequence, atomic increments are not possible without use of expensive
transactions, and special care has to be taken in case of over�ows – the conservative
approach skips 215 leaves in case of card tear,19 rather than rolling back. Similar
considerations apply when deriving indices of ‘next’ and ‘previous’ nodes during
state generation. As we have limited h/d previously, internal tree indices can be
represented with a single short.

18 This would imply either computing or storing hundreds of WOTS+ leaf nodes per tree layer.
19 The physical attack of interrupting the power supply to the card, e.g., by removing it from the reader.

3.4. XMSSMT on the Java Card 77

WOTS+ leaf generation

To generate a WOTS+ leaf, all ` chains must be fully computed and an `-tree must
be computed over their heads. As memory is limited, the natural choice here is
to use the Treehash algorithm, as discussed in Section 3.2.3. Since ` = 67 is not a
power of 2, bringing the tree out of balance, there are some special cases to consider.
Using Treehash makes it natural to not compute (and, crucially, store) all chains
at once. As the value of ` is constant for all parameters we account for, this can
be simpli�ed by manually handling these special cases after performing Treehash.
Altogether, this ensures that we require only 416 bytes of RAM for intermediate
results when deriving a WOTS+ public key.

State (re)generation

At least one WOTS+ computation needs to be performed whenever a message is
signed: exactly when signing the message digest. Without proper state manage-
ment, however, one would be required to compute d ⋅ 2h/d WOTS+ leaves to derive
the authentication paths. Instead, we keep a persistent array of the leaf nodes of the
current tree on each of the d layers. If the secret key is generated o�-card, the leaf
nodes of the �rst trees can be preloaded; otherwise they can be computed during
issuance. Similarly, the d − 1 WOTS+ signatures that join the subtrees together can
also be precomputed and cached. By keeping an additional array of such nodes
and signatures for the ‘next’ tree on every layer20 and computing one new node
whenever one is consumed, it can be easily seen that we are guaranteed to always
have all leaves available before they are consumed. Note that this introduces an
imbalance in signing time cost (as consuming indices that introduce new nodes on
multiple layers adds linear leaf-generation cost), but that this computation can be
performed after outputting a signature. As discussed in Section 3.2.5, this variance
is negligible compared to the recomputation of leaf nodes. Careful administration
is required to guarantee that this is not neglected. Intuitively, one might consider
decoupling the signing and preparation step, and allow the signature routine to
e�ectively consume the nodes up to the point at which they were prepared. While
this is certainly possible, the involved bookkeeping is more complicated than it may
seem at �rst: memory requirements imply re-using arrays, not all leaves currently

20 This is only required on layers where there is still a ‘next’ tree to consider, which is trivially not the
case for the top-most tree.

78 Chapter 3. Hash-based signatures

in use can be overwritten,21 and the next layer of leaves needs to be completed
precisely when switching to the next subtree. Verifying these conditions combines
poorly with the convoluted arithmetic on tuples of shorts that represent indices.

Hash functions

Performance is dominated by the cost of a call to the chaining function in WOTS+
and the hash function in the binary trees. In essence, these functions consist of
many applications of SHA-256 to small arrays of data (i.e. 32 to 128 bytes) and
some xor operations. This is not a particularly common pattern of operations
in traditional cryptography – a signature operation typically requires just one
hash-function call to digest the message, often negligible in the overall performance
of the signing operation. Note also that there is signi�cant cost associated with
a single call to a hash function that is constant in the length of the input, likely
representing the overhead of the function call, as shown in Table 3.5.

AES-based hashing

Instead of using a cryptographic hash function as a building block for the described
functions, a block cipher can be used to construct a similar primitive using common
constructions such as Davies-Meyer [Win84] and Matyas-Meyer-Oseas [MM+85]
(the latter being used by [BBH13]). Some care would need to be taken to transform
these to a security level equivalent to the second preimage resistance derived from
SHA-256 in the context of XMSSMT. This would break compatibility with the
RFC [HBG+18], but in principle this is not unsurmountable.

Some Java Cards appear to be equipped with an AES implementation in hard-
ware, speeding up its performance signi�cantly. This is evidenced by an even larger
unbalance between constant and variable costs: encrypting larger blocks of data
is only slightly more costly than smaller blocks, as shown in Table 3.6. The base
cost of a single call to AES is still signi�cant, however, putting the performance in
the same ballpark as SHA-256 on short inputs. Note that these numbers cannot
be directly compared to the cost of SHA-256 as listed in Table 3.5, as multiple
iterations of AES would be required for one compression block.

There is another avenue to explore when relying on AES as a primitive, as the
Java Card API supports a range of modes of operation for AES. Combining this

21 Consider that authentication generation requires non-adjacent sets of leaf nodes to remain available.

3.4. XMSSMT on the Java Card 79

Table 3.5: 1000 iterations of SHA-256

data (bytes) - 32 64 128 256 -

runtime (seconds) - 3.94 5.83 8.02 12.40 -

Table 3.6: 1000 iterations of AES-128 in ECB mode
data (bytes) 16 32 64 128 256 1024

runtime (seconds) 2.97 3.30 3.96 5.30 7.97 23.87

with the fact that we process a large amount of data at once suggests opportunities
for parallel data streams; encrypting a large data stream using AES in ECB mode
is functionally equivalent to performing independent AES encryption in parallel —
under the same key. This last restriction is crucial, as a message-dependent block
is used as key, ruling out precisely the constructions available to turn AES into a
compression function. Other modes of operation su�er a similar faith; there is no
clear way to exploit the AES implementation for parallel short-input hashing.

Memory usage and benchmarks

This section outlines the performance when running the applet on a Java Card.
For this, we performed measurements and ran tests on NXP-produced JCOP cards,
as well as a card of unclear origin (ICFabricator=0005). While this is somewhat
indicative of relative performance, we note that measurements may vary wildly
when comparing di�erent cards by di�erent manufacturers. Tables 3.5 and 3.6 give
the individual benchmarks for the symmetric primitives on these cards.

For a WOTS+ signature operation with the parameters described in Section 3.4.1,
we measure an average time of approximately 33 seconds. The preparation step
requires at least one WOTS+ key generation, which takes approximately a minute.

When we consider a realistic parameter set, whereh = 20 andd = 4, i.e., subtrees
with 32 leaf nodes, we notice that the cost of authentication path generation starts to
come into play. In particular, the access to nodes stored in persistent memory makes
this more costly than a back-of-the-envelope computation would predict.22 For

22 A WOTS+ signature costs 536 applications of the chaining function on average, as opposed to 63
hash-function calls in the tree.

80 Chapter 3. Hash-based signatures

these parameters, a signature takes roughly 54 seconds in the best case: every 32nd
signature adds an additional WOTS+ signature generation, every 256th signature
adds two WOTS+ signatures, et cetera. Similarly, preparation takes 85 seconds in
the best case. Varying tod = 5 results in a slightly shorter signing time, coming in at
50 seconds in the best case (but more frequently requires new WOTS+ signatures).

Besides a small number of bytes to store the keys and index, the requirements
on persistent memory follow from the storage of WOTS+ signatures and leaf nodes:
32 ⋅ ` ⋅ (d − 1) bytes for the WOTS+ signatures, and 32 ⋅ (2 ⋅d − 1) ⋅ 2 h

d bytes for the
leaf nodes. For d = 4, this comes down to 6432+7168 = 13600 = 13.28 KiB. Similarly,
for d = 5, this adds up to 8576 + 4608 = 13.18 KiB. Note that increasing d increases
signature size because of the additional WOTS+ signatures, but decreasing d while
maintaining h = 20 sharply increases the memory requirements for node storage
as well as the cost of (potentially o�-card) key generation.

Considering the signing states described in Section 3.4.2, in particular in Fig-
ure 3.6, it can be easily seen that the signature is output in gradual stages as
computation progresses. With the WOTS+ chain computation taking up most of
the computation, splitting this over eight APDUs levels out communication costs.

3.4.3 Java Card API recommendations and considerations

In the previous subsection, we touched upon several issues with implementing
XMSSMT (and hash-based signatures in general) using the current Java Card API
(i.e., version 3.0.5 or below). This section discusses potential extensions to improve
support for hash-based signatures. In the past the Java Card API has been extended
to support new cryptographic algorithms.23 If and when hash-based signatures
become widely used in the future, one would expect extensions of the API for this,
either as proprietary extensions of manufactures or ultimately as extensions of the
Java Card standard.

An important design choice in such an API is the level of abstraction. One
can opt for low-level methods providing more �ne-grained (i.e., more primitive)
operations, or for higher levels of abstractions, where the API methods provide
bigger building blocks, or possibly even a complete signatures scheme.24 Here we
present four alternatives with an increasing level of abstraction.

23 For example, version 3.0.5 introduces support for SAC/PACE [ICAO14; BSI], a protocol used in electronic
passports.

24 For example, in the case of the PACE protocol, the choice has been made not to provide a generic API
method for elliptic curve point addition, which would enable applet developers to implement PACE,

3.4. XMSSMT on the Java Card 81

Generally speaking, a more �ne-grained API is likely to be easier to implement
for manufacturers and o�ers more �exibility to applet developers. On the other
hand, higher level, more monolithic API methods make it easier for developers that
are less versed in the relevant cryptography to make the correct choices, allow for
more performant black-box implementations, and enable manufacturers to provide
more comprehensive side-channel countermeasures. Also, an API implementation
may need memory to record state between API calls and scratchpad memory to
record temporary results. Given that transient memory is extremely scarce, it is
not acceptable that API methods need large amounts of RAM.

Another factor to consider when making an abstraction level trade-o� is the
fact that standardization and industry adoption e�orts are still ongoing, and a
high-level API leads to less agility to account for future scheme changes.

Parallel hashing

Performance of hash-based signatures is completely dependent on the ability to
e�ciently compute many hash digests over small amounts of data. While this
can be sped up by implementing the hash function in hardware, Section 3.4.2
illustrates that this is only part of the solution. More critically, the execution time
depends on being able to exploit the extreme levels of parallelism that are inherent
to hash-based signatures. Here parallelism does not necessarily imply parallel
execution, but rather independent parallel data streams.

The current interface to hash functions is provided by the MessageDigest class.
After instantiating an object for a speci�c digest function, say SHA-256, a user
can add additional data by calling the update(byte[] inBuff, short inOffset,

short inLength) method, and obtain the �nal digest by calling doFinal(byte[]

inBuff, short inOffset, short inLength, byte[] outBuff, short outOffset).
We propose duals of these methods, following the API closely: updateParallel(

byte[] inBuff, short inOffset, short inBlockLength, short noOfBlocks),
and doFinalParallel(byte[] inBuff, short inOffset, short inBlockLength,

short noOfBlocks, byte[] outBuff, short outOffset). Here, inBuff provides
noOfBlocks sequential inputs of inBlockLength bytes, and output is written to
outBuff analogously.

Providing an inconsistent number of inputs (i.e. di�erent noOfBlocks) for
update and doFinal calls could be treated as an error but it may be bene�cial to

but rather to provide more higher-level operations to directly provide PACE as primitive.

82 Chapter 3. Hash-based signatures

instead �x the noOfBlocks at the time of construction of the MessageDigest object.
For hash-based signatures this decision is equivalent, as the relevant hash-function
calls all require arguments of the same form. Both options have serious e�ects
on the underlying implementations, as these modi�cations suggest maintaining a
(runtime-determined) number of intermediate hash function states. If this proves
to be infeasible, a natural restriction would be to drop the parallel updateParallel
method.25 While this reduces �exibility for the applet developer, in particular
when memory is constrained and rearranging input is costly, this allows underly-
ing hardware to sequentially process each instance of the hash function without
maintaining a variable-length intermediate state in addition to the caller-provided
input and output bu�ers. This does not contradict the goal of achieving a speedup
through internal parallelism, as the majority of the cost can be attributed to the
Java stack on top of the underlying implementation (see Section 3.4.2, in particular
on hash functions and benchmarks). As a result, implementations that would
support a parallel update method would still likely opt for a sequential underlying
hashing primitive to reduce area cost.

Complete WOTS+ chains

Rather than providing a narrow API that allows a developer to e�ciently make use
of the underlying hash-function primitive, the parallelism can be made transparent
to the implementer through a more abstract API: computing WOTS+ chains and
authentication paths.

In the WOTS+ chains, there is a lot of opportunity for shared execution. Be-
sides the natural ‘horizontal’ parallelism across many chains (which would be the
primary candidate for optimizations discussed in the previous subsection), there
is potential gain in coupling the ‘vertical’ computations that take place during
WOTS+ public key and signature generation. On top of the bene�ts achieved
from only passing through the Java stack once, rather than repeatedly for every
application of the chaining function, the input to many of the underlying SHA-256

compression function calls overlaps signi�cantly. In particular, for a single WOTS+
key pair, the input to the �rst compression call is completely identical across all
16 ⋅ 67 = 1072 calls of the chaining function. Note that this is a consequence of the
speci�c instantiation of the chaining function in XMSSMT as de�ned in [HBG+18],

25 It is also possible to reach a similar invariance by �xing noOfBlocks, but this still requires multiple
hash-function intermediate states in transient memory.

3.4. XMSSMT on the Java Card 83

and does not immediately carry over to other function designs (in particular, the
SPHINCS+ construction does not bene�t from this — see Section 3.7.3).

Such an API goes beyond a straight-forward parameter for the hash function
specifying the number of iterations, as the iterated function is not simply SHA-256,
but rather the address- and key-aware chaining function. Furthermore, to make it
e�ective for WOTS+ signature generation, it would require specifying the length of
each individual chain, as well as a variable number of chains (as an entire WOTS+
signature will likely not �t in RAM on most Java Cards).

This middle ground between abstracting away the parallelism of the hash func-
tions but still requiring (or, indeed, allowing) the developer to puzzle together the
pieces has its upsides, but is clearly not without added complexities. We stress that
the API of such a hybrid solution needs to be carefully thought through to be su�-
ciently �ne-grained to provide a bene�t over an all-in-one API (as described later),
yet convenient to use so that it actually reduces boilerplate code and development
overhead when compared to a more straight-forward parallel hashing API.

WOTS+ nodes and hash trees

Another unit of abstraction is a hash tree. In XMSSMT, there are two speci�c
instances of hash trees: the tree in XMSS, and the `-tree on top of a WOTS+ key.

The computation of WOTS+ nodes can be hidden behind an API with relative
ease. Given its position in the hypertree and the secret seed, the only relevant
output is the root node of the `-tree, easily �tting into a single APDU (and thus
appropriate as the result of a single function call). We note that in the SPHINCS+
proposal, `-trees have been eliminated altogether. It is not inconceivable that future
updates to XMSS will include the same change — see Section 3.3.5.

Abstracting the hash trees in the hypertree behind a single function is somewhat
more complicated. The reason for this is twofold. First and foremost, preventing
recomputation of such trees is crucial to make XMSSMT practical, which implies
carefully maintaining a state (either by storing leaf nodes, as is done in the current
implementation, or through more involved tree traversal techniques). This intro-
duces a time/memory trade-o� that strongly depends on the parameter choice;
allowing more �exibility in terms of tree height and multi-tree depth signi�cantly
increases complexity of the underlying implementation. Secondly, as the relevant
output comes in the form of an authentication path of multiple nodes, APDU size
(and thus state machine management) becomes relevant as soon as h > 8.

84 Chapter 3. Hash-based signatures

Conversely, there is much to gain in terms of simplicity for the user if this is
abstracted, as this prevents the users from having to re-implement the Treehash

algorithm and make complex state-management decisions. We argue that this is a
crucial requirement for non-expert usage.

Complete XMSSMT signatures

At the far end of the spectrum, we consider an API that abstracts away as much
of the internals of the scheme as possible. This matches the current approach of
the Java Card API for public-key primitives: given a parameterized and keyed
object and a message, there is a single API call that produces a signature. An
update mechanism allows for longer messages, similar to how message digests
work. Crucially, this is possible because of the small size of signatures; for standard
parameters, a signature easily �ts in RAM and even in a single output APDU.

When considering the multiple kilobytes of a typical XMSSMT signature, such an
API suggests writing the signature to persistent memory. This requires additional
EEPROM or Flash and adds the extra cost of slow memory access. Still, this is likely
to compare favorably when considering the potential for performance improvement
by implementing the entire scheme natively.

Alternatively, the API could be split up in a similar way as is done in this
implementation; we refer to the states described in Figure 3.6 – each state could
represent an API call. This would still require the applet developer to implement
the state machine, but makes conversion to output APDUs more natural.

Perhaps the most compelling argument for this high-level API is usability
for applet developers. XMSSMT, and tree traversal in general, is administratively
notoriously tedious, and wrongly managing indices can easily degrade security. In
particular, a high-level API is required to properly abstract the state preparation
step, as this would otherwise heavily depend on implementation choices (i.e., what
part of the state is cached, and how it is enumerated). Ease of use should not be
underestimated as a critical factor towards adoption in real-world applications.

Side-channel countermeasures

Smart cards are a common target for physical attacks. To remedy this, manufactur-
ers commonly implement a wide variety of platform-speci�c countermeasures. An
API that abstracts away the usage of secret data is paramount for this to be e�ective.
This requirement aligns well with the considerations of the rest of this section

3.5. SPHINCS 85

when considering the simplicity of the API exposed to the applet developer: a
�ne-grained API that requires the developer to implement the overarching scheme
creates many potential pitfalls. To illustrate, the current lack of API required us
to abuse the AESKey object to store sensitive key material in EEPROM, extract-
ing it into RAM before use (although more recent versions of Java Card provide
the SensitiveArray class for this purpose). Similarly, without API support, the
expanded WOTS+ seeds live plainly in transient memory. While in general hash-
based signatures have a history of robustness against side-channel attacks, it is
precisely this usage of the PRF that has recently been under scrutiny [KGB+18].

3.5 SPHINCS

All Merkle signature constructions we have seen so far have been stateful. In
order to guarantee that a one-time signature key pair on the leaf node is not
reused, we must, at the very least, maintain the index of the last-used leaf node.
Additionally, the state can be used to optimize signature generation using tree-
traversal algorithms.

Being stateful also comes with notable downsides. In particular, it greatly com-
plicates key management: sharing keys across devices suddenly becomes a complex
synchronization problem, and restoring from backups can easily lead to undesired
rollbacks. This contradicts typical API de�nitions as well as many assumptions
implementors and practitioners may make, to the point where Adam Langley
famously referred to stateful hash-based signatures as “a huge foot-cannon.”26 In
fact, such an interface with a changing secret key directly con�icts with the very
de�nition of digital signature schemes (compare De�nition 2.1.7 to De�nition 3.2.1).

In this section, we review SPHINCS: a hash-based signature scheme [BHH+15]
that does not need to maintain state. This scheme demonstrates that, at the cost of
some performance, it is possible to make stateless hash-based schemes practical.

3.5.1 Eliminate the state

The fact that one can construct hash-based signatures without maintaining a state
is a result from long ago, dating back to work by Goldreich in the eighties [Gol87;
Gol04]. The core idea is to create an authentication tree of such depth that, when
randomly choosing a leaf node for each signature, the chance of reusing the same

26 https://www.imperialviolet.org/2013/07/18/hashsig.html

https://www.imperialviolet.org/2013/07/18/hashsig.html

86 Chapter 3. Hash-based signatures

OTS key pair is negligible. This eliminates the need to keep track of the already-
used OTS key pairs.

The obvious problem with this construction is practically creating such a tree
in the �rst place: in order for the probability of collisions to become negligible, the
number of leaves has to be so big that it is infeasible to enumerate them. As we have
already seen in Section 3.3.2, this can be avoided by using OTS key pairs to link
together parts of a hypertree. Goldreich’s construction can be seen as an instance
of the XMSSMT hypertree where h = d ; leaf nodes are used to sign messages, and
non-leaves are used to sign the hash of two child nodes. This allows the signer to
start from any leaf node, and authenticate it by providing OTS signatures leading
to the root of the tree. As with XMSSMT, this requires that all OTS key pairs can
be deterministically generated based on their position in the tree.

While Goldreich’s system solves the issue of having to maintain a state, it
introduces a new problem. As it replaces hashing with signing throughout the
tree, it also replaces hash digests with OTS signatures for all nodes included in the
authentication path. This creates a new hurdle for practical use, as it results in
tremendously large signatures: over a megabyte for real-world parameters.

In 2015, after XMSSMT had been introduced and early drafts for RFC 8391 started
taking shape, Goldreich’s construction was revisited in a EUROCRYPT paper by
Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider,
Schwabe and Wilcox-O’Hearn [BHH+15]. This work introduced SPHINCS: state-
less practical hash-based signature schemes. In essence, the construction combines
Goldreich’s large trees with the hypertree construction of XMSSMT. The presented
instance, SPHINCS-256, produces signatures of 41 KiB at a rate of “hundreds per
second” on a modern Intel desktop processor.

The fact that SPHINCS is stateless prevents optimizations through tree traversal
algorithms. As a consequence, a subtree on each layer must be computed from
scratch, making the signing routine signi�cantly more costly than that of similar
XMSSMT instances. In terms of XMSSMT parameters, SPHINCS-256 consists of 12
subtrees, each of depth 5, for a total of 260 leaf nodes.

To further increase the security level, which is now strongly coupled to the
probability of repeating a leaf node, SPHINCS does not directly rely on a one-
time signature scheme to sign messages. Instead, it relies on a few-time signature
scheme (FTS), the public keys of which are authenticated using the one-time key
pairs on the leaf nodes.

3.5. SPHINCS 87

As the name implies, the security of an FTS does not immediately deteriorate
when it is used more than once; it can be used several times before too much of its
secret key is revealed. As a consequence, SPHINCS does not require as many leaf
nodes – the probability of selecting the same leaf node can be much high before
this becomes the de�ning factor for the security level.

One may wonder why a layer of OTS leaf nodes is included, rather than im-
mediately constructing a Merkle tree on top of the FTS nodes. Indeed, this adds
an additional OTS signature to the resulting SPHINCS signature. In practice, re-
constructing an FTS public key is much more expensive than an OTS public key.
Adding this additional layer of indirection ensures that the signer needs only to
compute one FTS leaf node (i.e., the one used to sign the message).

We now brie�y review HORST, the FTS proposed in [BHH+15].

3.5.2 HORST

HORST is a variant of the HORS FTS [RR02], adding a Merkle tree on top of the
HORS public key to achieve key compression.

Like in WOTS and Lamport’s OTS, a HORST secret key consists of an array of
random values (potentially generated from a seed). We de�ne sk = (s0, . . . , st−1) to
consist of t random k-bit values, where t is a power of two. As before, we apply
a one-way function F to obtain pi = F(si). The values pi are then placed on leaf
nodes of a Merkle tree, and combined to derive the root node pk.

To create a signature on a messagem of ∥m∥ bits, the message is split into ∥m∥
log(t)

components27 of log(t) bits. To provide an intuition, consider that SPHINCS-256

uses ∥m∥ = 512 and t = 216. We label these mj for j ∈ {0, . . . , ∥m∥
log(t)}. The bit

string representing each component is interpreted as an unsigned integer, and the
corresponding value smj is revealed. A HORST signature consists of these revealed
values smj , as well as nodes along the authentication path to pk. Veri�cation works
as one might expect: for each message component, pmj is computed by applying F ,
and each authentication path is veri�ed to lead to the public key pk.

The algorithmic description of HORST in [BHH+15] introduces a slight op-
timization that is especially worth mentioning in the context of Section 3.6. As
the signature contains multiple authentication paths within the same tree, the

27 Note that the de�nition of HORST in [BHH+15] is not expressed in terms of a �xed message length m,
but rather introduces a parameter k that tweaks the number of revealed components. The message
length then equivalently follows as k log(t).

88 Chapter 3. Hash-based signatures

paths are guaranteed to overlap. The point at which the paths overlap varies per
signature, but as the layers of the tree get narrower as we progress towards the
top, the number of nodes in a layer is surpassed by the number of authentication
paths. At this point, it is more e�cient to truncate the paths and fully include this
layer, instead. This is expressed by �nding a threshold x , signifying the point at
which the number of nodes, ∥m∥

log(t) ⋅ (log(t) − x + 1) + 2x , is minimal.
The careful observer will note that the signature will now often include redun-

dant nodes. Some of the nodes on layer x can be derived from the authentication
paths, yet layer x is included in full. Arguably the reason for this is to be found
in the worst case, where all authentication paths converge onto a single node on
layer x ; stripping the redundant nodes from layer x would then save only one node.
Other than increased code complexity, there appears to be no clear reason not to
perform this single-node optimization.

This size reducing optimization is extended upon in Gravity-SPHINCS [AE17;
AE18], which introduces PORST. In PORST, the overlapping paths are combined
dynamically, resulting in variable-length signatures. While improving the average
signature size, this still performs similar to HORST in the worst case. We brie�y
touch upon this again when discussing the SPHINCS+ submission in Section 3.7,
where we introduce another few-time signature scheme: FORS.

See Algorithms 13, 14 and 15 for a description of HORST. Note that, like
WOTS, HORST performs veri�cation by public-key recovery. We rely on the
Merkle.BuildTree subroutine introduced in Algorithm 8b, setting h = log(t).

Algorithm 13 HORST.KeyGen () k, t, F ,H

1: for i ∈ {0, . . . , t − 1} do
2: si

$← {0, 1}k

3: pi ← F(si)
4: end for
5: nodei , j ←Merkle.BuildTree(p0, . . . ,pt−1) ▷ Let 0 ≤ i ≤ log (t) and 0 ≤ j < t

2i

6: pk← nodelog(t),0
7: return pk, sk = (s0, . . . , st−1)

What makes HORS a few-time signature scheme rather than an OTS is the ratio
between the number of leaf nodes t and the messagem. As long as the di�erence is
su�ciently large, only a small subset of the secret key is revealed for each signature.
Crucially, a forger should not be able to freely choose the messages. To achieve

3.5. SPHINCS 89

Algorithm 14 HORST.Sign (m, si ∈ sk) x, ∥m∥, t, F ,H
1: for i ∈ {0, . . . , t − 1} do
2: pi ← F(si)
3: end for
4: nodei , j ←Merkle.BuildTree(p0, . . . ,pt−1) ▷ Let 0 ≤ i ≤ log (t) and 0 ≤ j < t

2i

5: (m0, . . . ,m ∥m∥
log(t)−1) =m ▷ Splitm into strings of log(t) bits

6: for idx ∈ {0, . . . , ∥m∥
log(t) − 1} do

7: for i ∈ {0, . . . , log(t) − x − 1} do
8: authidx ,i ← nodei ,⌊midx

2i ⌋⊕1
9: end for

10: σidx ← smidx ,authidx

11: end for
12: σx = nodex , j for j ∈ {0, . . . , 2x − 1}
13: return σidx for idx ∈ {0, . . . , ∥m∥

log(t) − 1}, σx

Algorithm 15 HORST.Verify (m,σ , pk)
1: σidx for idx ∈ {0, . . . , ∥m∥

log(t) − 1}, σx ← σ

2: (m0, . . . ,m ∥m∥
log(t)−1) =m ▷ Splitm into strings of log(t) bits

3: node′i , j ←Merkle.BuildTree(σx) ▷ Let 0 ≤ i ≤ log (t) and 0 ≤ j < t
2i

4: for idx ∈ {0, . . . , ∥m∥
log(t) − 1} do

5: smidx ,authidx ← σidx

6: nodeidx ,0 ← F(smidx)
7: for i ∈ {0, . . . , log(t) − x − 1} do
8: if ⌊midx

2i ⌋ mod 2 = 0 then
9: nodeidx ,i+1 ← H(nodeidx ,i ,authidx ,i)

10: else
11: nodeidx ,i+1 ← H(authidx ,i ,nodeidx ,i)
12: end if
13: end for
14: if nodeidx ,log(t)−x ≠ node′0,⌊ midx

2log(t)−x ⌋ then
15: return False

16: end if
17: end for
18: return node′x ,0 ?= pk ▷ σx contains 2x nodes, so node′x ,0 is the root

90 Chapter 3. Hash-based signatures

unforgeability (to the extent possible in the scope of ‘few’ message queries), it
is necessary to �rst randomize the message and derive an n-bit message digest;
this is the ‘message’ that is signed using HORST. This can be done by including a
pseudorandom value R with the message as input to a one-way function, deriving
R deterministically from the secret key. The value R then needs to be included in
the signature, so that the veri�er can recompute the digest from the message. This
is covered in more detail in [BHH+15] and brie�y discussed in Section 3.7.

3.5.3 High-performance hash functions

To instantiate SPHINCS, one must de�ne the one-way function F and the com-
pressing hash function H , as well as message digest functions we have up to now
skimmed over. The SPHINCS-256 instance is designed to target high performance,
and is not necessarily restricted to standards. As a consequence, its designers
opted to use the ChaCha [Ber08] permutation to underly F and H , and use the
BLAKE-512 function [AHM+08] for message compression. The pseudorandom
generators used to derive the masks and the WOTS+ and HORST secret keys are
also generated using ChaCha (in particular the 12-round ChaCha12) and BLAKE.

The ChaCha permutation, typically denoted πChaCha, operates on a 512-bit
state. With n = 256, the input to F needs to be padded. Similarly, H is constructed
by padding both input nodes and applying the ChaCha permutation twice. In
a construction that is reminiscent of modern sponge-based hash functions, the
output is generated by truncating the state to n output bits.

The functions F and H are instantiated as follows. Here, Chop256 truncates
its input to 256 bits,C is the ASCII string “expand 32-byte to 64-byte state!”,
and O is a string of 256 0-bits.

F(M) = Chop256(πChaCha(M∥C))
H(M1∥M2) = Chop256(πChaCha(πChaCha(M1∥C)⊕ (M2∥O)))

Here, we should note that [BHH+15] predates our work on mitigating multi-
target attacks [HRS16b]. As a consequence, SPHINCS uses bitmask constructions
as seen in earlier versions of XMSSMT, included as part of the public key rather than
pseudorandomly generated, and addressed less granular. We refer to [BHH+15]
for exact details.

3.6. ARMed SPHINCS 91

3.6 ARMed SPHINCS

In the previous section, we brie�y considered SPHINCS and the SPHINCS-256

instance. SPHINCS-256 was designed for high performance on desktop or server-
grade platforms. This shows in the choice of parameters, but also in the algorithmic
choices in HORST. Such platforms typically have access to processors with SIMD
instructions (see Section 2.4.1) and an abundance of random-access memory.

It is not obvious that SPHINCS is a feasible solution for small, embedded devices.
In this section, we look at SPHINCS-256 on a much more constrained platform: the
Cortex-M3. Given the memory usage of the reference implementation and the fact
that a SPHINCS-256 signature alone requires 41 KiB, it is not immediately clear
that this is feasible on a device with 16 KiB of memory available. We show that
while it is possible to construct and verify SPHINCS-256 signatures, performance
results indicate that practical applications are limited to non-interactive contexts
(such as sensor nodes sending signed data several times a day). To illustrate the
cost of eliminating the state, we also implement and benchmark XMSSMT on the
same platform. Rather than implementing the XMSSMT as described in RFC 8391,
we use the same performance-oriented hash functions that underly SPHINCS-256.

Related work

In [RED+08], the potential for hash-based signature schemes on constrained mi-
croprocessors was �rst demonstrated. The authors establish that it is possible,
to implement GMSS [BDK+07], an improvement of Merkle’s original hash-based
signature scheme, on an 8-bit AVR microprocessor at a speed comparable to RSA
and ECDSA, although without key generation. The described platform o�ers 8 KiB
of program memory and 4 KiB of SRAM.

As mentioned in Section 3.4, a variant of XMSS was implemented on a 16-bit
smart card [BBH13]. The authors show that key generation can be done on the
device and get even faster speeds than [RED+08], further demonstrating practicality
of (stateful) hash-based signature schemes on constrained devices.

Extensive side-channel analysis of a fast Merkle signature scheme implementa-
tion on an AVR ATxmega is presented in [EVMY14]. This paper introduces a new
algorithm for the computation of authentication paths in a Merkle tree to signi�-
cantly reduce (and actually bound) side-channel leakage during this computation.

Other post-quantum schemes also show promising results on embedded sys-

92 Chapter 3. Hash-based signatures

tems. In [GLP12], a lattice-based signature scheme is shown to produce signatures
of 9 KiB, with keys of 2 KiB and 12 KiB in size, beating RSA in terms of speed, on
a Xilinx Spartan-6 FPGA. While memory usage is slightly higher compared to
hash-based schemes, [OPG14] shows that lattice-based signatures can be very fast
by providing an implementation on a Cortex-M4F. Multivariate-quadratic systems
have also been implemented and proven to be practical on low-resource devices as
well as ASICs, with keys of practical size [YCC+06].

At the time of publication, the software presented in this section was the �rst
(stateless) signature to target 128 bits of security against quantum attackers on an
embedded microcontroller (although it has since been shown that this was not
achieved [BHK+19]), complicating comparison to previous results. On the one
hand, none of the previous papers targets 128 bits of post-quantum security, and,
unlike our software, both [EVMY14] and [BBH13] use hardware accelerators for
fast hashing. On the other hand, 8-bit AVR microcontrollers used in [BDK+07]
and [EVMY14] and the 16-bit In�neon SLE 78 used in [BBH13] are less power-
ful (and o�er less RAM and ROM) than the more recent Cortex-M3 used in this
work. For many applications there is a trend to move from 8-bit and 16-bit micro-
controllers towards more powerful 32-bit processors like the Cortex-M; mainly
towards the low-end Cortex-M0, which is explicitly advertised to “achieve 32-bit
performance at an 8-bit price point, bypassing the step to 16-bit devices” [ARMa].
The Cortex-M3 is considerably more powerful than the Cortex-M0 and o�ers more
persistent and volatile memory. Our memory usage suggests that it might be
feasible to bring SPHINCS to the Cortex-M0 with 8 KiB of RAM, but this would not
leave any space for other applications and would largely be an academic exercise.

Since the publication of the paper underlying this section [HRS16a], several
more post-quantum schemes have been implemented on Cortex-M series micropro-
cessors. In particular, many of these results are part of the PQM4 project [KRS+18;
KRS+19] — this is brie�y discussed in the software listing in Section 1.3.1. At the
time of writing, optimized schemes primarily include key-exchange primitives, but
also several lattice-based signature schemes.

3.6.1 The Cortex-M3

The Cortex-M3 is a 32-bit microprocessor that implements the ARMv7-M instruc-
tion set. The board used in this work is part of the STM32 Discovery line: the
STM32L100C. This microcontroller is commonly found in embedded systems used

3.6. ARMed SPHINCS 93

in the automotive industry, small industrial systems and (wireless) sensors. See
Section 2.4.2 for more details on the architecture and the STM32 Discovery boards;
for this work, the most relevant aspect is the highly constraining 16 KiB of RAM.

We make use of serial communication over USART to communicate with a
host device at runtime. In most of the work presented in this thesis communication
overhead is irrelevant and not explicitly considered, but the streaming-oriented
approach of this implementation makes it a crucial consideration for performance
here. This can be done e�ciently using the direct-memory-access (DMA) controller
to prevent blocking the computation while waiting for the communication interface.
Doing this, we are able to communicate reliably at 921 600 Bd.

3.6.2 Implementing SPHINCS-256 on the Cortex-M3

In this section, we describe implementation-speci�c design choices and present
the achieved speed results that come with running SPHINCS-256 on the Cortex-
M3. This implementation makes use of code from the SPHINCS reference imple-
mentation [BHH+15] as well as (parts of) implementations of BLAKE-256 and
BLAKE-512 [AHM+08] and the ChaCha12 stream cipher [Ber08].

While the data structures used in signing and veri�cation may seem simi-
lar, the di�erent nature of the performed operations ensures that veri�cation is
straight-forward with little memory, while signing is non-trivial. In particular,
veri�cation does not require operating on entire subtrees, but rather iterates along
authentication paths one layer at a time.

As a general approach to reduce the memory usage of the signing operation, we
split the computation into disjunct parts as dictated by the structure of the output.
This allows us to focus on and optimize memory requirements of the individual
subroutines separately, carrying over minimal memory allocation between them.

Tree storage

The SPHINCS scheme consists of a number of clearly distinct components, with
the HORST trees and hash trees as the two most prominent subdivisions. While
the memory usage is typically large at the base of a tree, it fans in as we progress
towards the root. As each tree is stacked on top of the one below, it is not necessary
to ever store more than one tree in memory before proceeding on to the next –
this progression is highly sequential.

94 Chapter 3. Hash-based signatures

For the hash trees, the available memory is not an immediate problem. At
32 ⋅ 67 = 2144 bytes, the WOTS+ public key required to produce a leaf node is
costly, but can be computed in-place. Such a key can be immediately reduced to its
32-byte root node by constructing an `-tree28 (as described in Section 3.3.5). After
processing all leaf nodes in this fashion, one is left with 32 leaf nodes of 32 bytes
each. Each authentication tree contains only h/d = 5 layers of hashing, resulting
in a total of 26 − 1 = 63 nodes. We simply compute the entire tree and extract the
required authentication path.

HORST is a di�erent beast entirely. Given t = 216, the trees contain 131071
nodes spread over 16 layers of hashing, making these trees much higher than the
hash trees on top of the WOTS+ leaf nodes. This means that constructing the entire
tree and then extracting the authentication paths is not possible. At 32 bytes per
node, the nodes alone would require 4 MB of storage. There is no need to store the
entire tree, though, as only a very speci�c set of nodes is relevant for the signature:
the nodes along the ∥m∥

log(t) = 32 authentication paths, as well as the root node. As
we do require the root node to authenticate the tree, there is de�nitely no escaping
having to compute the entire tree. Here, we use a slight variant of Treehash as
described in Section 3.2.3, and extract all authentication paths in a single pass.

Treehash

In [BHH+15], the authors mention that RAM usage and code size was not one of
the concerns when writing the optimized implementation – the implementation
was optimized for speed on a platform where memory was available in abundance.
They remark that, if saving memory is a concern, the Treehash algorithm could be
used. Here, we discuss the speci�cs of applying it as part of HORST.

The routine as described in Algorithm 11 performs some bookkeeping to
recognize nodes that occur in the authentication path. As HORST involves many
nodes and multiple authentication paths within the same tree, this quickly becomes
cumbersome. Navigating through the tree without actually computing the node
values is cheap, allowing us to trace the authentication paths from leaf to root
and observe which nodes will need to be included in the signature. Rather than
compiling a list of these nodes and performing costly lookups, we can compute
and store in which Treehash round they will be produced, as well as their position

28 As this 2144 bytes is not the bottleneck, we did not apply Treehash here, but note that this could have
further reduced the memory usage by not requiring all chain heads to be stored at once.

3.6. ARMed SPHINCS 95

in the signature; as nodes of the various authentication paths will be generated
interleaved, it is necessary to rearrange them accordingly.

Consider that the tree consists of 217−1 = 131071 nodes, but only 320 nodes29 are
used. Because of this, only a small subset of all Treehash rounds contains relevant
nodes, making it especially important to optimize recognizing these rounds.

Storing a bit mask for each of the relevant rounds allows for an e�cient way to
recognize which nodes need to be included in the signature. Here, each bit indicates
whether a node should be included in the respective authentication path. We sort
these bit masks by their round index, so that we can iterate over the mask-index
pairs while processing each of the leaf nodes. Pointing an iterator at the current
mask-index pair and only incrementing it when the index is equal to the index of
the current leaf node will result in an overhead of only one comparison for each
non-relevant round.

Streaming out signature data

So far we have glossed over an important aspect of the signing process: putting
together the signature. Where an implementation with an abundance of memory
available would simply allocate 41 KiB of memory and insert the di�erent pieces
of the signature in the right place as they are computed, this is not possible on
our device. Instead, the signature is streamed out of the board over the serial
port throughout the computation. For many use-cases this is not di�erent from
receiving the entire signature all at once after the entire computation has �nished,
so we believe this should not pose any immediate usability concerns.

As discussed before, a SPHINCS signature primarily30 consists of a HORST

signature, d WOTS+ signatures and d authentication paths. The WOTS+ signatures
and authentication paths are computed in the order in which they should occur as
part of the signature; instead of storing them in memory, they can be written to
the output stream as they are computed.

The HORST signature is a bit more complicated. It consists of log(t) secret keys
belonging to leaf nodes and their respective authentication paths. As remarked in

29 One might expect to require 32 ⋅ 16 = 512 nodes, as each of the 32 authentication paths results in 16
neighboring nodes. However, in order to prevent needless duplication in the top layers, the HORST
signature always includes layer 6 in its entirety and truncates the authentication paths after 10 nodes,
leaving it to the veri�er to reconstruct the paths.

30 The signature also contains the leaf index and a randomization value, but these can be written to the
output stream immediately.

96 Chapter 3. Hash-based signatures

footnote 29 on page 95, all nodes on layer 6 are always included, so the last 6 nodes
of these sequences are truncated. The issue here is the fact that the authentication
paths are not produced one at a time, but are each grown in an interleaved fashion
as more and more of the tree is computed. This does not pose a problem when
storing the hash values in a signature in memory – each node value can be inserted
in the right place. When streaming the output, however, one cannot go back and
insert a node value. Instead, the node values will have to be tagged with what
should have been their location in the signature, and rearranged accordingly on
the receiving end. For each 32-byte node value, this adds an overhead of two bytes.
This results in a communication overhead of 832 bytes (640 for the authentication
path nodes, 128 for the nodes on layer 6 and 64 bytes for the secret key values), or
2% on top of the 41 KiB signature.

HORST key material

Similarly, generating a HORST secret key results in too much key material to �t in
memory. With 216 leaf nodes of 32 bytes each, this would amount to 2 MiB. Instead,
we can once more rely on the fact that Treehash rounds consume the leaf nodes
sequentially, and only generate the leaf node values when they are required. In
SPHINCS, the HORST secret key is expanded from a seed using ChaCha12. As
ChaCha12 is used in counter mode, we do not immediately generate the entire
key, but keep track of the counter and perform the next iteration whenever more
key data is required. With ChaCha12 producing output blocks of 512 bits, every
other leaf node requires a new chunk of output to be generated.

3.6.3 Performance

So far we have focused on the adjustments required to be able to generate SPHINCS

signatures with only 16 KiB of volatile memory. Besides memory usage, runtime
also remains a de�ning property to consider for practical feasibility; we provide
benchmark results and brie�y discuss performance in the next subsections.

ChaCha permutation

In SPHINCS-256, the ChaCha permutation is the fundamental building block for
both WOTS+ and HORST, as well as the hashing in the authentication trees. Recall
that t = 216 = 65536. To generate a HORST key and produce a signature, πChaCha is

3.6. ARMed SPHINCS 97

called 1
2 ⋅ t = 32768 times to expand the seed and generate the secret keys, as the

permutation outputs 512 bits and the keys are 256 bits each. These secret keys are
then hashed using F to construct the leaf nodes at the cost of another t = 65536
permutations. Subsequently, Treehash is used to hash t leaf nodes, at a cost of two
ChaCha permutations per execution of H , resulting in another 2 ⋅ (t − 1) = 131070
permutations. This adds up to 229374 permutation calls for one HORST signature.

WOTS+ is signi�cantly cheaper. Recall that ` = 67 and w = 16. Generating
a WOTS+ key pair requires ` secret keys, which costs ⌈ 1

2 ⋅ `⌉ = 34 permutations
to expand the seed, ` ⋅ (w − 1) = 1005 invocations of F at one permutation each
for the chaining function and 66 invocations of H to build the `-tree, totaling
34+ 1005+ 2 ⋅ 66 = 1171 permutations. Given h = 60 and d = 12, each of the trees in
the hypertree has 32 WOTS+ leaves,31 for a total of 37472 permutations per tree.

Constructing a tree with WOTS+ key pairs on the leaf nodes costs an additional
31 invocations of H . One of the WOTS+ nodes is used to produce a signature on
the sub-tree below, at the average cost of ⌈ 1

2 ⋅ ` ⋅ (w − 1)⌉ = 503 more invocations of
F . As there are 12 trees in the hypertree, this accumulates to a total of 12 ⋅ (37472+
2 ⋅ 31 + 503) = 456444. Combining the cost of HORST and the WOTS+ trees, we
arrive at a grand total of 229374 + 456444 = 685818 permutations.

Because we perform so many ChaCha permutations, it is worthwhile to care-
fully optimize this routine in ARMv7-M assembly. Internally, πChaCha operates on
words of 32 bits each. These �t precisely in the 32-bit registers that are available
to us on this platform, and the arithmetic in ChaCha is very simple to perform
once the words are accessible. Additionally, many of the arithmetic operations
come for free, as the ARMv7-M instruction set provides instructions that take
rotated registers as arguments (using the so-called barrel shifter). This enables us
to perform nearly all of the rotation operations implicitly. There are not enough
registers available for all sixteen 32-bit words, though, as register 13, 14 and 15
are reserved for the stack pointer, link register and program counter, respectively.
This would imply that three of the sixteen words need to be saved in memory at
all times, at the cost of a load and a store whenever one of these is needed. While
we need the program counter and stack pointer for the code to run properly, we
are not making any function calls that require the link register. The extra cost of
having to pop it from the stack in the end is easily compensated for by the bene�t

31 At the cost of some code complexity, one can avoid computing the public key corresponding to the
WOTS+ leaf node used to sign; it is not required for any of the nodes in the authentication path.

98 Chapter 3. Hash-based signatures

of an extra general-purpose register, allowing us to keep fourteen of the sixteen
words in registers. We can arrange the order of the round internals of the ChaCha

permutations such that, on average, we only need to switch out the two words on
the stack once every round. Doing so, we arrive at 542 cycles for one permutation;
in the context of ChaCha12, this corresponds to around 17 cycles per byte.

Key generation

Generating a SPHINCS-256 key takes 28 205 671 cycles. As was to be expected,
virtually all of these cycles can be attributed to WOTS+ key generation. At 32 MHz,
this amounts to just below a second. This suggests that key generation is not only
feasible but also practical. It should be noted that the STM32L100C Discovery
board is not equipped with a random number generator (TRNG). Instead, for
benchmarking purposes, we �x a 32-byte seed and write it to persistent memory
when �ashing the device. As the cost of properly generating this seed is negligible,
our results directly carry over to boards that do come equipped with a TRNG.

Signing

Producing a signature takes 589 018 151 cycles, or approximately 18.41 seconds.
As described above, we cannot store the signature on the board – this requires
communication to a host outside the board. Using the direct-memory-access
(DMA) interface, we can e�ciently interleave control of this communication with
computations. If we disable communication and instead discard the signature as it
is being produced, the signing procedure requires 584 384 791 cycles (for messages
of small length, so as to focus the benchmark on penalty of signature output).
This shows that the communication overhead is noticeable but not signi�cant. In
practice, this is a factor that may vary slightly depending on the speci�c context
and interfaces available.

In terms of RAM usage, the signing procedure ends up using 8 755 bytes of stack
space. Note that some of this stack usage is the result of function inlining by the
compiler. When disabling this behavior, the stack space consumption is reduced
to 6 619 bytes. Furthermore, we observe that the current implementation requires
25 KiB of �ash memory (or 19 KiB, without inlining). These results show that there
is a su�cient amount of memory left on the device (in terms of both RAM and
ROM) for other applications, but also indicate that moving to even smaller devices
(such as the Cortex-M0) would be quite challenging.

3.6. ARMed SPHINCS 99

Verification

Veri�cation is much more straight-forward. The memory limit does not necessitate
any signi�cant changes like it did for signature generation, as the veri�cation
procedure never requires the construction of a full tree. The signature needs
to be streamed to the device, but this does not complicate processing, as the
node values arrive in the order in which they are to be consumed. At 16 414 251
cycles, veri�cation takes approximately 513 milliseconds. When ignoring the
communication by operating on bogus data instead, veri�cation requires 5 991 643
cycles. The communication penalty is in the same ballpark as the one incurred
when signing, but still noticeably bigger. This can be accounted for by the way in
which communication and computation can be interleaved in the two procedures:
for veri�cation, the windows during which communication and computation can
be performed in parallel are much smaller, making it more di�cult to schedule the
communication e�ciently.

3.6.4 Comparing to XMSSMT

The Cortex-M3 is typically found in embedded applications, making it a possible
candidate for stateful hash-based signatures; the relative simplicity of such deploy-
ments allows for a clear understanding of possible interrupts, shared memory usage
and key management. One may wonder whether it is worth deploying SPHINCS

on such platforms, given the cost of eliminating the state. We now discuss an
implementation of XMSSMT on the STM32L100C and compare its performance.
We parameterize XMSSMT such that it provides a comparable security level using
similar primitives. Note that, like SPHINCS [BHH+15], this work predates the
advances in resistance against multi-target attacks discussed in Section 3.3.3.

Parameters

For the parameters selection, we tried to conform to the settings proposed in
RFC 8391 (at the time only just submitted as an Internet Draft [HBG+15]). This
lead to the choice of ∥m∥ = 256 and n = 256 bits for the function output sizes, a
tree with a total height of h = 20, d = 2 subtree layers and a Winternitz parameter
w = 16 (resulting in a length of ` = 67).

In terms of running time, the performance would have bene�ted signi�cantly
from a larger number of subtree layers d . However, each layer implies the need to

100 Chapter 3. Hash-based signatures

store an additional WOTS+ signature, quickly exceeding our memory constraint.
Moreover, a signature contains one WOTS+ signature per layer, increasing the
signature size signi�cantly. For the BDS algorithm (see Section 3.2.5), we set
BDSk = 6. This allows caching of a large number of expensive nodes in the limited
memory that is available.

In order to be able to fairly compare XMSSMT to SPHINCS-256, we do not
use SHA-256 and SHA-512 to compute the message digest or the parent nodes in
the hash trees. Instead, we rely on the BLAKE hash functions [AHM+08] for the
message digest, and use a construction based on the ChaCha permutation similar
to the ones described in Section 3.5.3 for the functions H and F . For pseudorandom
number generation, we replace ChaCha20 with ChaCha12, matching the choice in
SPHINCS-256. All of this implies that we can use the same ARMv7-M assembly
implementation of the ChaCha permutation that we used for SPHINCS.

Performance

The di�culty with an accurate performance estimate for XMSSMT is that it highly
depends on the practicalities of the platform it is deployed on, as well as the precise
use-case. This is a result of the extra administration that comes with dealing with
the state. Part of the state is crucial for the security of the scheme (namely the index
of the last processed leaf node), while the structures that need to be stored for BDS
traversal are needed for signing time optimization purposes. Writing persistent
data is a relatively costly operation on most platforms, so di�erent decisions will
need to be made depending on use case speci�c requirements. On the STM32L100C,
writing a well-aligned 4-byte word to non-volatile memory costs roughly 216 500
cycles on average, and scales linearly with the number of words written.

For our experiments, we assume that the device is powered on for a longer
period of time, and is being queried for multiple signatures over this interval. This
is an especially interesting scenario for XMSSMT, as this is where the bene�t of the
BDS state comes into play most prominently.

Before outputting each new signature, it is necessary to write the updated
secret key to persistent memory. This prevents re-use of a leaf node (and thus
compromise of the key) when the power gets cut. As the BDS state is much larger
and thus more expensive to store, it is only written to persistent memory when
a graceful power-o� occurs. In case this state is lost, it can be reinitialized based
on the secret key seed and leaf node index. Note that this is a costly operation,

3.7. SPHINCS+ 101

roughly equivalent to a complete key generation run.
Compared to SPHINCS, the key generation phase for XMSSMT is much more

expensive, especially in the setting described here. The main reason for this is
the fact that the two trees consist of 10 levels each, resulting in the computation
of 2048 WOTS+ leaves (1024 on each level). The generation of two such trees
is necessary to initialize the BDS state. Additionally, a WOTS+ signature needs
to be computed and stored to link the trees. For the speci�ed parameters, the
initialization phase takes 8 857 708 189 cycles. Each WOTS+ leaf computation costs
4 299 598 cycles, and the WOTS+ signature costs 1 079 936 cycles. As expected, the
WOTS+ operations account for most of the work, leaving only a small fraction for
the hash trees.

For signing, the cycle count is not precisely identical for each signature. The
BDS algorithm tries to distribute costs equally among signature generations by
running a �xed amount of Treehash ‘updates’ for each signature (see Section 3.2.5).
For the �rst few signatures, not all these updates are needed as all structures
are initialized during key generation and only few values have to be computed
during each signature generation. Similarly, not all updates can be distributed
optimally without incurring costly memory operations. It turns out that during
this ‘start-up phase’ it is slightly more costly to update the state for ‘right’ leaf
nodes than for their ‘left’ neighbors, and signatures using a left leaf node come in at
21 551 730 cycles, while right nodes cost 17 308 759 cycles. For our implementation,
transitioning from one tree to the next does cost signi�cantly more cycles than
a regular signature: signatures that require renewing the WOTS+ signature that
binds the subtrees together cost 28 344 774 cycles. Overall, the average signing
time is 19 441 021 cycles.

As one would expect of a hash-based signature scheme, veri�cation remains
a much cheaper operation. At 4 961 447 cycles, the relative gain compared to
SPHINCS is not as dramatic as it is for signing, but the di�erence is signi�cant.

3.7 SPHINCS+
Even though the introduction of SPHINCS made stateless hash-based signatures
much more practical, there is still ample room for improvement. In this section,
we describe steps in that direction by introducing its direct successor: SPHINCS+.
Improving both in terms of signature size and runtime performance, we describe
not one speci�c signature scheme instance but a framework that allows for a variety

102 Chapter 3. Hash-based signatures

of trade-o�s. This allows users to make highly application-speci�c trade-o�s with
regards to the signature size, the signing speed, the required number of signatures
and the desired security level, and even account for platform considerations such
as memory limits or hardware support for speci�c hash function.

SPHINCS+ was originally described in the submission to NIST’s Post-Quantum
Cryptography Standardization project in November of 2017 [BDE+17]. It has since
progressed to the second round, where it saw minor tweaks to further improve
performance. In [BHK+19], we address SPHINCS+ from a more academic view-
point, providing a more thorough security analysis and comparison to instances of
SPHINCS [BHH+15], Gravity-SPHINCS [AE17; AE18] and Picnic [CDG+19].

As the general structure of SPHINCS+ closely resembles SPHINCS and XMSSMT,
we refrain from describing the full proposal here, and focus on aspects that di�er
from its predecessors. We construct a hypertree using Winternitz’ one-time signa-
ture scheme, and, like SPHINCS, use a few-time signature scheme at the leaves.
Instead of committing to a speci�c hash-function construction, however, we de�ne
the framework in terms of tweakable hash functions. We elaborate on this below.

Among the main distinguishing contributions of SPHINCS+ is the introduction
of a new few-time signature scheme: FORS, introduced in Subsection 3.7.2. Another
important change from SPHINCS to SPHINCS+ is the way leaf nodes are chosen.
SPHINCS+ uses publicly veri�able index selection, preventing an attacker from
freely selecting a seemingly random index and combining it with a message of their
choice. These two changes together make it harder to attack SPHINCS+ via the
few-time signature scheme and thus allow us to choose smaller parameters. With
the same goal, we apply multi-target attack mitigation techniques as proposed
in [HRS16b], making it harder to attack SPHINCS+ using a (second-)preimage
attack. We give a security reduction that formally shows these claims in [BHK+19].

In the remainder of this section, we describe the framework and the selected
instances as de�ned in the second-round revision of the NIST submission. We
omit minute changes, such as the revised WOTS+ key compression. Refer to the
speci�cation document for a byte-accurate description [BDE+17].

3.7.1 Tweakable hash functions

As introduced in Section 3.3.3, there has been a line of work [DOT+08; BDE+11;
BDH11; Hül13b; HRS16b] focusing on reducing the assumptions necessary to prove
the security of hash-based signature schemes. In some constructions inputs to hash

3.7. SPHINCS+ 103

functions are masked with random values, while in others, functions are de�ned
to take a separate key as input. Some proposals do both, and some simply pre�x or
append additional data to the inputs before hashing. Overall, though, the high-level
structures remain the same. Although the di�erences in schemes are somewhat
local, each work redid a full security analysis of the whole signature scheme. While
these security analyses were already complex for stateful hash-based signature
schemes, the case of stateless schemes adds further complexity.

We now introduce tweakable hash functions as an intermediate abstraction.
Tweakable hash functions allow us to unify the general description of hash-based
signature schemes, abstracting away the details of how exactly hashing is done. and
allowing for a separation of the analysis of the high level construction. In [BHK+19],
we show that this captures typical constructions from the literature, and use it to
construct the security reduction of SPHINCS+.

In addition to the message input, a tweakable hash function takes public param-
eters P and context information in the form of a tweak T . The public parameters
can be thought of as a function key or index. The tweak can be seen as a nonce.

De�nition 3.7.1 (Tweakable hash function) Let n be the security parameter,32

α ∈ N, P the public parameters space of size exponential in n, and T the tweak space.
A tweakable hash function is an e�cient function Thα ,

Thα ∶ P × T × {0, 1}α → {0, 1}n

md← Thα (P,T ,m)

mapping an α-bit message m to an n-bit hash value md using public parameters
P ∈ P and a tweak T ∈ T .

In the remainder of this section we writen for the length of digests in bits, which,
by the above construction, is equal to the security parameter. For convenience and
consistency, we use F as a shorthand for Thn and H for Th2n .

In SPHINCS+, the public parameter is a public seed pkseed of n bits that is part
of the public key. As tweak, we use the 256-bit address addr that identi�es the
position of the hash function call within the hypertree. This combination makes all
hash-function calls across every SPHINCS+ key pair and position in the hypertree

32 We use n rather than k here, both for consistency with literature and because k is used in the de�nition
of FORS in [BHK+19]. In previous sections it was important to distinguish between the digest length
and the security parameter, but the introduction of tweakable hash functions obviates this complication.

104 Chapter 3. Hash-based signatures

fully independent. We defer the exact requirements on the security properties of
tweakable hash functions and their instances to [BHK+19].

3.7.2 FORS

As the few-time signature scheme in SPHINCS+, we de�ne FORS [fO:rs]: Forest of
Random Subsets. This scheme serves as a drop-in replacement for HORST [BHH+15]
(see Section 3.5.2). In [BHK+19], we strengthen the notion of target subset resilience
as previously used to analyze HORS and HORST. The design of FORS closely fol-
lows from this notion, but can be described independently.

FORS is de�ned in terms of a power-of-two integer t , de�ning the size of a
single binary tree, and an integer κ, de�ning the size of the forest, i.e., the number
of binary trees. These parameters dictate the length of the message that can be
signed: given κ and t , a FORS key pair can be used to sign strings of κ log t bits. In
the context of SPHINCS+, this means we must ensure that the message digest to
be signed at the bottom of the hypertree is at least of this length.

The FORS key pair

The FORS secret key consists of κt random n-bit values, grouped together into
κ sets of t values each. In SPHINCS+, these values are deterministically derived
from a seed together with the address of the key in the hypertree. We label these
values sk = (s(0)

0 , . . . , s
(κ−1)
t−1). To construct the FORS public key, we �rst construct

κ binary hash trees on top of the sets of secret-key elements. As in HORST, we hash
the secret-key elements to obtain (p(0)

0 , . . . ,p
(κ−1)
t−1), this time using a tweakable

hash function. Each of the t resulting values in a set is used as a leaf node, resulting
in κ trees of height log t . We use H to construct the hash tree as before, addressed
using its unique position within the FORS trees and the location of the FORS key
pair in the hypertree. We then compress the root nodes using a call to a tweakable
hash function with input lengthκn. The resultingn-bit value is the FORS public key.
See Algorithm 16. Note that we use Merkle.Treehash described in Algorithm 11 as
a subroutine with h = log t , implicitly tweaking H with the address of each call.

FORS signatures

Given a message of κ log t bits, we extract κ strings of log t bits. Each of these bit
strings is interpreted as the index of a single leaf node in each of the κ FORS trees.

3.7. SPHINCS+ 105

Algorithm 16 FORS.KeyGen () κ,n, t,P,T , F ,H ,Thκn

1: for i ∈ {0, . . . ,κ − 1} do
2: for j ∈ {0, . . . , t − 1} do
3: s

(i)
j

$← {0, 1}n

4: p
(i)
j ← F(s(i)j)

5: end for
6: ri ,path

(i) ←Merkle.Treehash(0,p(i)0 , . . . ,p
(i)
t−1)

7: end for
8: pk← Thκn(P,T , r0∥ . . . ∥rκ−1)
9: sk = s(i)j for i ∈ {0, . . . ,κ − 1}, j ∈ {0, . . . , t − 1}

10: return pk, sk

The signature consists of each of these nodes and their respective authentication
paths. Signature generation is illustrated in Figure 3.7; see Algorithm 17 for
pseudocode. As before, in Treehash, assumeH implicitly tweaked and thath = log t .

To verify the signature, one reconstructs the public key and con�rms that it
corresponds to the given public key. The veri�er reconstructs each of the root nodes
using the authentication paths; combining these leads to the candidate public key.
See Algorithm 18. Like in SPHINCS, a FORS signature is never veri�ed explicitly
as part of SPHINCS+. Instead, the resulting public key is used as a message on the
next layer of the hypertree, to be authenticated using a WOTS+ signature. As with
WOTS+ and HORST, the FORS veri�cation algorithm described below is trivially
turned into a RecoverPK routine that instead outputs the public key.

Algorithm 17 FORS.Sign (m, s(i)j ∈ sk) κ, t, F ,H

1: (m0, . . . ,mκ−1) =m ▷ Splitm into strings of log(t) bits
2: for i ∈ {0, . . . ,κ − 1} do
3: for j ∈ {0, . . . , t − 1} do
4: p

(i)
j ← F(s(i)j)

5: end for
6: ri ,path

(i) ←Merkle.Treehash(mi ,p
(i)
0 , . . . ,p

(i)
t−1)

7: σi = s(i)mi ,path
(i)

8: end for
9: return σi for i ∈ {0, . . . ,κ − 1}

106 Chapter 3. Hash-based signatures

r0 r1 r2

r3 r4 r5

Figure 3.7: An illustration of a FORS signature withκ = 6 and t = 23, for the message
100 010 011 001 110 111. We get pk← Thκn(pkseed ,addr , r0∥r1∥r2∥r3∥r4∥r5).

3.7.3 Instances

As SPHINCS+ is a versatile framework that allows for many trade-o�s and choices,
we de�ne several concrete instances. These instances de�ne parameters for FORS,
WOTS+ and the general hypertree structure, but also instantiate the tweakable
hash functions using concrete hash-function primitives.

We select the hypertree parameters h and d , the FORS parameters t and κ, and
the Winternitz parameter w by �xing the maximum number of signatures and the
target security level, and then automatically searching through a large space of
possible parameter sets. For each of the security categories 1, 3 and 5 as de�ned by
NIST (see Section 2.2), we select one parameter set that targets fast signing and one
parameter set that targets small signatures. The Sage script we used for parameter
selection is included as an appendix to [BHK+19]. See Table 3.7 for an overview of
these parameter sets.

Tweakable hash functions

Finally, we propose a total of 6 di�erent instantiations of the tweakable hash
functions, based on two constructions, subsequently instantiated with one of
three underlying hash functions: SHA-256 [NIST15a], SHAKE256 [NIST15b], and
Haraka [KLM+17]. Note that the instantiations using Haraka cannot reach the
same security levels that can be reached with SHA-256 or SHAKE256. This is due

3.7. SPHINCS+ 107

Algorithm 18 FORS.Verify (m,σi ∈ σ , pk) κ,n, t,P,T , F ,H ,Thκn

1: (m0, . . . ,mκ−1) =m ▷ Splitm into strings of log(t) bits
2: for i ∈ {0, . . . ,κ − 1} do
3: (s(i)mi ,path

(i)) = σi
4: (auth(i)0 , . . . ,auth

(i)
t−1) = path(i)

5: node
(i)
0 ← F(s(i)mi)

6: for j ∈ {0, . . . , t − 1} do
7: if ⌊mi

2j ⌋ mod 2 = 0 then
8: node

(i)
j+1 ← H(node(i)j ∥auth(i)j) ▷ Assume H is implicitly tweaked

9: else
10: node

(i)
j+1 ← H(auth(i)j ∥node(i)j) ▷ Assume H is implicitly tweaked

11: end if
12: end for
13: ri = node(i)log(t)
14: end for
15: pk′ ← Thκn(P,T , r0∥ . . . ∥rκ−1)
16: return pk′ ?= pk

Table 3.7: Parameter sets for SPHINCS+ targeting di�erent security levels and
di�erent trade-o�s between size and speed.

n h d log t κ w bitsec NIST |siд|

SPHINCS+-128s 128 64 8 15 10 16 133 1 8 080

SPHINCS+-128f 128 60 20 9 30 16 128 1 16 976

SPHINCS+-192s 192 64 8 16 14 16 196 3 17 064

SPHINCS+-192f 192 66 22 8 33 16 194 3 35 664

SPHINCS+-256s 256 64 8 14 22 16 255 5 29 792

SPHINCS+-256f 256 68 17 10 30 16 254 5 49 216

108 Chapter 3. Hash-based signatures

to a generic meet-in-the-middle attack computing collisions in the internal state,
which has (classical) complexity 2128.

For the robust instances, we �rst generate pseudorandom bitmasks which are
then applied to the input message. This results in the following construction,
closely following [HRS16b]. Given two hash functions H1∶{0, 1}2n × {0, 1}α →
{0, 1}n with 2n-bit keys, and H2 ∶ {0, 1}2n → {0, 1}α , we de�ne

P = T = {0, 1}n,
Thα (P,T ,m) = H1(P∥T ,m⊕) ,where

m⊕ =m ⊕H2(P∥T) .

For the simple instances, we take an approach inspired by the LMS proposal
for stateful hash-based signatures [CMF19], and omit the bitmasks. Given a hash
function H ∶ {0, 1}2n+α → {0, 1}n , we de�ne

P = T = {0, 1}n ,
Thα (P,T ,m) = H(P∥T ∥m) .

Naturally, the ‘simple’ instances are faster, as they do not require the generation
of bitmasks. When combined with compressed addresses in the SHA-256 case (see
below) this can lead to an estimated reduction of the number of compression
function calls by a factor of almost 4. This comes at the cost of a security argument
that relies on the random oracle model.

We now explicitly de�ne F and H for the above-mentioned variants. We
also show how to de�ne Thα for generic lengths, e.g. for WOTS+ or FORS key
compression. We defer de�ning functions speci�c to SPHINCS+ (such as a PRF and
the message hashing function) to the formal speci�cation document. In general, if
a parameter set requires an output length n < 256 bits for F or H , we take the �rst
n bits of the output and discard the remaining.

SPHINCS+-SHAKE256

For the robust variant of SPHINCS+-SHAKE256, we de�ne

F(pkseed ,addr ,m1) = SHAKE256(pkseed∥addr∥m⊕
1 ,n),

H(pkseed ,addr ,m1∥m2) = SHAKE256(pkseed∥addr∥m⊕
1 ∥m⊕

2 ,n),
Thα (pkseed ,addr ,m) = SHAKE256(pkseed∥addr∥m⊕,n).

3.7. SPHINCS+ 109

For the simple variant, we instead de�ne

F(pkseed ,addr ,m1) = SHAKE256(pkseed∥addr∥m1,n),
H(pkseed ,addr ,m1∥m2) = SHAKE256(pkseed∥addr∥m1∥m2,n),

Thα (pkseed ,addr ,m) = SHAKE256(pkseed∥addr∥m,n).

SHAKE256 can be used as an extendable output function, which allows us to
generate the bitmasks for arbitrary length messages directly. For a messagem with
l bits we compute

m⊕ =m ⊕ SHAKE256(pkseed∥addr , l).

SPHINCS+-SHA-256

In a similar way we de�ne the functions for SPHINCS+-SHA-256. For the robust
variant, we further de�ne the tweakable hash functions as

F(pkseed ,addr ,m1) = SHA-256(pkseed∥064−n/8∥addr c∥m⊕
1),

H(pkseed ,addr ,m1∥m2) = SHA-256(pkseed∥064−n/8∥addr c∥m⊕
1 ∥m⊕

2),
Thα (pkseed ,addr ,m) = SHA-256(pkseed∥064−n/8∥addr c∥m⊕).

For the simple variant, we instead de�ne the tweakable hash functions as

F(pkseed ,addr ,m1) = SHA-256(pkseed∥064−n/8∥addr c∥m1),
H(pkseed ,addr ,m1∥m2) = SHA-256(pkseed∥064−n/8∥addr c∥m1∥m2),

Thα (pkseed ,addr ,m) = SHA-256(pkseed∥064−n/8∥addr c∥m).

SHA-256 can be turned into an extendable output function using MGF1, which
allows us to generate the bitmasks for arbitrary length messages directly. Here, we
use MGF1 as de�ned in [KS98a]. Note that MGF1 takes as the last input the output
length in bytes. For a message m with l bytes we compute

m⊕ =m ⊕MGF1-SHA-256(pkseed∥addr c , l).

Each of the instances of the tweakable hash function take pkseed as its �rst
input, which is constant for a given key pair and, thus, across a single signa-
ture. This leads to redundant computation. To remedy this, we pad pkseed to the
length of a full 64-byte SHA-256 input block. Given the Merkle-Damgård construc-
tion [Mer79; Dam90] that underlies SHA-256, we improve performance by reusing
the intermediate SHA-256 state after the initial call to the compression function.

110 Chapter 3. Hash-based signatures

To ensure that we require the minimal number of calls to the SHA-256 com-
pression function, we use a compressed addr for each of these instances. Where
realistic, this ensures that the SHA-2 padding �ts within the last input block. Rather
than storing the layer address and type �eld in a full 4-byte word each, we only
include the least-signi�cant byte of each. Similarly, we only include the least-
signi�cant 8 bytes of the 12-byte tree address. This reduces the address from 32 to
22 bytes. We denote such compressed addresses as addr c .

SPHINCS+-Haraka

Our third instantiation is based on the Haraka short-input hash function. Note
that Haraka has seen little cryptanalysis and is not a NIST-approved hash function,
making this parameter set highly experimental. We specify SPHINCS+-Haraka to
demonstrate the possible speed-up by using a dedicated short-input hash function.

As the Haraka family only supports input sizes of 256 and 512 bits, we extend it
with a sponge-based construction based on the 512-bit permutation π . The sponge
has a rate of 256-bit and a capacity of 256-bit. We adhere to the same padding
scheme as used in SHAKE256. We denote this sponge as HarakaS(m,d), wherem
is the padded message and d is the length of the message digest in bits.

For a more e�cient construction we generate the round constants of Haraka

using pkseed .33 As pkseed is the same for all hash-function calls for a given key
pair we expand pkseed using HarakaS and use the result for the round constants
in all instantiations of Haraka used in SPHINCS+. In total there are forty 128-bit
round constants, de�ned as

RC0, . . . ,RC39 = HarakaS(pkseed , 5120).

As in the initial compression call in SHA-256, this only has to be done once
for each key pair. We denote Haraka with constants derived from pkseed as
Harakapkseed . For the robust variant, we de�ne the tweakable hash functions
as

F(pkseed ,addr ,m1) = Haraka512pkseed (addr∥m
⊕
1),

H(pkseed ,addr ,m1∥m2) = HarakaSpkseed (addr∥m
⊕
1 ∥m⊕

2 ,n),
Thα (pkseed ,addr ,m) = HarakaSpkseed (addr∥m

⊕,n).
33 This is similar to the ideas used for the MDx-MAC construction [PO95].

3.7. SPHINCS+ 111

For the simple variant, we instead de�ne the tweakable hash functions as

F(pkseed ,addr ,m1) = Haraka512pkseed (addr∥m1),
H(pkseed ,addr ,m1∥m2) = HarakaSpkseed (addr∥m1∥m2,n),

Thα (pkseed ,addr ,m) = HarakaSpkseed (addr∥m,n).

For F , we padm1 andm⊕
1 with zero if n < 256. For e�ciency reasons, the mask for

the message used in F is generated by computing

m⊕
1 =m1 ⊕Haraka256pkseed (addr).

For all other purposes the masks are generated using HarakaS. For a messagem
with l bytes we compute

m⊕ =m ⊕HarakaSpkseed (addr , l).

3.7.4 Performance

To illustrate the performance of instances of the SPHINCS+ framework, we provide
optimized implementations for all of the parameter sets discussed above. These
implementations make use of AVX2 vector instructions to parallelize instances
of the hash-function calls. For Haraka, we additionally make use of the AES-
NI extension for the internal AES rounds. Altogether, the optimization target,
hash-function construction, underlying hash function, and security level result in
2 × 2 × 3 × 3 = 36 parameter sets. See Table 3.8.

In [BHK+19], we discuss performance numbers in relation to SPHINCS-256,
Picnic [CDG+19] and Gravity-SPHINCS [AE17]. For a fair comparison, we instan-
tiate SPHINCS+ so that its security corresponds to the scheme we compare to.
These custom parameter sets include adjustments to account for assumptions such
as the number of signatures under the same key (e.g., 250 for SPHINCS-256, rather
than the 264 required by NIST). Besides demonstrating competitiveness, all of this
underscores the �exibility of the SPHINCS+ framework.

112 Chapter 3. Hash-based signatures

Table 3.8: Performance of optimized implementations for all SPHINCS+ signature
instances proposed to NIST. Benchmarks were performed on a 3.5 GHz Intel Xeon
E3-1275 V3 (Haswell).

Parameter set Cycles Bytes
keypair sign verify sig pk sk

SHAKE256-128s-simple 128 154 676 2 041 365 350 3 951 142 8 080 32 64
SHAKE256-128s-robust 250 818 474 3 701 426 810 7 615 270 8 080 32 64
SHAKE256-128f-simple 4 018 144 131 989 768 9 557 542 16 976 32 64
SHAKE256-128f-robust 7 851 034 245 065 142 18 993 432 16 976 32 64
SHAKE256-192s-simple 194 000 638 4 378 342 330 5 923 106 17 064 48 96
SHAKE256-192s-robust 374 059 710 7 584 715 214 11 398 728 17 064 48 96
SHAKE256-192f-simple 6, 079, 376 173 513 530 15 523 074 35 664 48 96
SHAKE256-192f-robust 11 695 144 326 736 564 29 729 294 35 664 48 96
SHAKE256-256s-simple 253 651 290 3 086 754 562 7 783 684 29 792 64 128
SHAKE256-256s-robust 480 242 128 5 551 086 830 15 116 818 29 792 64 128
SHAKE256-256f-simple 15 875 308 373 185 700 15 397 090 49 216 64 128
SHAKE256-256f-robust 30 041 464 682 683 022 30 727 218 49 216 64 128

SHA-256-128s-simple 49 078 104 835 272 076 2 348 916 8 080 32 64
SHA-256-128s-robust 94 988 100 1 624 566 118 4 700 588 8 080 32 64
SHA-256-128f-simple 1 602 368 51 805 308 5 676 578 16 976 32 64
SHA-256-128f-robust 2 978 018 96 974 576 11 401 188 16 976 32 64
SHA-256-192s-simple 69 860 954 1 737 629 602 3 662 790 17 064 48 96
SHA-256-192s-robust 134 664 612 3 024 929 742 7 784 118 17 064 48 96
SHA-256-192f-simple 2 116 010 66 380 214 9 611 814 35 664 48 96
SHA-256-192f-robust 4 390 738 133 192 018 19 219 918 35 664 48 96
SHA-256-256s-simple 85 946 882 1 121 074 298 4 903 926 29 792 64 128
SHA-256-256s-robust 350 260 762 4 064 645 574 13 790 402 29 792 64 128
SHA-256-256f-simple 5 298 662 133 374 038 9 408 596 49 216 64 128
SHA-256-256f-robust 21 672 826 495 051 104 26 825 462 49 216 64 128

Haraka-128s-simple 19 984 598 383 658 068 545 352 8 080 32 64
Haraka-128s-robust 25 340 702 526 821 772 829 266 8 080 32 64
Haraka-128f-simple 643 370 22 936 196 1 188 352 16 976 32 64
Haraka-128f-robust 809 006 30 719 668 1 890 584 16 976 32 64
Haraka-192s-simple 29 838 170 830 939 210 764 448 17 064 48 96
Haraka-192s-robust 39 650 538 1 312 001 676 1 451 896 17 064 48 96
Haraka-192f-simple 956 708 27 551 500 1 906 088 35 664 48 96
Haraka-192f-simple 1 260 024 38 911 468 3 482 634 35 664 48 96
Haraka-256s-simple 40 094 962 572 899 448 1 091 290 29 792 64 128
Haraka-256s-robust 51 961 586 807 399 570 1 799 156 29 792 64 128
Haraka-256f-simple 2 528 384 65 363 906 2 037 918 49 216 64 128
Haraka-256f-robust 3 268 332 90 442 914 3 351 188 49 216 64 128

Chapter 4

MQ-based signatures

This chapter is based on the peer-reviewed papers “From 5-passMQ-based identi�-

cation toMQ-based signatures” [CHR+16] and “SOFIA:MQ-based signatures in the

QROM” [CHR+18], and the MQDSS submission to NIST’s Post-Quantum Cryptogra-
phy Standardization project [CHR+17].

In the previous chapter, we have discussed the most conservative and perhaps
most well-established approach to post-quantum signatures. Here, we venture
somewhat into the unknown, exploring signatures based on solving large systems
of multivariate quadratic equations over �nite �elds: theMQ problem.

For random instances this problem is NP-complete [GJ79]. However, all
schemes in this class that have been proposed with actual parameters for practical
use share two properties that often raise concerns about their security. First, their
security arguments are rather ad-hoc; there is no reduction from the hardness of
MQ. The reason for this is the second property, namely that these systems re-
quire a hidden structure in the system of equations; this implies that their security
inherently also relies on the hardness of the so-called isomorphism-of-polynomials
(IP) problem [Pat96] (or, more precisely, the Extended IP problem [DHY+06] or
the similar IP with partial knowledge [Tho13] problem). Time has shown that
IP in many of the proposed schemes actually relies on the MinRank problem
[Cou01; FLP08], and unfortunately, more than often, on an easy instance of this
problem. Therefore, many proposed schemes have been broken not by target-
ingMQ, but by targeting IP (and thus exploiting the structure in the system of
equations). Examples of broken schemes include Oil-and-Vinegar [Pat97] (broken
in [KS98b]), SFLASH [CGP] (broken in [DFS+07]), MQQ-Sig [GØJ+11] (broken
in [FGP+15]), (Enhanced) TTS [YCC04a; YC05b] (broken in [TW12]), and Enhanced
STS [TGT+10] (broken in [TW12]). There are essentially only two proposals from
the “MQ +IP” class of schemes that are still standing: HFEv- variants [PCG01;

113

114 Chapter 4. MQ-based signatures

PCY+15] and Unbalanced Oil-and-Vinegar (UOV) variants [KPG99; DS05]. Predat-
ing NIST’s Post-Quantum Cryptography Standardization project, the literature did
not, to the best of our knowledge, describe any instantiation of those schemes with
parameters that achieve a conservative post-quantum security level.

In the realm ofMQ-based signatures, one might hope for a scheme that has a
tight reduction fromMQ in the quantum random oracle model (QROM) or even
the standard model, has small keys and signatures, and is also e�cient to perform
when instantiated with parameters that o�er 128 bits of post-quantum security.

This chapter presents signi�cant steps towards such a scheme. We introduce
signature schemes with reductions fromMQ in both the random oracle model
(ROM) and the QROM, parameterized to target 128 bits of post-quantum security.
We then provide highly optimized implementations that demonstrate practicality.

We �rst introduce MQDSS [CHR+16]. Fundamentally, this scheme relies on
applying the Fiat-Shamir transform to anMQ-based identi�cation scheme by
Sakumoto, Shirai, and Hiwatari [SSH11]. We discuss that this idea is not new, but
show that earlier attempts were unsuccessful. At roughly 41 KiB the signature
we construct is comparable in size to SPHINCS-256 [BHH+15], but the runtime
performance is considerably better. In Section 4.6.4, we examine parameterizations
of MQDSS in the context of NIST’s Post-Quantum Cryptography Standardization
project and describe some further tweaks. While the scheme comes with a security
reduction from theMQ problem, this reduction is non-tight.

We also introduce SOFIA [CHR+18]. Based on the same identi�cation scheme,
we apply Unruh’s transform [Unr15] to derive a signature scheme with a reduction
fromMQ in the QROM, as well as a tight reduction in the ROM. With a signature
three times the size of MQDSS, SOFIA is somewhat less practical; comparison to
other signature schemes with QROM proofs shows that this is a broader problem.

4.1 Identification schemes

An identi�cation scheme (IDS) is a protocol that allows a prover P to convince a
veri�er V of its identity. Formally, this is covered by the following de�nition.

De�nition 4.1.1 (Identi�cation scheme) An identi�cation scheme consists of a
tuple of probabilistic, polynomial-time algorithms IDS = (KeyGen,P,V) such that:

• the key-generation algorithm KeyGen is a probabilistic algorithm that outputs
a public key pk and a secret key sk, i.e., a key pair (pk, sk).

4.1. Identification schemes 115

P V
com $← P0(sk)

comÐÐÐÐÐÐÐÐ→
ch $← ChS

ch←ÐÐÐÐÐÐÐÐ
resp← P1(sk, com, ch)

respÐÐÐÐÐÐÐÐ→
b ← Verify(pk, com, ch, resp)

Figure 4.1: The canonical 3-pass identi�cation scheme

• P and V are interactive algorithms, executing a common protocol. The prover
P takes as input a secret key sk and the veri�er V takes as input a public key
pk. At the conclusion of the protocol, V outputs a Boolean value True to indicate
an ‘accepting’ run of the protocol, or False to indicate rejection.

We implicitly assume that P and V can maintain state across their subroutines.1

For correctness of the scheme we require that for all (pk, sk)← KeyGen() we have
Pr [⟨P(sk),V(pk)⟩ = 1] = 1, where ⟨P(sk),V(pk)⟩ refers to the common execution
of the protocol between P with input sk and V with input pk.

We often categorize identi�cation schemes based on the number of exchanged
messages. In general, an n-pass scheme signi�es n communication steps between
the prover and the veri�er. Every concrete instance of an identi�cation scheme
discussed in this chapter is either 3-pass or 5-pass, but we will occasionally touch
upon generalizations to (2n + 1)-pass schemes.

In its so-called ‘canonical form’, a 3-pass identi�cation scheme can be described
by the protocol depicted in Figure 4.1. Here, com is a commitment to some random
value, ChS is the challenge space from which a challenge ch is drawn, and resp is
the corresponding response. The intuition here is that, by selecting and publishing a
commitment, the prover binds themselves to a certain limited set of valid responses
to challenges, from which the veri�er then requests one.

We de�ne security in terms of two properties: soundness and honest-veri�er
zero-knowledge. Cheating provers (i.e., provers unable to respond to arbitrary
challenges) may attempt to prepare a commitment so that they are able to correctly

1 In Section 4.7.1, when discussing Unruh’s transform [Unr15], running subroutines of the prover based
on speci�c progressions of the state becomes more relevant. There, we do make the state explicit.

116 Chapter 4. MQ-based signatures

respond to one or more possible challenges. The probability of success against a
veri�er that randomly selects a challenge is referred to as the soundness error; a
large soundness error implies that a cheating prover is likely to succeed. Conversely,
an eavesdropper may attempt to retrieve the secret key sk based on the exchanged
messages in a valid exchange. We require the scheme to be honest-veri�er zero-
knowledge: honest exchanges should not leak information. This is demonstrated
by showing that one can recreate a valid transcript without knowledge of the
secret key. At �rst this proving technique may seem to contradict soundness, but
consider the fact that such a transcript can be created out of order. A simulator
creating such a transcript can start from a given challenge, and then adjust the
commitment and response accordingly without knowledge of sk.

We are only concerned with passively secure identi�cation schemes; as we
use identi�cation schemes as an intermediate step towards the non-interactive
construction of signatures, active third-party attackers are not relevant. We now
de�ne soundness and honest-veri�er zero-knowledge more formally.

De�nition 4.1.2 (Soundness) For an identi�cation scheme IDS = (KeyGen,P,V),
we say that it is sound with soundness error κ if for every polynomially-bounded
adversary A,

Pr
⎡⎢⎢⎢⎢⎣

(pk, sk)← KeyGen()
⟨A(pk),V(pk)⟩ = 1

⎤⎥⎥⎥⎥⎦
≤ κ + negl(k).

Here, k is the security parameter (see Section 2.1.1). Of course, the goal is to obtain
an identi�cation scheme with negligible soundness error. This can be achieved by
running r rounds of the protocol for a su�ciently large r such that κr becomes
negligible in the security parameter.

For the following de�nition, we need a slightly more formal notion of a tran-
script. A transcript of an execution of an identi�cation scheme IDS refers to all the
messages exchanged between P and V and is denoted as trans(⟨P(sk),V(pk)⟩).

De�nition 4.1.3 ((statistical) Honest-veri�er zero-knowledge) For an identi-
�cation scheme IDS = (KeyGen,P,V), we say that it is statistical honest-veri�er
zero-knowledge if there exists a probabilistic polynomial-time algorithm S , called the
simulator, such that the statistical distance between the following two distribution
ensembles is negligible in the security parameter.

{(pk, sk)← KeyGen() ∶ (sk, pk, trans(⟨P(sk),V(pk)⟩))}
{(pk, sk)← KeyGen() ∶ (sk, pk,S(pk))} .

4.1. Identification schemes 117

4.1.1 The Fiat-Shamir transform

In order to construct a digital signature scheme from an identi�cation scheme,
we can apply the Fiat-Shamir transform [FS86] (sometimes referred to as the Fiat-
Shamir heuristic).2 This generic transformation takes a 3-pass IDS and outputs a
digital signature scheme (as de�ned in De�nition 2.1.7). The construction relies
on the idea of replacing the interactive part of the veri�er by a random oracle,
allowing the prover to unpredictably select a challenge for themselves.

Before applying the transform, we �rst parallelize the protocol to ensure a
negligible soundness error. Here, we apply parallel composition: the prover �rst
publishes all commitments, then receives all challenges, and �nally outputs all
responses. While the reduction of the soundness error behaves the same as it would
for sequential composition, this ensures the protocol remains in the correct format
so that the Fiat-Shamir transform can be seamlessly applied. Indeed, the resulting
protocol can still be written as an instance of the canonical 3-pass scheme shown
in Figure 4.1. We depict the parallel composition of a 3-pass IDS in Figure 4.2.

As mentioned above, part of the role of the veri�er is replaced by a randomized
process that the prover, whom we will now refer to as the signer, can perform. While
the theoretical model requires this to be a random oracle, in practice this takes the
form of a cryptographic hash function (see De�nition 2.1.2). In Figure 4.3, we denote
this function asH. It is important to carefully consider how parallel composition
of the challenges is done: all challenges are sampled using a single hash-function
call. If each challenge was sampled individually, a cheating prover would be able to
adaptively select commitments per round to sample the challenge of their choosing.
This follows from the fact that the image space of the hash function is coupled to
the challenge space; using the output to select only one challenge tremendously
restricts the number of distinct images, trivializing preimage search.

After sampling commitments and the corresponding challenges, the signer
computes the respective responses. The signature then consists of these commit-
ments and responses. Crucially, the challenges also depend on the message. The
veri�er independently computes the challenges and veri�es the transcripts.

2 The transform actually requires a slightly stronger property of the underlying identi�cation scheme:
special soundness. See De�nition 4.4.3 on page 126. Intuitively, this relates to the possibility of extracting
a solution to the underlying hard problem from two valid transcripts. By constructing such an extractor,
one demonstrates that no two such transcripts can be found: the extracted solution would contradict
the hardness assumption. For details on the security of the Fiat-Shamir transform, refer to the original
de�nitions and proof in [FS86; CDS94; PS96], but also the preliminaries of, e.g., [Unr17; DFM+19].

118 Chapter 4. MQ-based signatures

P V
com(1) $← P0(sk)⋮
com(r) $← P0(sk)

∀i com(i)ÐÐÐÐÐÐÐÐ→
ch(1) $← ChS⋮
ch(r) $← ChS

∀i ch(i)←ÐÐÐÐÐÐÐÐ
resp(1) ← P1(sk, com(1), ch(1))⋮
resp(r) ← P1(sk, com(r), ch(r))

∀i resp(i)ÐÐÐÐÐÐÐÐ→
b ← ∀i Verify(pk, com(i), ch(i), resp(i))

Figure 4.2: Parallel composition of 3-pass identi�cation scheme

P V
com(1) $← P0(sk)⋮
com(r) $← P0(sk)
σ0 ← com(1), com(2),⋯com(r)

ch(1), ch(2),⋯, ch(r) ←H(σ0,m)
resp(1) ← P1(sk, com(1), ch(1))⋮
resp(r) ← P1(sk, com(r), ch(r))
σ1 ← resp(1), resp(2),⋯resp(r)

m,σ=(σ0 ,σ1)ÐÐÐÐÐÐÐÐ→
com(1), com(2),⋯, com(r) ← σ0

ch(1), ch(2),⋯, ch(r) ←H(σ0,m)
resp(1), resp(2),⋯, resp(r) ← σ1

b ← ∀i Verify(pk, com(i), ch(i), resp(i))

Figure 4.3: Transformed 3-pass identi�cation scheme

4.2. The MQ problem 119

Note that the above transform was designed for 3-pass identi�cation schemes.
Further on in this chapter, in Section 4.4, we will look at the Fiat-Shamir transform
in the context of a special case of 5-pass identi�cation schemes. To motivate this,
we �rst examine a concrete 5-pass IDS. This requires us to de�ne the hard problem
underlying all concrete instances in this chapter: theMQ problem.

4.2 The MQ problem

We now de�ne the search variant of theMQ problem, and the related polar form.

De�nition 4.2.1 (MQ problem) Letm,n,q ∈ N and let x = (x1, . . . ,xn) denote a
vector of variables xi over Fq . Then, letMQ(n,m,Fq) denote the family of vectorial
quadratic functions F ∶ Fnq → Fmq .

MQ(n,m,Fq) = {F(x) = (f1(x), ..., fm(x))∣fs(x) =∑
i , j

a
(s)
i , j xix j +∑

i
b
(s)
i xi ∣ms=1}.

An instance of theMQ problem is determined by F and v, and de�ned as follows.
Given F ∈MQ(n,m,Fq), v ∈ Fmq �nd, if any, s ∈ Fnq such that F(s) = v.

Given v ∈ Fmq we will refer to F(x) = v as a system ofm quadratic equations in
n variables. We will omitm,n,q whenever they are clear from the context.

De�nition 4.2.2 (Polar form) Let F ∈ MQ(n,m,Fq). The function G(x,y) =
F(x + y) − F(x) − F(y) is called the polar form of F.

It follows that the polar form is bilinear, that is, for every vector a1, a2, b ∈ Fnq and
scalar c ∈ Fq , it holds that

G(c(a1 + a2), b) = cG(a1, b) + cG(a2, b) and

G(b,c(a1 + a2)) = cG(b, a1) + cG(b, a2).

The decisional version of theMQ problem is NP-complete [GJ79]. It is widely
believed that theMQ problem is intractable even for quantum computers in the
average case, i.e., that there exists no polynomial-time quantum algorithm that
given F $←MQ(n,m,Fq) and v = F(s) (for random s $← Fnq) outputs a solution s′
to theMQ(F, v) problem with non-negligible probability.

120 Chapter 4. MQ-based signatures

4.3 The [SSH11] 5-pass identification scheme

In [SSH11], Sakumoto, Shirai, and Hiwatari propose two new identi�cation schemes:
a 3-pass and a 5-pass IDS, based on the intractability of theMQ problem. As-
suming existence of a non-interactive commitment scheme that is statistically
hiding and computationally binding, they show that their schemes are statistical
zero knowledge and argument of knowledge. They further show that the parallel
composition of their protocols is secure against a passive attacker.

The novelty of the approach of Sakumoto, Shirai, and Hiwatari [SSH11] is that,
unlike previous public-key schemes, their solution provably relies only on theMQ
problem and the security of the commitment scheme. Crucially, it does not rely on
other related problems in multivariate cryptography such as the Isomorphism of
Polynomials (IP) problem [Pat96], the related Extended IP [DHY+06] and IP with
partial knowledge [Tho13] problems, or the MinRank problem [Cou01; FLP08].

The construction centers around splitting the secret input using the polar form
de�ned above. The secret s is split into s = r0 + r1, and the public v = F(s) can
be represented as v = F(r0) + F(r1) +G(r0, r1). In order for the polar form not to
depend on both shares of the secret, r0 and F(r0) are further split as αr0 = t0 + t1

and αF(r0) = e0 + e1. Now, due to the linearity of the polar form it holds that αv =
(e1+αF(r1)+G(t1, r1))+(e0+G(t0, r1)), and from only one of the two summands,
represented by (r1, t1, e1) and (r1, t0, e0), nothing can be learned about the secret s.
The 5-pass IDS is given in Figure 4.4, where (pk, sk) = (v, s)← KeyGen(). We will
look into the practicalities of the IDS in more detail in Section 4.5. In Appendix 4.A,
we also introduce the related 3-pass scheme.

Sakumoto, Shirai, and Hiwatari have proven that their 5-pass scheme is statis-
tically zero knowledge when the commitment scheme Com is statistically hiding,
which implies (honest-veri�er) zero knowledge. Here, we prove the soundness
property of the scheme.3

Theorem 4.3.1 The 5-pass identi�cation scheme by Sakumoto, Shirai, and Hiwatari
(see Figure 4.4) [SSH11] is sound with soundness error 1

2 +
1

2q when the commitment
scheme Com is computationally binding.

Before we prove the theorem statement, we �rst present a lower bound on the
cheating probability as it helps to understand the scheme. We show that there

3 Sakumoto, Shirai, and Hiwatari sketch a proof that their 5-pass protocol is argument of knowledge when
Com is computationally binding, but our security arguments rely on the weaker notion of soundness.

4.3. The [SSH11] 5-pass identification scheme 121

P V
r0, t0 $← Fnq , e0

$← Fmq
r1 ← s − r0

c0 ← Com(r0, t0, e0)
c1 ← Com(r1,G(t0, r1) + e0)

(c0 ,c1)ÐÐÐÐÐÐÐÐ→
α $← Fq

α←ÐÐÐÐÐÐÐÐ
t1 ← α r0 − t0
e1 ← αF(r0) − e0

resp1=(t1 ,e1)ÐÐÐÐÐÐÐÐ→
ch2

$← {0, 1}
ch2←ÐÐÐÐÐÐÐÐ

If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2ÐÐÐÐÐÐÐÐ→

If ch2 = 0, Parse resp2 = r0, check
c0

?= Com(r0, α r0 − t1, αF(r0) − e1)
Else Parse resp2 = r1, check
c1

?= Com(r1, α(v − F(r1)) −G(t1, r1) − e1)

Figure 4.4: The [SSH11] 5-pass IDS

122 Chapter 4. MQ-based signatures

exists an adversary C, the cheater, that can cheat with probability 1
2 +

1
2q . This

cheater C simply follows the protocol using some random s′, with a little di�erence:
they guess α and manipulate the second part of the commitment (c0,c1). The
reason this works is that for ch2 = 0, nothing is checked using the veri�cation key
v. Thus, in this case the cheater can always win. This gives a success probability of
at least 1/2. Furthermore, manipulating c1 does not in�uence the success probability
when ch2 = 0, but does increase the success probability when ch2 = 1.

More formally, for the public pk = v, the cheater C chooses α∗ ∈ Fq as a
prediction of what the veri�er V will use in the protocol later on. Then C chooses
s′, r0, t0 ∈ Fnq , e0 ∈ Fmq at random, and computes r1 ← s′ − r0, and t1 ← α∗r0 − t0.
Now C computes the commitment (c0,c1) as

c0 ← Com(r0, t0, e0)and

c1 ← Com(r1,α
∗(v − F(r1)) −G(t1, r1) − α∗F(r0) + e0),

and computes e1 ← α∗F(r0) − e0. It then follows the remainder of the protocol.
Now, when ch2 = 0, C always wins, regardless of what α the veri�er has chosen.

When ch2 = 1, C wins when α = α∗, i.e., the �rst challenge was correctly guessed,
which happens with probability 1/q.

This gives 1
2 +

1
2q as a lower bound on the success probability of an adversary.

What we want to show now is that there cannot exist a cheater that wins with
signi�cantly higher probability as long as theMQ problem is hard and the used
commitment scheme is computationally binding.

Towards a contradiction, assume that there exists a malicious polynomially-
bounded cheater C such that it holds that

ϵ ∶= Pr[⟨C(1k , v),V(v)⟩ = 1] − (1
2
+ 1

2q
) = 1

P(k)

for some polynomial function P(k). We show that this implies that there exists
a polynomially-bounded adversary A with access to C that can either break the
binding property of Com or can solve theMQ problemMQ(F, v).
A can achieve this if they can obtain four accepting transcripts from C with

some internal random tape, equation system F, and public key v, such that for two
di�erent α there are two transcripts for each α with di�erent ch2. This is done
by rewinding C and feeding it with all possible combinations of α ∈ [0,q − 1] and
ch2 ∈ {0, 1}. That way we obtain 2q di�erent transcripts. Now, per assumption

4.4. Fiat-Shamir for 5-pass identification schemes 123

C produces an accepting transcript with probability 1
2 +

1
2q + ϵ . Hence, with non-

negligible probability ϵ we get at least q+2 accepting transcripts. A simple counting
argument gives that there has to be a set of four transcripts ful�lling the above
conditions. Let these transcripts be ((c0,c1),α(i), (t(i)1 , e

(i)
1), ch(i)

2 , resp(i)
2), where

α(1) = α(2) ≠ α(3) = α(4), t(1)
1 = t(2)

1 ≠ t(3)
1 = t(4)

1 , e(1)
1 = e(2)

1 ≠ e(3)
1 = e(4)

1 ,
ch(1)

2 = ch(3)
2 = 0, ch(2)

2 = ch(4)
2 = 1, resp(1)

2 = r(1)
0 , resp(3)

2 = r(3)
0 , resp(2)

2 = r(2)
1 ,

resp(4)
2 = r(4)

1 . Since the commitment (c0,c1) is the same in all four transcripts, we
have

Com(r(1)
0 ,α

(1)r(1)
0 − t(1)

1 ,α
(1)F(r(1)

0) − e(1)
1) =

Com(r(3)
0 ,α

(3)r(3)
0 − t(3)

1 ,α
(3)F(r(3)

0) − e(3)
1) and

(4.1)

Com(r(2)
1 ,α

(2)(v − F(r(2)
1)) −G(t(2)

1 , r
(2)
1) − e(2)

1) =
Com(r(4)

1 ,α
(4)(v − F(r(4)

1)) −G(t(4)
1 , r

(4)
1) − e(4)

1).
(4.2)

If any of the arguments of Com on the left-hand side is di�erent from the one on
the right-hand side in (4.1) or in (4.2), then we get two di�erent openings of Com,
which breaks its computationally binding property.

If they are the same in both (4.1) and (4.2), then from (4.1):

(α(1) − α(3))r(1)
0 = t(1)

1 − t(3)
1

(α(1) − α(3))F(r(1)
0) = e(1)

1 − e(3)
1

and from (4.2):

(α(2) − α(4))(v − F(r(2)
1)) = G(t(2)

1 − t(4)
1 , r

(2)
1) + e(2)

1 − e(4)
1

Combining the two,

(α(2) − α(4))(v − F(r(2)
1)) = (α(2) − α(4))G(r(1)

0 , r
(2)
1) + (α(2) − α(4))F(r(1)

0),

and since α(2) ≠ α(4) we get v = F(r(2)
1)+G(r(1)

0 , r
(2)
1)+ F(r(1)

0). Thus, r(1)
0 + r(2)

1
is a solution to the givenMQ problem. ◻

4.4 Fiat-Shamir for 5-pass identification schemes

The most e�cient identi�cation schemes are often 5-pass schemes. Here, e�ciency
refers to the combined size of all communication of su�cient rounds to make the
soundness error negligible. This, of course, is tightly coupled to the signature size
of the resulting signature scheme.

124 Chapter 4. MQ-based signatures

In [EDV+12], the authors present a Fiat-Shamir style transform for (2n + 1)-
pass identi�cation schemes ful�lling a canonical structure. Intuitively, a 5-pass
IDS is called canonical in the above sense if P starts with a commitment com1,
V replies with a challenge ch1, P sends a �rst response resp1, V replies with a
second challenge ch2 and �nally P returns a second response resp2. Based on the
transcript of this exchange, V then accepts or rejects. See Figure 4.5; this is the
natural extension of the 3-pass canonical form described in Section 4.1. The authors
of [EDV+12] also present a security reduction for signature schemes derived from
such IDS using a security property of the IDS which they call special n-soundness.
Intuitively, this property says that given two transcripts that agree on all messages
but the last challenge and possibly the last response, one can extract a valid secret
key. We de�ne this more formally in De�nition 4.4.3 on page 126.

In this section, we �rst show that any (2n + 1)-pass IDS that ful�lls special
n-soundness (as required by the security reduction in [EDV+12]) can be converted
into a 3-pass IDS by letting P choose all but the last challenge uniformly at random
himself. On the other hand, we argue that existing 5-pass schemes in the literature
do not ful�ll specialn-soundness and prove it for the 5-passMQ-IDS from [SSH11].
Hence, they can neither be turned into 3-pass schemes, nor does the security
reduction from [EDV+12] apply. In the remainder of this section, we de�ne a less
generic class of 5-pass IDS which covers many 5-pass IDS, including [CVE10],
[Ste93] and [PP03]. In particular, it covers the 5-passMQ scheme from [SSH11].
We describe an extractor and show how to apply the Fiat-Shamir transform, but
defer the security proof to the underlying paper [CHR+16].

4.4.1 The [EDV+12] proof

Before we can make any statement about IDS that fall into the case of [EDV+12],
we have to de�ne the target of our analysis. A (2n + 1)-pass IDS is an IDS where
the prover and the veri�er exchange n challenges and replies. More formally:

De�nition 4.4.1 (Canonical (2n + 1)-pass identi�cation schemes) De�ne the
identi�cation scheme IDS = (KeyGen,P,V) to be a (2n + 1)-pass identi�cation
scheme with n challenge spaces ChSj , 0 < j ≤ n. We call IDS a canonical (2n+1)-pass
identi�cation scheme if the prover can be split into n+1 subroutinesP = (P0, . . . ,Pn)
and the veri�er into n + 1 subroutines V = (ChS1, . . . ,ChSn,Verify) such that

• P0(sk) computes the initial commitment com sent as the �rst message.

4.4. Fiat-Shamir for 5-pass identification schemes 125

P V
com← P0(sk)

comÐÐÐÐÐÐÐÐ→
ch1

$← ChS1
ch1←ÐÐÐÐÐÐÐÐ

resp1 ← P1(sk, com, ch1)
resp1ÐÐÐÐÐÐÐÐ→

ch2
$← ChS2

ch2←ÐÐÐÐÐÐÐÐ
resp2 ← P2(sk, com, ch1, resp1, ch2)

resp2ÐÐÐÐÐÐÐÐ→
b ← Verify(pk, com, ch1,

resp1, ch2, resp2)

Figure 4.5: Canonical 5-pass IDS

• ChSj , j ≤ n computes the j-th challenge message chj
$← ChSj , sampling a

random element from the j-th challenge space.

• Pi(sk, trans2i), 0 < i ≤ n computes the i-th response of the prover given access to
the secret key and trans2i , the transcript so far, containing the �rst 2i messages.

• Verify(pk, trans), upon access to the public key and the whole transcript outputs
V ’s �nal decision.

The de�nition implies that a canonical (2n + 1)-pass IDS is public coin. In this
context, this is a way of expressing that the challenges are sampled from the
respective challenge spaces using the uniform distribution.

El Yous� Alaoui, Dagdelen, Véron, Galindo, and Cayrel propose a generalized
Fiat-Shamir transform that turns a canonical (2n + 1)-pass IDS into a digital
signature scheme. The algorithms of the obtained signature scheme make use of
the IDS algorithms as follows.

The key generation is identical to the IDS key generation. The signature
algorithm simulates an execution of the IDS, replacing challenge chj by the output
of a hash function (mapping into ChSj) that takes as input the concatenation of
the message to be signed and all 2(j − 1) + 1 messages that have been exchanged
so far. The signature is simply a transcript of the messages produced by P . The
veri�cation algorithm uses the signature and the message to be signed to generate

126 Chapter 4. MQ-based signatures

a full transcript, recomputing the challenges using the hash function. Then the
veri�er runs the Verify routine on the public key and the computed transcript.

El Yous� Alaoui, Dagdelen, Véron, Galindo, and Cayrel give a security reduction
for the resulting signature scheme if the used IDS is honest-veri�er zero-knowledge
and ful�lls special n-soundness de�ned below. The latter is a generalization of the
typical special soundness property, which we recall in De�nition 4.4.2.

De�nition 4.4.2 (Special soundness) A canonical 3-pass IDS ful�lls special sound-
ness if there exists a polynomial-time algorithm E , the extractor, that, given two accept-
ing transcripts trans = (com, ch, resp) and trans′ = (com, ch′, resp′) with ch ≠ ch′,
as well as the public key pk, �nds a matching secret key sk with non-negligible
probability.

De�nition 4.4.3 (Special n-soundness) A canonical (2n + 1)-pass IDS ful�lls
special n-soundness if there exists a polynomial-time algorithm E , the extractor,
that, given two accepting transcripts trans = (com, ch1, resp1, . . . , chn, respn) and
trans′ = (com, ch1, resp1, . . . , ch′n, resp′n) with chn ≠ ch′n , as well as the public key
pk, �nds a matching secret key sk with non-negligible probability.

Special soundness for canonical 3-pass IDS can thus be trivially formulated as
special 1-soundness. Note that El Yous� Alaoui, Dagdelen, Véron, Galindo, and
Cayrel de�ne special n-soundness for the resulting signature scheme, which in turn
requires the underlying identi�cation scheme to provide special n-soundness. We
decided to follow the more common approach, de�ning the soundness properties
for the identi�cation scheme.

We now show that every canonical (2n + 1)-pass IDS that ful�lls special n-
soundness can be turned into a canonical 3-pass IDS ful�lling special soundness.

Theorem 4.4.4 Let IDS = (KeyGen,P,V) be a canonical (2n + 1)-pass IDS that
ful�lls special n-soundness. Then we can construct a 3-pass identi�cation scheme
IDS′ = (KeyGen,P ′,V ′) that is canonical and ful�lls special soundness.

IDS′ is obtained from IDS by moving ChSj , 0 < j < n, (i.e. all but the last chal-
lenge generation algorithm) from V to P , as follows. P ′ computes the commitment
com′ = (com, ch1, resp1, . . . , respn−1, chn−1) usingP0, . . . ,Pn−1 and randomly sam-
pling from ChS1, . . . ,ChSn−1. After P ′ sent com′, V ′ replies with ch′1 ← ChSn . P ′
then computes resp′1 ← Pn(sk, trans2n) and V ′ veri�es the transcript using Verify.

4.4. Fiat-Shamir for 5-pass identification schemes 127

Proof. By construction, IDS′ �ts the de�nition of a canonical 3-pass IDS. We now
show that it is honest-veri�er zero-knowledge and that it ful�lls special soundness.

The latter is straightforward, as two transcripts for IDS′ that ful�ll the con-
ditions for soundness can be turned into two transcripts for IDS ful�lling the
conditions in the n-soundness de�nition by splitting com′ = (com, ch1, resp1, . . . ,

chn−1, respn−1) into its parts. Consequently, we can use any extractor for IDS as
an extractor for IDS′ running in the same time with the same success probability.

Showing honest-veri�er zero-knowledge works similarly. A simulator S ′ for
IDS′ can be obtained from any simulator S for IDS: S ′ runs S to obtain a transcript
and regroups the messages to produce a valid transcript for IDS′. Again, S ′ runs in
essentially the same time as S and achieves the exact same statistical distance. ◻

The above result raises the question whether this property was overlooked
and we can turn all the 5-pass schemes in the literature into 3-pass schemes. This
would have the bene�t that we could use the classical Fiat-Shamir transform to
turn the resulting schemes into signature schemes.

Sadly, this is not the case. The reason is that the extractors for those IDS
need more than two transcripts. For example, the extractor for the 5-pass IDS
from [SSH11] needs four unique transcripts that all agree on com. The transcripts
have to form two pairs such that within a pair the transcripts agree on ch1 but not
on ch2, and disagree on ch1 across the pairs. The proof given by El Yous� Alaoui,
Dagdelen, Véron, Galindo, and Cayrel is �awed. The authors miss that the two
secret shares r0 and r1 obtained from two di�erent transcripts do not have to be
shares of a valid secret key. We now give a formal proof.

Theorem 4.4.5 The 5-pass identi�cation scheme from [SSH11] does not ful�ll special
n-soundness if the computationalMQ-problem is hard.

Proof. We prove this by showing that there exist pairs of transcripts, ful�lling
the special n-soundness criteria that can be generated by an adversary without
knowledge of the secret key simulating just two executions of the protocol. As a
key pair for theMQ-IDS by Sakumoto, Shirai, and Hiwatari is a random instance
of theMQ problem, special n-soundness of the 5-passMQ-IDS would imply that
theMQ problem can be solved in probabilistic polynomial time.

Towards a contradiction, assume there exists a polynomial-time extractor E
against the 5-passMQ-IDS that ful�lls De�nition 4.4.3. Using this, we show how
to build a polynomial-time solver A for theMQ problem.

128 Chapter 4. MQ-based signatures

Given an instance of theMQ problem v, A sets pk = v, which is a valid public
key for theMQ-IDS. Next, A computes two transcripts as follows. A samples
a random α ∈ Fq and random s, r0, t0 ∈ Fnq , e0 ∈ Fmq , and computes r1 ← s − r0,
and t1 ← αr0 − t0. Then, A simulates two successful protocol executions, one for
ch2 = 0, one for ch2 = 1. To do so, A impersonates P and replaces the ch1 with α ,
and ch2 with 0 for the �rst run and 1 for the second run. In addition, A uses the
knowledge of α to compute the commitments as

c0 ← Com(r0, t0, e0), and

c1 ← Com(r1,α(v − F(r1)) −G(t1, r1) − (αF(r0) − e0)).

A then computes e1 ← αF(r0) − e0 and sets the second commitment in both
runs to (t1, e1). For ch2 = 0, A sets resp = r0, and for ch2 = 1, A sets resp = r1.

Now, the �rst transcript (where ch2 = 0) is valid, since by construction of t1
and e1, it follows that t0 = αr0 − t1 and e0 = αF(r0) − e1. The second transcript
(where ch2 = 1) is also trivially valid, as e1 = αF(r0) − e0 by construction.

Finally, A feeds the transcripts to E and outputs whatever E outputs. A has
the same success probability as E and runs in essentially the same time. As E is a
polynomial-time algorithm per assumption, this contradicts the hardness of the
computationalMQ problem. ◻

From this, it directly follows that we can also use A to deal with a parallel
execution of many rounds of the scheme. A similar situation arises for all the
5-pass IDS schemes that we found in the literature.

4.4.2 A Fiat-Shamir transform for most (2n + 1)-pass IDS

In the previous subsection, we established that the literature does not provide
security arguments for signature schemes derived from (2n+ 1)-pass identi�cation
schemes. Here, we present de�nitions that enable such arguments for most (2n+1)-
pass IDS in the literature. As most of these IDS are 5-pass schemes that follow a
certain structure, we restrict ourselves to these cases. Generalizations to (2n + 1)-
pass schemes exist, but greatly complicate accessibility of our statements. We will
consider a particular type of 5-pass identi�cation protocols where the length of
the two challenges is restricted to q and 2.

4.4. Fiat-Shamir for 5-pass identification schemes 129

De�nition 4.4.6 (q2−identi�cation scheme) Given q ∈ N, a q2−identi�cation
scheme IDS is a canonical 5-pass identi�cation scheme where, for the challenge spaces
ChS1 and ChS2, it holds that ∣ChS1∣ = q and ∣ChS2∣ = 2. Moreover, the probability
that the commitment com takes a given value is negligible in the security parameter,
where the probability is taken over the random choice of the input and the used
randomness.

To keep the security reduction somewhat generic, we also need a property that
de�nes when an extractor exists for a q2-IDS. As we have seen, special n-soundness
is not applicable. Hence, we give a less generic de�nition.

De�nition 4.4.7 (q2-extractor) We say that a q2-identi�cation scheme IDS has a
q2-extractor if there exists a polynomial-time algorithm E , the extractor, that given
a public key pk and four transcripts trans(i) = (com, ch(i)

1 , resp(i)
1 , ch(i)

2 , resp(i)
2),

i ∈ {1, 2, 3, 4}, with
ch(1)

1 = ch(2)
1 ≠ ch(3)

1 = ch(4)
1 ,

ch(1)
2 = ch(3)

2 ≠ ch(2)
2 = ch(4)

2 ,
(4.3)

valid with respect to pk, outputs a matching secret key sk for pk with non-negligible
success probability.

In the next de�nition, let IDSr = (KeyGen,Pr ,Vr) be the parallel composition
of r rounds of the identi�cation scheme IDS = (KeyGen,P,V): as before, this
is used to amplify the constant soundness error. The construction below uses a
polynomial number of rounds r to obtain an IDS with negligible soundness error
as an explicit intermediate step.

Construction 4.4.8 (Fiat-Shamir transform for q2−IDS) Let k ∈ N be the secu-
rity parameter, and IDS = (KeyGen,P,V) a q2-identi�cation scheme that achieves
soundness with soundness error κ. Select r , the number of (parallel) rounds of IDS,
such that κr = negl(k), and that the challenge spaces of the composition IDSr ,
ChSr1,ChSr2 have exponential size in k . Moreover, select cryptographic hash func-
tions H1 ∶ {0, 1}∗ → ChSr1 and H2 ∶ {0, 1}∗ → ChSr2 . The q2-signature scheme
derived from IDS is the triplet of algorithms (KeyGen, Sign,Verify) in accordance to
De�nition 2.1.7, where:

• (sk, pk)← KeyGen(),

130 Chapter 4. MQ-based signatures

• σ = (σ0,σ1,σ2) ← Sign(sk,m) where σ0 = com ← Pr
0 (sk), h1 = H1(m,σ0),

σ1 = resp1 ← Pr
1 (sk,σ0,h1), h2 = H2(m,σ0,h1,σ1), and σ2 = resp2 ←

Pr
2 (sk,σ0,h1,σ1,h2).

• Verify(pk,m,σ) parses σ = (σ0,σ1,σ2), computes the values h1 = H1(m,σ0),
h2 = H2(m,σ0,h1,σ1) as above and outputs Vr (pk,σ0,h1,σ1,h2,σ2).

Correctness of the scheme follows immediately from the correctness of IDS.
From these properties, it is now possible to construct a security reduction that

proves EU-CMA security of the signature scheme in the random oracle model. The
proof, based on a variant of the forking lemma [PS96], is considered out of scope for
this thesis, and we refer the interested reader to the original publication [CHR+16].

4.5 MQDSS

Having de�ned the Fiat-Shamir transform for 5-pass identi�cation schemes that
use a q-ary and a binary challenge, we use this section to apply the transform to
the IDS of [SSH11] (see Section 4.3). Before discussing the 5-pass scheme, which
we dub MQDSS, we �rst brie�y examine the results of applying the traditional
Fiat-Shamir transform to the 3-pass IDS in [SSH11]. This serves as a baseline and
a starting point for comparison. We then present a generic description of MQDSS,
and instantiate it based on state-of-the-art attacks that solve theMQ problem.

The IDS requires an MQ system F as input, potentially system-wide. We
could simply select one function F and de�ne it as a system parameter for all
users. Instead, we choose to derive it from a unique seed that is included in each
public key. This increases the size of pk by k bits, and adds some cost for seed
expansion when signing and verifying. However, selecting a single system-wide
F might allow an attacker to focus their e�orts on a single F for all users, and
would require whoever selects this system parameter to convince all users of its
randomness (which is not trivial [BCC+14]). For consistency with literature, we
still occasionally refer to F as the ‘system parameter’.

Note that the signing procedure described below is slightly more involved
than is suggested by Construction 4.4.8. Where the transformed construction
operates directly on the message, we �rst apply what is e�ectively a randomized
hash function. As discussed in [HK06], this extra step provides resilience against
collisions in the hash function at only little extra cost. A similar construction

4.5. MQDSS 131

appears, e.g., in SPHINCS [BHH+15]. The digest (and thus the signature) is still
deterministically derived from the message and the secret key.

Establishing a baseline using the 3-pass scheme over F2

In the interest of brevity and in order not to interrupt the main storyline, we will
not go into the details of the derived signature scheme here – instead, we defer this
to Appendix 4.A at the end of this chapter and merely summarize the results here.

For the 3-pass scheme, we select n =m = 256 over F2. This results in signatures
of 54.81 KiB, and 64 bytes for each of the secret and public keys. We ran benchmarks
on a single 3.5 GHz core of an Intel Core i7-4770K CPU, measuring 118 088 992
cycles for signature generation, 8 066 324 cycles for key generation, and 82 650 156
cycles for signature veri�cation (or 33.7 ms, 2.30 ms, and 23.6 ms, respectively).

4.5.1 The 5-pass scheme over F31

The plain 3-pass scheme over F2 is quite ine�cient, both in terms of signature size
and signing speed. This is a direct consequence of the large number of variables
and equations required to achieve 128 bits of post-quantum security usingMQ
over F2, as well as the high number of rounds required (see Appendix 4.A for an
analysis). Using a 5-pass scheme over F31 allows for a smaller n andm, as well as a
smaller number of rounds. One might wonder why we do not consider di�erent
�elds for the 3-pass scenario, instead. This turns out to be suboptimal: contrary to
the 5-pass scheme, this does not result in a soundness error reduction, but does
increase the transcript size per round.

We now construct the functions KeyGen, Sign and Verify in accordance with
De�nition 2.1.7. Speci�c instantiations for the parameters that achieve 128-bit
post-quantum security are given in the next subsection; we start by presenting the
parameters of the scheme in general.

Parameters

MQDSS is explicitly parameterized by the security parameter k ∈ N, andm,n ∈ N
such that the security level of the underlyingMQ instanceMQ(n,m,F31) is at
least k bits. The parametersm and n de�ne the size of the equation system F, which
we denote as Flen = m ⋅ (n⋅(n+1)

2 + n). This accounts for both the quadratic and
linear terms. We will use r to refer to the number of iterations of the underlying

132 Chapter 4. MQ-based signatures

IDS, which follows directly from the required security level and the soundness
error.4 Note that this should not be confused with r0 and r1, which are vectors of
elements of F31. We will require the following functions:

• cryptographic hash functionsH ∶ {0, 1}∗ → {0, 1}k , H1 ∶ {0, 1}k × {0, 1}k →
F31

r , and H2 ∶ {0, 1}k × {0, 1}k × Fr31 × Frn+rm31 → {0, 1}r ,

• two string commitment functions Com0 ∶ F31
n × F31

n × F31
m → {0, 1}k and

Com1 ∶ F31
n × F31

m → {0, 1}k ,

• two pseudorandom generators Gs ∶ {0, 1}k → F31
n and Grte ∶ {0, 1}k ×

{0, 1}k → F31
r ⋅(2n+m), and

• an extendable output function5 XOFF ∶ {0, 1}k → F31
Flen .

We now describe the key generation, signing and veri�cation procedures. See
Algorithms 19, 20 and 21 for summarized descriptions in pseudocode.

Key generation

We �rst sample a secret seed of k bits Ssk
$← {0, 1}k , as well as6 a public seed

SF $← {0, 1}k . We then select anMQ system F fromMQ(n,m,F31) by expanding
SF using the extendable output function XOFF .

In order to compute the public value v, we require a secret as input to theMQ
function de�ned by F. We use Ssk as input to the pseudorandom generator Gs , and
derive s =Gs(Ssk). We then evaluate theMQ function to compute v = F(s). The
secret key sk = (Ssk,SF) and the public key pk = (SF ,v) require 2 ⋅ k and k + 5 ⋅m
bits respectively, using 5 bits per F31 element.

Signing

The signature algorithm takes as input a message m and a secret key sk = (Ssk,SF).
Similarly as in the key generation, we derive F = XOFF (SF). Then, we derive a
message-dependent random value R = H(Ssk ∥ m), where “∥” is string concate-
nation. Using this random value R, we compute the randomized message digest
md =H(R ∥ m). The value R must be included in the signature, so that a veri�er
can derive the same randomized digest.

4 Recall that the soundness error of the 5-pass scheme is 1
2 + 1

2q ; for q = 31, this is 16
31 .

5 In MQDSS as presented in [CHR+16], this function is also modeled as an a pseudorandom generator.
6 In practice, one would even simply derive SF from Ssk.

4.5. MQDSS 133

Algorithm 19 MQDSS.KeyGen () k,Gs ,XOFF
1: Ssk

$← {0, 1}k

2: SF $← {0, 1}k

3: F← XOFF (SF)
4: s←Gs(Ssk)
5: v← F(s)
6: return pk = (SF ,v), sk = (Ssk,SF)

Given Ssk and md, we now compute Grte(Ssk,md) to produce (r(1)
0 , . . . , r

(r)
0 ,

t(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0). Using these values, we compute c(i)0 and c(i)1 for each

round i , as de�ned in the IDS. Recall that G(x,y) = F(x + y) − F(x) − F(y), and
that Com0 and Com1 are string commitment functions:

c
(i)
0 = Com0(r(i)0 , t

(i)
0 , e

(i)
0) and c

(i)
1 = Com1(r(i)1 ,G(t(i)0 , r

(i)
1) + e(i)0).

As mentioned in [SSH11] (and originally suggested in [Ste96]), it is not neces-
sary to include all 2r commitments in the transcript.7 Instead, we include a digest
over the concatenation of all commitments σ0 = H(c(1)

0 ∥c1)
1 ∥ . . . ∥c(r)0 ∥c(r)1). We

derive the challenges α(i) ∈ F31 (for 0 ≤ i < r) by applying H1 to h1 = (md,σ0).
Using these α(i), the vectors t(i)1 = α(i) ⋅ r(i)0 − t(i)0 and e(i)1 = α(i) ⋅ F(r(i)0) − e(i)0
can be computed.

Let σ1 = (t(1)
1 , . . . , t

(r)
1 , e

(1)
1 , . . . , e

(r)
1). We compute h2 by applying H2 to the

tuple (md,σ0,h1,σ1) and use it as r binary challenges ch(i)
2 ∈ {0, 1}.

Now we de�ne σ2 = (r(1)
ch(1)2
, . . . , r(r)

ch(r)2
,c

(1)
(1−ch(1)2), . . . ,c

(r)
(1−ch(r)2)). Note that here

we also need to include the challenges c1−ch(i)2
that the veri�er cannot recompute.

We then output σ = (R,σ0,σ1,σ2) as the signature. At 5 bits per F31 element, the
size of the signature is (2 + r) ⋅ k + 5 ⋅ r ⋅ (2 ⋅ n +m) bits.

Verification

The veri�cation algorithm takes as input the message, the signatureσ = (R,σ0,σ1,σ2)
and the public key pk = (SF ,v). As above, we use R and m to compute md, and
derive F from SF using XOFF . As the signature contains σ0, we can compose h1

and, consequentially, compute the challenge values α(i) for all r rounds by using
H1. Similarly, the values ch(i)

2 are computed by applying H2 to (md,σ0,h1,σ1). For
7 See Section 4.8.1 for a more elaborate description of this.

134 Chapter 4. MQ-based signatures

Algorithm 20 MQDSS.Sign (m, sk) r ,Com0,Com1,Gs ,Grte,H,H1,H2,XOFF
1: Ssk,SF = sk

2: F← XOFF (SF)
3: R ←H(Ssk ∥ m)
4: s←Gs(Ssk)
5: md←H(R ∥ m)
6: r(1)

0 , . . . , r
(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ←Grte(Ssk,md)

7: for i ∈ {1, . . . , r} do
8: c

(i)
0 ← Com0(r(i)0 , t

(i)
0 , e

(i)
0)

9: c
(i)
1 ← Com1(r(i)1 ,G(t(i)0 , r

(i)
1) + e(i)0)

10: end for
11: σ0 ←H(c(1)

0 ∥c(0)
1 ∥ . . . ∥c(r)0 ∥c(r)1)

12: h1 = (α(1), . . . ,α(r))← H1(md,σ0)
13: for i ∈ {1, . . . , r} do
14: t(i)1 ← α(i) ⋅ r(i)0 − t(i)0
15: e(i)1 ← α(i) ⋅ F(r(i)0) − e(i)0
16: end for
17: σ1 = (t(1)

1 , . . . , t
(r)
1 , e

(1)
1 , . . . , e

(r)
1)

18: ch(1)
2 , . . . , ch(r)

2 ← H2(md,σ0,h1,σ1)
19: σ2 = (r(1)

ch(1)2
, . . . , r(r)

ch(r)2
,c

(1)
(1−ch(1)2), . . . ,c

(r)
(1−ch(r)2))

20: return σ = (R,σ0,σ1,σ2)

4.5. MQDSS 135

each round i , the veri�er extracts vectors t(i)1 and e(i)1 from σ1 and r(i) from σ2.
Half the commitments can now be computed; which ones depends on ch(i)

2 .

if ch(i)
2 = 0 c

(i)
0 = Com0(r(i),α(i) ⋅ r(i) − t(i)1 ,α

(i) ⋅ F(r(i)) − e(i)1)

if ch(i)
2 = 1 c

(i)
1 = Com1(r(i),α(i) ⋅ (v − F(r(i))) −G(t(i)1 , r

(i)) − e(i)1)

Extracting the missing commitments c(i)(1−ch(i)2) from σ2, the veri�er now com-

putes σ ′0 =H(c(1)
0 ∥c(0)

1 ∥ . . . ∥c(r)0 ∥c(r)1). For veri�cation to succeed, test if σ ′0 = σ0.

Algorithm 21 MQDSS.Verify (m,σ , pk) r ,H,XOFF ,Com0,Com1,H1,H2

1: (SF ,v) = pk

2: (R,σ0,σ1,σ2) = σ
3: F← XOFF (SF)
4: md←H(R ∥ m)
5: h1 = α(1), . . . ,α(r) ← H1(md,σ0)
6: ch(1)

2 , . . . , ch(r)
2 ← H2(md,σ0,h1,σ1)

7: (t(1)
1 , . . . , t

(r)
1 , e

(1)
1 , . . . , e

(r)
1) = σ1

8: (r(1), . . . , r(r),c(1)
(1−ch(1)2), . . . ,c

(r)
(1−ch(r)2)) = σ2

9: for i ∈ {1, . . . , r} do
10: if ch(i)

2 = 0 then
11: c

(i)
0 ← Com0(r(i),α(i) ⋅ r(i) − t(i)1 ,α

(i) ⋅ F(r(i)) − e(i)1)
12: else if ch(i)

2 = 1 then
13: c

(i)
1 ← Com1(r(i),α(i) ⋅ (v − F(r(i))) −G(t(i)1 , r

(i)) − e(i)1)
14: end if
15: end for
16: σ ′0 ←H(c(1)

0 ∥c(0)
1 ∥ . . . ∥c(r)0 ∥c(r)1)

17: return σ ′0 ?= σ0

Security reduction

In [CHR+16], we present a game-based security reduction for MQDSS in the random
oracle model (ROM). In particular, we show that MQDSS is EU-CMA-secure in the
ROM if:

• theMQ problem is intractable,

136 Chapter 4. MQ-based signatures

• the hash functionsH, H1, and H2 are modeled as random oracles,

• the commitment functions Com0 and Com1 are computationally binding,
computationally hiding, and the probability that their output takes a given
value is negligible in the security parameter,

• the extendable output function XOFF is modeled as random oracle, and

• the pseudorandom generators Gs and Grte have outputs computationally
indistinguishable from random.

This proof naturally relies on Construction 4.4.8, as introduced in the previ-
ous section. As this approach is non-tight, the proof only covers an asymptotic
statement. While this does not su�ce to make any statement about the security
of a speci�c parameter choice, it provides evidence that the general approach
leads to a secure scheme. Also, the reduction is in the random oracle model and
not in the quantum random oracle model (QROM), limiting applicability in the
post-quantum setting. We consider strengthening this statement important future
work; research in this direction is ongoing [DFG13; ARU14; Unr17; KLS18; LZ19;
DFM+19]. In Section 4.8, we introduce SOFIA, a signature scheme based on the
[SSH11] identi�cation scheme that does allow for a proof in the QROM.

4.6 MQDSS-31-64

In this section, we provide a concrete instance of MQDSS. We discuss a suitable set
of parameters to achieve the desired security level, discuss an optimized software
implementation, and present benchmark results.

4.6.1 Parameter selection

For the 5-pass scheme, the soundness error κ is a�ected by the size of q. This
motivates a �eld choice larger than F2 in order to reduce the number of rounds
required. From an implementation point of view, it is bene�cial to select a small
prime, allowing very cheap multiplications as well as comparatively cheap �eld
reductions. We choose F31 with the intention of storing it in a 16-bit value –
the bene�ts of which become clear in the next subsection, where we discuss the
required modular reductions.

4.6. MQDSS-31-64 137

We now consider the choice ofMQ(n,m,F31), i.e. the parameters n and m.
Several generic classical algorithms exist for solving systems of quadratic equations
over �nite �elds, such as the F4 algorithm [Fau99] and the F5 algorithm [Fau02;
BFS15] using Gröbner basis techniques, the Hybrid approach [BFP09; BFP12], and
the XL algorithm [CKP+00; Die04] and variants [YC05a].

At the time of writing, for �elds Fq where q ⩾ 4, the best known technique for
solving overdetermined systems of equations over Fq is combining equation solvers
with exhaustive search. The Hybrid Approach and the FXL variant of XL [YC05a]
use this paradigm. We analyze the complexity using the Hybrid approach; the
complexity for the XL family of algorithms is similar [YCY13].

The F5 algorithm as well as the Hybrid approach perform better when the
number of equations is bigger than the number of variables, so from this point of
view there is no incentive in choosing m > n. On the other hand, if m < n, then we
can simply �x n −m variables and reduce the problem to a smaller one, with m

variables. Therefore, in terms of classical security the best choice ism = n.
Following the analysis from [BFP09; BFP12] and considering our goal of ob-

taining classical security of at least 128 bits, we need to choose n ≥ 51, so that the
Hybrid approach would need at least 2128 operations.8 For implementation reasons,
we scale this up even further, and choose n = 64. In particular, a multiple of 16
suggests e�cient register usage for vectorized implementations. In this case, the
complexity of the Hybrid approach is approximately 2177.

Regarding post-quantum security, there was no dedicated quantum algorithm
for solving systems of quadratic equations at the time of writing. This has slightly
changed since [BY18]. We brie�y come back to this in Section 4.9.1. For MQDSS, we
worked under the assumption that one could use Grover’s search algorithm [Gro96]
to directly attack theMQ problem, or use Grover’s algorithm for the search part
in a quantum implementation of the Hybrid method. The latter requires an e�cient
quantum implementation of the F5 algorithm, which, given its expensive memory
usage, is far from trivial. We provide a brief analysis of this approach in [CHR+16],
estimating that the quantum version of the Hybrid method has a time complexity
of approximately 2139 operations.

To achieve EU-CMA for 128 bits of post-quantum security, at the time of writing,
we required that κr ≤ 2−256, as an adversary could perform a preimage search to

8 The Hybrid approach is parameterized by a so-called ‘linear algebra constant’ω , signifying assumptions
on the e�ectiveness of the attack. This estimate uses a highly conservative ω = 2. If we set the more
realistic value of ω = 2.3, the minimum is n = 45.

138 Chapter 4. MQ-based signatures

e�ectively control the challenges. As κ = q+1
2q with q = 31, this leads to r = 269.9

To complete the scheme, we instantiate the functions H, Com0 and Com1 with
SHA3-256, and use SHAKE-128 for H1, H2, XOFF , Grte, and Gs [BDP+11]. Domain
separation is achieved implicitly through di�erence in input length and repeated
application of SHAKE-128. In order to convert between the output of SHAKE-
128 and functions that map to vectors over F31, we simply reject and resample
values that are not in F31 (e�ectively applying an instance of the second TSS08
construction from [WHC+13]).

We refer to this instance of the scheme as MQDSS-31-64.

4.6.2 Implementation details

The central and most costly computation in this signature scheme is the evaluation
of F (and, by corollary, G). The signing procedure requires one evaluation of each
for every round, and the veri�er needs to compute either F (if ch2 = 0) or both F
and G (if ch2 = 1), for each round. Other than these functions, the computational
e�ort is made up of seed expansion, several hash-function applications and a
small number of additions and subtractions in F31. For SHA-3-256 and SHAKE-128,
we rely on existing code from the Keccak Code Package [BDP+18]. Clearly, the
focus for an optimized implementation should be on theMQ function. Previous
work [CCC+09] shows that modern CPUs o�er interesting and valuable methods
to e�ciently implement this primitive, in particular by exploiting the high level of
internal parallelism.

Compared to the binary 3-pass scheme (see Appendix 4.A), the implementa-
tion of the 5-pass scheme over F31 presents more challenges. As regular integer
multiplication and addition will typically take us outside of F31, results of compu-
tations need to be reduced to smaller representations. We generally represent �eld
elements as unsigned 16-bit values to avoid having to this too frequently, During
speci�c parts of the computation, we vary this representation as needed.

The evaluation of F can roughly be divided into two parts: the generation of all
monomials, and computation of the resulting polynomials for known monomials.

9 Actually, k = 128 implies that r = 135 su�ces to achieve the desired security level. This was �xed in a
revision of the MQDSS submission to NIST’s Post-Quantum Cryptography Standardization project.
For the results presented in this section (and for the 3-pass scheme as presented in Appendix 4.A), we
adhere to parameters as presented in [CHR+16] for consistency. See Section 4.6.4 and the o�cial com-
ment at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
round-1/official-comments/MQDSS-official-comment.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/MQDSS-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/MQDSS-official-comment.pdf

4.6. MQDSS-31-64 139

& 0 1 2 3 4 5 6 7 8 9 A B C D E F

00 11 22 33 04 15 26 37 08 19 2A 3B 0C 1D 2E 3F
10 21 32 03 14 25 36 07 18 29 3A 0B 1C 2D 3E 0F

- - - - 44 55 66 77 48 59 6A 7B 4C 5D 6E 7F
50 61 72 43 54 65 76 47 58 69 7A 4B 5C 6D 7E 4F

- - - - - - - - 88 99 AA BB 8C 9D AE BF
90 A1 B2 83 94 A5 B6 87 98 A9 BA 8B 9C AD BE 8F

- - - - - - - - - - - - CC DD EE FF
D0 E1 F2 C3 D4 E5 F6 C7 D8 E9 FA CB DC ED FE CF
02 13 - - 42 53 - - 82 93 - - C2 D3 - -
06 17 - - 46 57 - - 86 97 - - C6 D7 - -
0A 1B - - 4A 5B - - 8A 9B - - CA DB - -
0E 1F - - 4E 5F - - 8E 9F - - CE DF - -

Figure 4.6: Arrangement of and of four registers with four F31 elements each.

Generating the quadratic monomials based on the given linear monomials requires
n ⋅ n+1

2 multiplications. For the second part, we requirem ⋅(n+n ⋅ n+1
2) multiplications

to multiply the coe�cients of the system parameter with the quadratic monomials,
as well as a number of additions to accumulate all results.

For the initial part of the computation, we represent the monomials as 16-bit
values. As just discussed, this is done to help prevent intermediate reductions. In
the 3-pass case, we rotated a YMM vector register to e�ciently compute all quadratic
monomials (see Appendix 4.A, in particular Figure 4.A.2 and 4.A.3).10 While that
was already expensive, rotating four YMM registers as if it were one 1024-bit value
is considerably more costly. Additionally, storing both the original and rotated
state would require many registers. Instead, one can arrange the products in such
a way that the blocks of 16 elements do not need to be mixed, but can each be
rotated individually and multiplied with the unrotated originals. This is especially
bene�cial when computing G, in which we process 8 blocks of 256 bits. Two caveats
appear in the �rst and last rows: duplicates need to be avoided when unrotated
originals are combined in the �rst row, while the last (half-)row needs to be used
to produce missing products by pairwise multiplying the high half of each register
with every low half. See Figure 4.6 for an intuition of this arrangement with four
registers containing four �eld elements. The software that is part of this work
includes a script that generates this arrangement.

To e�ciently compute all polynomials for a given set of monomials, we keep
all required data in registers to avoid the cost of register spilling throughout the

10 The interested reader is advised to brie�y digress and review the implementation details of the 3-pass
scheme before continuing into the remainder of this paragraph.

140 Chapter 4. MQ-based signatures

computation. Given that n =m = 64, for this part of the computation we represent
the 64 input values in F31 as 8-bit values and the resulting 64 elements in F31 as
16-bit values, costing us two and four YMM registers, respectively. The coe�cients
of F can be represented as a column major matrix with every column containing
all coe�cients that correspond to a speci�c monomial, i.e. one for each output
value. That implies that every row of the matrix represents one polynomial of F. In
this representation, each result term is computed by accumulating the products of
a row of coe�cients with each monomial, which is exactly the same as computing
the product of the matrix F and the vector containing all monomials. This allows us
to e�ciently accumulate output terms, minimizing the required output registers.

In order to perform the required multiplications and additions as quickly as
possible, we heavily rely on the AVX2 instruction vpmaddubsw. In one instruction,
this computes two 8-bit SIMD multiplications and a 16-bit SIMD addition. However,
this instruction operates on 8-bit input values that are stored adjacently. This
requires a slight variation on the representation of F described above: instead, we
arrange the coe�cients of F in a column major matrix with 16-bit elements, each
corresponding to two concatenated monomials.

When arranging reductions, we must strike a careful balance between prevent-
ing over�ow and not reducing more often than necessary. As we make extensive
use of vpmaddubsw, which takes both a signed and an unsigned operand to compute
the quadratic monomials, we ensure that the input variables for theMQ function
are unsigned values (in particular: {0, . . . , 30}). For the coe�cients in the system
parameter F, we can then freely assume the values are in {−15, . . . , 15}, as these
are the direct result of a pseudorandom generator. It turns out to be e�cient to
immediately reduce the quadratic monomials back to {0, . . . , 30} when they are
computed. When we now multiply such a product with an element from the system
parameter and add it to the accumulators, the maximum value of each accumulator
word will be at most11 64 ⋅ 31 ⋅ 15 = 29760. As this does not exceed 32768, we only
have to perform reductions on each individual accumulator at the very end.

One should note that [CCC+09] approaches this problem from a slightly di�er-
ent angle. In particular, they accumulate each individual output element sequen-
tially, allowing them to keep the intermediate results in the 32-bit representation
that is the output of their combined multiplication and addition instructions. This
has the natural consequence of also avoiding early reductions.

11 This follows from the fact that we combine 64 such monomials in two YMM registers.

4.6. MQDSS-31-64 141

4.6.3 Performance

We now present benchmarks of our optimized MQDSS-31-64 implementation,
targeting large Intel processors with AVX2 support. Measurements were carried
out on a single core of the Intel Core i7-4770K system described in Section 2.4.1.

Signature and key sizes

The signature size of MQDSS-31-64 is considerably smaller than that of the 3-pass
scheme. Recall that one �eld element is represented by 5 bits. The obvious factor
in this is the decreased ratio between the vector size (which, in packed form, now
require n ⋅ 5 = 64 ⋅ 5 = 320 bits each) and the number of rounds, resulting in a
signature size of 2⋅k+r ⋅(k+5⋅(2⋅n+m)) = 2⋅256+269⋅(256+5⋅(2⋅64+64)) = 327 616
bits, or 40 952 bytes (39.99 KiB). The structure of the keys does not change compared
to 3-pass scheme, but since a vector of �eld elements now requires 320 bits, the
public key is 72 bytes. The secret key remains 64 bytes.

Runtime

As theMQ function is the most costly part of the computation, parameters are
chosen in such a way that its performance is maximized. The required number of
multiplications and additions (expressed as functions of n andm) does not change
dramatically compared to the 3-pass baseline,12 but the actual values of n andm

are only a quarter of what they were. As the relation between n and m and the
number of multiplications is quadratic for the monomials and cubic for the system
parameter masking, and we see only a linear increase in the number of registers
needed to operate on, the entire sequence of multiplications and additions becomes
much cheaper. This especially impacts operations that involve the accumulators. As
the representation allows us to keep reductions out of this innermost repeated loop,
we perform (only) 67⋅4

2 + 4 = 136 reductions13 throughout the main computation
and 66 when preparing quadratic monomials. As we were able to arrange the
registers in such a way that they do not need to rotate across multiple registers, we
greatly reduce the number of rotations required compared to the 3-pass scenario.
Following the same �attened-triangle structure, we count a total of 67 ⋅ 16 ⋅ 4 = 4288

12 A slight di�erence is introduced by cancellation of the monomials in the F2 setting.
13 This follows from the fact that we need a total of 64+64⋅65

2⋅32 = 67 YMM registers worth of space to store the
monomials and perform 4 reductions after accumulating 2 YMM monomials.

142 Chapter 4. MQ-based signatures

vpmaddubsw instructions for the core computations.
For one iteration of theMQ function F, we measure 6 616 cycles (G is slightly

less costly, at 6 396 cycles). We measure a total of 8 510 616 cycles for the complete
signature generation. Key generation costs 1 826 612 cycles, and veri�cation con-
sumes 5 752 612 cycles. On the given platform, that translates to roughly 2.43 ms,
0.52 ms and 1.64 ms, respectively. Veri�cation is expected to require on average 3

2
calls to anMQ function per round, while signature generation always requires
two. This explains the ratio; note that both signer and veri�er incur additional
costs besides theMQ functions, e.g. for seed expansion.

In order to compare these results to the state of the art, we consider the perfor-
mance �gures reported in [CCC+09]. In particular, we examine the Rainbow(31,
24, 20, 20) instance, as the ‘public map’ in this scheme is e�ectively the MQ
function over F31 with n = 64, as used above. The number of equations di�ers (i.e.
m = 40 as opposed tom = 64), but this can be approximated by normalizing linearly.
In [CCC+09], the authors report a time measurement of 17.7µs , which converts to
50 144 cycles on their 2.833 GHz Intel C2Q Q9550. After normalizing for m, this
amounts to 80 230 cycles. Results from the eBACS benchmarking project further
show that running the Rainbow veri�cation function from [CCC+09] on a Haswell
CPU requires approximately 46 520 cycles (and thus 74 432 after normalizing); veri-
�cation is dominated by the public map. Using their (by now arguably outdated)
SSE2-based code to evaluate a public map with m = 64 consumes 60 968 cycles
on our Intel Core i7-4770K. These results demonstrate the competitiveness of our
implementation, even when considering the extensive use of AVX2 instructions.

4.6.4 The NIST submission

In November of 2017, the MQDSS signature scheme was submitted to the NIST’s
Post-Quantum Cryptography Standardization project (see Section 2.2). In January
of 2019, NIST announced that MQDSS has progressed as one of the second-round
candidates. The description of MQDSS as presented in the previous section of this
chapter was largely based on the version de�ned in the ASIACRYPT 2016 paper
“From 5-pass MQ-based identi�cation to MQ-based signatures” [CHR+16]. Here, we
review the current state of MQDSS as submitted to NIST.

Untouched by concrete advances in cryptanalysis, the scheme has largely
remained the same. The security categories as de�ned by NIST do allow for a
slight change in parameter choice: where the instance presented so far targets

4.6. MQDSS-31-64 143

a 128-bit post-quantum security level, the lower NIST security categories allow
for less conservative choices. This leads to improved runtime performance, and,
perhaps more importantly, a signi�cant reduction in signature size.

Parameters

We de�ne two parameter sets as part of the submission. Targeting security category
1-2, we de�ne MQDSS-31-48, where we choose n =m = 48. We stick to arithmetic
over F31, but require only r = 135 rounds. As before, this follows from 2q

q+1
r < 2−k ,

and thus r = ⌈k/ log 2q
q+1 ⌉. Furthermore, all hash values are truncated to 256 bits,

and we sample 128 bits for a seed. At category 3-4, MQDSS-31-64 uses anMQ
system with n = m = 64 as described above, now with the reduced r = 202 (see
Footnote 9 on page 138). In this category we require hash-function outputs of
384 bits, and 192-bit seeds. Note that this di�ers from the instance presented
in [CHR+16], where we set both the hash and seed length to k . Here, we take
a more conservative approach with respect to collision resistance of the hash
function when estimating the post-quantum security level.

For simplicity, all functions previously instantiated using SHA3-256 and SHAKE-
128 are now instantiated using SHAKE-256. As the inputs to these functions are
invariably smaller than the 1088-bit rate of SHAKE-256, there is no performance
penalty for making a more conservative choice. The proposed parameter sets are
summarized in Table 4.1, below.

Randomized string commitment

Something we have silently assumed in the original MQDSS scheme [CHR+16]
was the fact that the commitment functions are statistically hiding. We wrongfully
assumed that the randomness of their inputs would be su�cient to make the
commitment functions computationally hiding. A recent result by Leichtle [Lei18]
shows that we require an additional randomization value of 2k bits as input to
Com0 and Com1. We expand these values from a seed Sρ that is derived from the
secret key, and include them as part of the signature.

Other minor changes

Aside from the above, the submission to NIST contains a number of other additions
and minor changes. This includes small tweaks such as explicitly deriving the seeds

144 Chapter 4. MQ-based signatures

Table 4.1: Key and signature sizes for the NIST parameter sets.

category k q n r pk sk signature

MQDSS-31-48 1-2 128 31 48 135 46 16 20 854
MQDSS-31-64 3-4 192 31 64 202 64 24 43 728

SF , Ssk, Sρ and Srte from the secret key, absorbing the public key when deriving
the message digest, but also a more accurate security analysis of theMQ problem
and a broader exploration of the parameter space. Please refer to the speci�cation
as submitted to NIST for the details of the latest revision of the scheme.

Fiat-Shamir in the QROM

As mentioned in Section 4.5.1, the Fiat-Shamir transform lacks a proof in the
QROM. In particular, the forking lemma that is traditionally used to prove its secu-
rity [PS96] does not carry over to the QROM setting. Prior to the NIST submission,
two methods of showing the security of the transform in the QROM have been
proposed [DFG13; KLS18], both imposing additional assumptions that are not
immediately obviously satis�ed. Just before the deadline for second-round modi�-
cations, Don, Fehr, Majenz and Scha�ner publicized a paper on ePrint [DFM+19]
that claims to prove the Fiat-Shamir transform secure in the quantum random
oracle model. Liu and Zhandry make similar claims [LZ19], and demonstrate
concrete results by proving a lattice-based signature scheme secure. If these proofs
generalize to the class of 5-pass identi�cation schemes as presented above, these
results may lead to a QROM proof that supports MQDSS.

Performance

In Table 4.1, we list the key and signature sizes for the proposed parameter sets.
The public key is k + n⌈logq⌉ bits, the secret key is k bits, and the signature adds
up to 4k + r ⋅ (4k + 3n⌈logq⌉) bits. Note that this is slightly di�erent from the
computation presented in Section 4.6.3 because of the increased hash function
length and the additional randomization string.

In Table 4.2 and Table 4.3, we present runtime benchmarks for key generation,
signature generation and veri�cation. The former contains performance numbers
for the reference implementation in plain C as required by NIST, while the latter

4.7. MQ-based signatures in the QROM 145

Table 4.2: Runtime (in cycles) of the reference implementation.

key generation signing veri�cation

MQDSS-31-48 1 192 984 26 630 590 19 840 136
MQDSS-31-64 2 767 384 85 268 712 62 306 098

Table 4.3: Runtime (in cycles) of the AVX2 implementation.

key generation signing veri�cation

MQDSS-31-48 1 074 644 3 816 106 2 551 270
MQDSS-31-64 2 491 050 9 047 148 6 132 948

describes an implementation that makes use of the AVX2 instruction set. As before,
benchmarks were obtained on an Intel Core i7-4770K (see also Section 2.4.1).

The AVX2 implementation relies heavily on the optimized evaluation of the
MQ function over F31 described in Section 4.6.2. Both n = 48 and n = 64 bene�t
from the fact that these parameters are multiples of 16, which results in a very
similar optimal implementation strategy and convenient code reuse.

4.7 MQ-based signatures in the QROM

In the previous sections, we have discussed MQDSS: an MQ-based signature
scheme with a security reduction from theMQ problem in the random oracle
model. Unlike previousMQ signature schemes, MQDSS comes with a reduction
from a random instance ofMQ. Unfortunately, this reduction remains highly
non-tight. In the remainder of this chapter, we focus on SOFIA: a digital signature
scheme that is provably EU-CMA secure in the QROM if theMQ problem is hard,
and allows for a tight reduction in the ROM (albeit not in the QROM). Rather than
approaching the herculean task of proving the Fiat-Shamir transform in the QROM,
we start from a transform designed with the QROM in mind [Unr15].

Like MQDSS, SOFIA builds on the 5-passMQ-based IDS from [SSH11], as
described in Section 4.3. While [SSH11] also introduces a 3-pass IDS, the reduced
soundness error of the 5-pass scheme leads to smaller signatures. Consequently,
in much the same spirit as the Fiat-Shamir transform for MQDSS, we do not
simply apply Unruh’s transform to the 3-pass IDS. Instead, we extend it such that

146 Chapter 4. MQ-based signatures

it applies to any 5-pass IDS with a binary second challenge (dubbed q2-IDS, as
per De�nition 4.4.6), and thus to theMQ-based 5-pass IDS from [SSH11]. Rather
than simply relying on the generic transform, we provide various optimizations
particularly suited for this speci�c IDS. These optimizations almost halve the size
of the signature compared to the non-optimized transform. We discuss these in
more detail in Section 4.8; some of these have already made an appearance in the
algorithmic description of MQDSS.

We instantiate SOFIA with carefully optimized parameters targeting 128-bit
post-quantum security level: SOFIA-4-128. A comparison with MQDSS-31-64

from [CHR+16] shows that, at the same security level, the improvements in security
assumptions come at a cost: with 123 KiB, SOFIA-4-128 signatures are about three
times as large as MQDSS-31-64 signatures and our optimized SOFIA-4-128 software
takes about three times as long for both signing and veri�cation than the software
presented in [CHR+16] and discussed earlier in this chapter. However, like MQDSS,
SOFIA features extremely short keys, making the sum of its public key and signature
competitive with state-of-the-art, unproven,MQ-based schemes. We discuss these
implementation aspects in more detail in Section 4.9.

SOFIA is not the �rst concrete signature scheme with a proof in the QROM.
Notably, TESLA-2 [ABB+15] is a lattice-based signature scheme with a reduction
in the QROM, and Picnic-10-38 [CDG+17] is the result of constructing a signa-
ture scheme from a symmetric primitive using Unruh’s transform.14 Relying on
even more conservative assumptions, the hash-based signature scheme SPHINCS-

256 [BHH+15] (see also Sections 3.5 and 3.7) has a proof in the standard model.15

Although SOFIA-4-128 remains faster than SPHINCS16 (which is, because of its
standard-model assumptions, arguably the ‘scheme to beat’), it does signi�cantly
exceed SPHINCS’ approximately 40 KiB signatures. Conversely, but on a similar
note, SOFIA-4-128 outperforms Picnic-10-38 both in terms of signing speed and
signature size. TESLA-2 remains the ‘odd one out’ with its small signatures but
much larger keys; it strongly depends on context whether this is an upside or a
problem. See Table 4.5 and Table 4.6 for a numeric overview of the comparison.

14 Note that, for this work, we compare against Picnic as originally published at ACM CCS 2017. The
submission to NIST’s Post-Quantum Cryptography Standardization project also contains variants that
make use of the Fiat-Shamir transform, and has improved parameters.

15 At the time of writing, the security analysis of [BHK+19] demonstrating the multi-target tightness gap
in SPHINCS-256 (and �xing it in SPHINCS+) had not yet been done.

16 For the sake of this comparison, the di�erences between SPHINCS-256 and the more recent SPHINCS+

instances is not directly relevant.

4.7. MQ-based signatures in the QROM 147

Before introducing SOFIA in more detail, we �rst brie�y examine the Unruh
transform (and its application to q2-identi�cation schemes) more generically.

4.7.1 Unruh’s transform

In [Unr15], Unruh proposes a transform that turns 3-pass zero-knowledge proofs
into non-interactive schemes, accompanied by a reduction in the QROM. This
transform �nds its basis in Fischlin’s transform [Fis05], published ten years prior.
Unruh then shows how to use his transform to obtain a signature scheme, which
we now brie�y review. Rather than relying on the forking lemma [PS96], which
requires ‘rewinding’ the signer, the transform works by making the signer generate
several candidate transcripts for a commitment. Here, a candidate transcript follows
the notion of a transcript as introduced in Section 4.1: the commitment, challenge
and response as exchanged between a prover and a veri�er in the underlying
interactive protocol. The challenges are randomly sampled from the challenge
space, but unique across transcripts per commitment. To parallelize the protocol
(as in Figure 4.2), this process is iterated for several initial commitments. Next,
the signer ‘blinds’ all responses in the transcripts by applying a length-preserving
one-way function. Like in the Fiat-Shamir transform, these commitment-response
pairs are then used as input into a hash function to non-interactively sample a
list of challenges. The resulting signature consists of all commitments with their
blinded responses, as well as unblinded responses for all transcripts corresponding
to the selected challenges.

The strategy underlying this transform assumes that, without knowledge of the
secret key, a forger cannot include valid unblinded responses for su�ciently many
commitments. In the context of a reductionist security proof, however, the length-
preserving one-way function is replaced by a random permutation. This makes
the blinding invertible, allowing for an adversary to recover multiple transcripts
corresponding to the same commitment, and running an extractor.

Before being able to apply Unruh’s transform to theMQ-based identi�cation
scheme proposed in [SSH11], we must �rst extend it to operate on 5-pass identi-
�cation schemes. Here, we again limit ourselves to the class of q2-identi�cation
schemes as introduced in De�nition 4.4.6. The intuition here is to repeat the blind-
ing process across both challenges; this requires candidate transcripts for the direct
product of the two challenge spaces. As the second challenge is binary, this implies
two candidate transcripts per initial challenge.

148 Chapter 4. MQ-based signatures

Extending Unruh’s transform to q2-IDS

We de�ne IDS = (KeyGen,P,V) to be a q2-identi�cation scheme, with P =
(P0,P1,P2) and V = (ChS1,ChS2,Verify). We further require system parame-
ters r , t ∈ N, with 2 ⩽ t ⩽ q, which represent a trade-o� between the security
level, computation time and signature size. The selection of these parameters are
discussed in somewhat more detail in Section 4.9.1.

Let H1 ∶ {0, 1}∣resp1∣ → {0, 1}∣resp1∣ and H2 ∶ {0, 1}∣resp2∣ → {0, 1}∣resp2∣ be length-
preserving one-way functions, and H ∶ {0, 1}∗ → {0, 1}⌈log 2t⌉r a hash function,
all of which to be modeled as random oracles. We then construct the digital
signature scheme (KeyGen, Sign,Verify), resulting from the transform, as speci�ed
in Algorithms 22 and 23; the key generation algorithm is identical to key generation
of the underlying identi�cation scheme.

In [CHR+18], we provide a reductionist proof to show a quantum variant of
EU-CMA security for the transformed scheme in the random oracle model. We
then show that this proof carries over to the quantum random oracle model with
only minor changes. This is considered out of scope for the purpose on this thesis.

4.8 SOFIA

Now that we have generically de�ned a signature scheme as the result of a trans-
formed q2-IDS scheme, we instantiate it with the 5-pass identi�cation scheme
proposed in [SSH11]. We de�ne the signature scheme by specifying the functions
KeyGen, Sign and Verify, and defer giving concrete parameters (m,n, and Fq , as
well as r and t) to the next section, where we consider their e�ect on implementa-
tion aspects. There, we also explicitly instantiate the pseudorandom generators
(Gsk and Grte) and extendable output functions (XOFF and XOFtrans). For now we
only �x 2 ⩽ t ⩽ q distinct17 elements of the �eld Fq . Without loss of generality, we
denote them as α1, . . . ,αt .

Key generation

The SOFIA key generation algorithm is almost identical to the key generation of
MQDSS, as we have seen in Algorithm 19. We rede�ne it in Algorithm 24. Note,
however, that the function de�nitions have slightly di�erent domains and ranges.

17 See the ‘Fixing the challenge space’ optimization later in this section.

4.8. SOFIA 149

Algorithm 22 Unruh.Sign (m, sk) r , t,ChS1,H,H1,H2,P
1: for j ∈ {1, . . . , r} do
2: state(j), com(j) $← P0(sk)
3: for i ∈ {1, . . . , t} do
4: ch(i , j)

1
$← ChS1 ∖ {ch(1, j)

1 , . . . , ch(i−1, j)
1 }

5: state(i , j), resp(i , j)
1 ← P1(state(j), ch(i , j)

1)
6: cr(i , j)1 ← H1(resp(i , j)

1)
7: resp(i , j ,0)

2 ← P2(state(i , j), ch2 = 0)
8: resp(i , j ,1)

2 ← P2(state(i , j), ch2 = 1)
9: cr(i , j ,0)2 ← H2(resp(i , j ,0)

2)
10: cr(i , j ,1)2 ← H2(resp(i , j ,1)

2)
11: end for
12: trans(j)full = (com(j),{ch(i , j)

1 , cr(i , j)1 , cr(i , j ,0)2 , cr(i , j ,1)2 }
t

i=1
)

13: end for
14: md←H (pk,m,{trans(j)full}

r

j=1
)

15: ((I1,B1), . . . , (Ir ,Br)) = md ▷ Parse md such that Ij ∈ ChS1, Bj ∈ {0, 1}
16: for j ∈ {1, . . . , r} do

17: trans(j)red = (com(j),{ch(i , j)
1 , cr(i , j)1 , cr(i , j ,0)2 , cr(i , j ,1)2 }

t

i≠Ij ,i=1
)

18: end for
19: return σ = (md,{trans(j)red, ch(Ij , j)

1 , resp(Ij , j)
1 , resp(Ij , j ,Bj)

2 , cr(Ij , j ,¬Bj)2 }
r

j=1
)

150 Chapter 4. MQ-based signatures

Algorithm 23 Unruh.Verify (m,σ , pk) r , t,ChS1,H1,H2,H,Verify

1: (md,{trans(j)red, ch(Ij , j)
1 , resp(Ij , j)

1 , resp(Ij , j ,Bj)
2 , cr(Ij , j ,¬Bj)2 }

r

j=1
) = σ

2: ((I1,B1), . . . , (Ir ,Br)) = md ▷ Parse md such that Ij ∈ ChS1, Bj ∈ {0, 1}
3: for j ∈ {1, . . . , r} do
4: cr(Ij , j)1 ← H1(resp(Ij , j)

1)
5: cr(Ij , j ,Bj)2 ← H2(resp(Ij , j ,Bj)

2)
6: (com(j),{ch(i , j)

1 , cr(i , j)1 , cr(i , j ,0)2 , cr(i , j ,1)2 }
t

i≠Ij ,i=1
) = trans(j)red

7: trans(j)full = (com(j),{ch(i , j)
1 , cr(i , j)1 , cr(i , j ,0)2 , cr(i , j ,1)2 }

t

i=1
)

8: end for
9: md′ ←H (pk,m,{trans(j)full}

r

j=1
)

10: if md ≠ md′ then
11: return False

12: end if
13: for j ∈ {1, . . . , r} do
14: if ∃i∈{1, ...,r},i≠Ij , ch(Ij , j)

1 = ch(i , j)
1 then ▷ If ch(Ij , j)

1 is not unique
15: return False

16: end if
17: if ¬Verify(pk, com(j), ch(Ij , j)

1 , resp(Ij , j)
1 ,Bj , resp(Ij , j ,Bj)

2) then
18: return False

19: end if
20: end for
21: return True

4.8. SOFIA 151

In particular, as we have not yet selected a speci�c �eld Fq , we leave the exact
output lengths of XOFF andGsk unspeci�ed for now. As remarked in footnote 6 on
page 132, we can reduce the secret key to a single seed by explicitly deriving SF .

Algorithm 24 SOFIA.KeyGen () k,Gsk,XOFF
1: Ssk

$← {0, 1}k

2: SF , s,Srte ←Gsk(Ssk)
3: F← XOFF (SF)
4: v← F(s)
5: return pk = (SF ,v), sk = Ssk

Signing

For the signing procedure, we assume as input a message m ∈ {0, 1}∗ and a secret
key sk. Note that the scheme de�nition includes several optimizations to reduce
the signature size. We discuss these later in this section.

The signer begins by e�ectively performing KeyGen() to obtain pk and F, and
subsequently iterates through r rounds of the transformed identi�cation scheme,
computing and blinding the responses to obtain the transcript. InstantiatingH as
required in Algorithm 22 using XOFtrans, they then derive a sequence of indices
((I1,B1), . . . , (Ir ,Br)). As before, these indices dictate the responses that should
be included in the signature. See the full description in Algorithm 25.

Verification

Upon receiving a message m, a signature σ , and a public key pk = (SF ,v), the ver-
i�er begins by obtaining the system parameter F and parsing the signature σ . The
veri�cation routine that follows is listed in Algorithm 26, resembling the generic
template of 23. As a consequence of the preselected, �xed set of possible challenges
{αi} ⊆ Fq , the correctness checks are greatly simpli�ed.18 Furthermore, because
of the commitment reconstruction by the veri�er, the satisfaction conditions of
Verify are checked implicitly when md and md′ are compared. This pattern is
very similar in spirit to the comparison of σ0 and σ ′0 in the veri�cation of MQDSS

signatures as described in Algorithm 21 on page 135.

18 See the next subsection for some more discussion on consequences of this.

152 Chapter 4. MQ-based signatures

Algorithm 25 SOFIA.Sign (m, sk) α, r , t,Com,Gsk,Grte,H,H1,H2,XOFF ,XOFtrans

1: Ssk = sk

2: SF , s,Srte ←Gsk(Ssk)
3: F← XOFF (SF)
4: v← F(s)
5: pk = (SF ,v)
6: r(1)

0 , . . . , r
(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ←Grte(Srte,m)

7: for j ∈ {1, . . . , r} do
8: r(j)1 ← s(j) − r(j)0
9: c

(j)
0 ← Com(r(j)0 , t

(j)
0 , e

(j)
0)

10: c
(j)
1 ← Com(r(j)1 ,G(t(j)0 , r

(j)
1) + e(j)0)

11: com(j) = (c(j)0 ,c
(j)
1)

12: for i ∈ {1, . . . , t} do
13: t(i , j)1 ← αir

(j)
0 − t(j)0

14: e(i , j)1 ← αiF(r(j)0) − e(j)0
15: resp(i , j)

1 = (t(i , j)1 , e(i , j)1)
16: cr(i , j)1 ← H1(resp(i , j)

1)
17: end for
18: resp(j ,0)

2 = r(j)0
19: resp(j ,1)

2 = r(j)1
20: cr(j ,0)2 ← H2(resp(j ,0)

2)
21: cr(j ,1)2 ← H2(resp(j ,1)

2)
22: transfull(j) = (com(j),{cr(i , j)1 }

t

i=1
, cr(j ,0)2 , cr(j ,1)2)

23: end for
24: md←H (pk,m,{trans(j)full}

r

j=1
)

25: ((I1,B1), . . . , (Ir ,Br))← XOFtrans(md)
26: for j ∈ {1, . . . , r} do

27: trans(j)red = (c(j)¬Bj ,{cr(i , j)1 }
t

i≠Ij ,i=1
, cr(j ,¬Bj)2)

28: end for
29: return σ = (md,{trans(j)red, resp(Ij , j)

1 , resp(j ,Bj)
2 }

r

j=1
)

4.8. SOFIA 153

Algorithm 26 SOFIA.Verify (σ , pk,m) α, r , t,Com,H,H1,H2,XOFtrans

1: return (md,{trans(j)red, resp(Ij , j)
1 , resp(j ,Bj)

2 }
r

j=1
) = σ

2: (SF ,v) = pk

3: F← XOFF (SF)
4: ((I1,B1), . . . , (Ir ,Br))← XOFtrans(md)
5: for j ∈ {1, . . . , r} do
6: cr(Ij , j)1 ← H1(resp(Ij , j)

1)
7: cr(Ij ,Bj)2 ← H2(resp(Ij ,Bj)

2)
8: if Bj = 0 then
9: r(j)0 = resp(Ij ,Bj)

2
10: c

(j)
0 ← Com(r(j)0 ,αIj r

(j)
0 − t(Ij , j)1 ,αIjF(r

(j)
0) − e(Ij , j)1)

11: else
12: r(j)1 = resp(Ij ,Bj)

2
13: c

(j)
1 ← Com(r(j)1 ,αIj (v − F(r(j)1)) −G(t(Ij , j)1 , r(j)1) − e(Ij , j)1)

14: end if
15: (c(j)¬Bj ,{cr(i , j)1 }

t

i≠Ij ,i=1
, cr(j ,¬Bj)2) = trans(j)red

16: trans(j)full = (com(j),{ch(i , j)
1 , cr(i , j)1 , cr(i , j ,0)2 , cr(i , j ,1)2 }

t

i=1
)

17: end for
18: md′ ←H (pk,m, {transfull(j)}rj=1)
19: return md′ ?= md

154 Chapter 4. MQ-based signatures

4.8.1 Tweaks and optimizations

There are several optimizations that can be applied to signatures resulting from a
transformedq2-IDS. Some are speci�c for SOFIA and some are more general; similar
and related optimizations were suggested in [Unr15], [CHR+16] and [CDG+17],
and several of these optimizations were already implicitly included in MQDSS as
described in Section 4.5. We now attempt to provide a comprehensive overview.

Excluding unnecessary blindings

The signature contains blindings of all computed responses, as well as a selection
of opened responses resp(Ij , j)

1 and resp(j ,Bj)
2 . It is redundant to include the values

cr(Ij , j)1 and cr(j ,Bj)2 , as these can be recomputed based on the opened responses.
This optimization was already proposed in the generic Unruh transform [Unr15],
and applies to any construction similar to Unruh’s and ours. For the veri�er to
know which responses were actually opened, they must be able to reproduce the
indices ((I1,B1), . . . , (Ir ,Br)), which are derived from the transcript. Without the
blinded responses, this transcript is incomplete. To solve this circular dependency,
we could include the selected indices in the signature. Depending on the choice of
parameters (e.g., the parameters de�ned in 4.9.1), we can do this more e�ciently
by instead breaking XOFtrans into two parts, composing it of a hash function over
the transcript H and an extendable output function XOFI B to derive the indices
from the hash output. We then includeH (pk,m, {transfull(j)}rj=1) as part of the
signature, so that the veri�er can reconstruct the indices, blind the corresponding
responses, construct transfull, and recompute the same hash for comparison.

Fixing the challenge space

Following the generic description of the signing algorithm, the selected α(i , j) are
included in the signature. Depending on the speci�c choice of t and q, it may be
more e�cient to include the challenges α(i , j) that were not selected. There is no
reason not to take this a step further and simply �x a challenge space ch1 of t
elements. That way, all the α ’s from ch1 will be selected and there is no need to
include them in the signature. This not only reduces the signature size, but also
simpli�es the implementation. By preselecting these elements to be distinct and
prescribing an ordering, we avoid the additional complexity of mapping indices to
challenges, as well as checking for uniqueness in the veri�cation routine.

4.8. SOFIA 155

Excluding unnecessary second responses

The underlying IDS from [SSH11] has a speci�c property: the second responses
do not depend on the previous state (that is, on the �rst challenge and response).
Regardless of the value of α , the second responses always have the same value.
Consequently, they need to be included only once per commitment rather than
repeated t times. Combined with the exclusion of unnecessary blindings, one of
the one of the second responses is included open, and the other remains blinded.

Omi�ing commitments

The check that the veri�er performs for each round consists of recomputing c
(j)
Bj ,

and comparing it to one of the commits supplied by the signer. Similar to the
above, and as already suggested in [SSH11], the signer can omit the commits that
the veri�er will recompute. A hash over all commits could be included instead,
which the veri�er can reconstruct using the commits c(j)Bj they recompute and the
commits c(j)¬Bj the signer includes. As it turns out, this hash is not necessary either:
as these commitments are part of the transcript and the veri�er is already checking
the correctness of the transcript as per the �rst optimization, the correctness of
the recomputed commitments is implicitly checked when comparing md and md′.
While constructing this scheme, we experimented with several other variants of
the above-described optimizations.19 Notably, we explored opening for multiple
α-challenges, but that led to no improvement in the number of rounds, and, in some
cases, to a contradiction of the zero-knowledge property. Variants that employ a
form of internal parallelization by committing to multiple values for t0 do reduce
the number of rounds, but increase the size of the transcript disproportionately.
Altogether, the above optimizations are crucial: for the practical instance described
in the next section, they more than halve the signature size compared to the scheme
that would result from naively applying the transform.

Security of SOFIA

In Section 4.7.1 we described an extension of Unruh’s transform to q2-IDS. We
left the proof of its EU-CMA security to the original publication [CHR+18], but

19 In the paper describing SOFIA [CHR+18], we propose an optimization that suggests relying on the
randomness of the inputs to the commitment functions instead of including a randomization string. As
mentioned in Section 4.6.4, recent work by Leichtle [Lei18] shows that this is insu�cient.

156 Chapter 4. MQ-based signatures

remark that it immediately applies to the scheme resulting from the 5-pass scheme
from [SSH11]. After applying the optimizations described above, SOFIA deviates
signi�cantly from the direct output of the transform, and thus no longer adheres
to the generic construction to which the proof applies. Fortunately, only minor
changes to the proof are required. In [CHR+18], we enumerate the optimizations,
and individually address how each of them impacts the proof. Using a game-
hopping argument, one can show that the success probability of an EU-CMA

adversary in the quantum random oracle model against SOFIA is negligibly close
to the success probability of the same adversary against the unmodi�ed direct
result of the transform.

4.9 SOFIA-4-128

Having described the scheme in general terms, we now provide concrete parameters
that allow us to specify a speci�c instance, which we will refer to as SOFIA-4-128.
We present an optimized software implementation and list the results, in particular
in comparison to MQDSS-31-64. All speed comparisons mentioned below are
based on benchmarks obtained on the same Intel Core i7-4770K Haswell system
described in Section 2.4.1, using gcc 4.9.2-10.

4.9.1 Parameter selection

The previous section assumed a number of parameters and functions. Notably, we
must de�ne Fq , the �eld in which we perform the arithmetic, and n and m, the
number of variables and equations de�ning theMQ problem. The number of
rounds r follows from t (i.e. the number of responses resp(i , j)

1 , bounded by q) and
the targeted security level.

Parameters forMQ(m,n,Fq)

For MQDSS-31-64, the choice of F31 was motivated by the fact that it brings the
soundness error close to 1/2 while providing convenient characteristics for fast
implementation [CHR+16]. For SOFIA-4-128, our primary focus is on optimizing for
signature size, although we do still try to strike a balance that maintains reasonable
e�ciency. To do so, we compute signature sizes for a wide range of candidates, and
investigate several in more detail by implementing and measuring the resulting
MQ evaluation functions. In particular, we look at the results ofMQ(128, 128,F4),

4.9. SOFIA-4-128 157

MQ(96, 96,F7) andMQ(72, 72,F16), and compare toMQ(64, 64,F31) as used
in MQDSS. Of these,MQ(128, 128,F4) is the decisive winner, resulting in the
smallest signatures while still providing decent performance. This is also the
minimum amongst all candidate systems we looked at – it is not only beating
F7 and F16, but also less common options such as F5 and F8. See Table 4.4 for
benchmarks of single evaluation functions and the related signature sizes. Note
that, as the number of rounds r does not depend on the choice of Fq but merely on
t , the signing time scales proportionally.

All of the suggestions for q, m and n mentioned above are chosen to target
128-bit post-quantum security. Like for MQDSS in Section 4.6.1, the estimates for
the security of theMQ problem are based on the best known attacks.

A straightforward method for solving systems ofm quadratic equations in n

variables over Fq is by performing exhaustive search on all possible qn values for
the variables, and testing whether they satisfy the system. Currently, [BCC+10]
provide the fastest enumeration algorithm for systems over F2, needing 4 logn ⋅ 2n

operations. The techniques from [BCC+10] can be extended to other �elds Fq with
the same expected complexity of Θ(logq n ⋅ qn).

In Section 4.6.1, we already touched upon some algebraic methods, including
the F4/F5 family [Fau99; Fau02; BFS15; BFP12] and the variants of the XL algorithm
[CKP+00; Die04; YC05a; YC04].

In the Boolean case, today’s state of the art algorithms BooleanSolve [BFS+13]
and FXL [YC04] provide improvement over exhaustive search, with an asymptotic
complexity of Θ(20.792n) and Θ(20.875n) for m = n, respectively. Practically, the
improvement is visible for polynomials with more than 200 variables. A recent
algorithm, the Crossbred algorithm [JV17] over F2, considerably improves on these
bounds: the authors report that it passes the exhaustive search barrier already
for 37 Boolean variables. At the time of this work, the preprint did not include a
detailed complexity analysis that we could take into account.

BooleanSolve [BFS+13], FXL [YC04; YC05a], the Crossbred algorithm [JV17]
and the Hybrid approach [BFP12] all combine algebraic techniques with exhaustive
search. This immediately allows for improvement in their quantum version using
Grover’s quantum search algorithm [Gro96], provided the cost of running them
on a quantum computer does not diminish the gain from Grover. At the time of
this work, no quantum version of these algorithms had been analyzed yet, and
the literature only covered pure enumeration [WS16] using Grover. Since then,

158 Chapter 4. MQ-based signatures

Table 4.4: Benchmarks for varying parameter sets

cyclesb
size

t = 3, r = 438
size

t = 4, r = 378

MQ(128, 128,F4) 21 412 123.22 KiB 129.97 KiB
MQ(96, 96,F7) 36 501 129.00 KiBa 136.20 KiBa

MQ(72, 72,F16) 25 014 136.91 KiB 144.73 KiB
MQ(64, 64,F31) 6 616 149.34 KiBa 158.15 KiBa

a Assumes optimally packing the elements of Fq , which may be impractical.
b For a single evaluation. In practice, batching provides a speedup; see Section 4.9.3.

Bernstein and Yang have instantiated the XL approach with Grover and conclude
that the two can be meaningfully combined [BY18]. In the original publication of
SOFIA [CHR+18], we provide an analysis of the quantum version of the Hybrid
approach and BooleanSolve. It turns out that the results by Bernstein and Yang do
not a�ect our choice of parameters.

Number of rounds and blinded responses

The choice of t , the number of blinded responses per round, provides a trade-o�
between size and speed: a larger t implies a smaller error, resulting in fewer rounds,
but more included blinded responses per round.20 Interestingly, t = 3 provides
the minimal size, followed by t = 4, and, only then, t = 2. The decrease in rounds
quickly diminishes, making t = 3 and t = 4 the most attractive choices. Note that t
is naturally bounded by q, making these the only options for F4.

Given the above considerations (and with a prospect of some convenience of
implementation), we select the parameters n =m = 128, q = 4 and t = 3. We then set
the number of rounds r such that a forger has success probability negligible in the
security parameter. For a security level of 128 bits post-quantum security, it follows
from Theorem 3.6 of [CHR+18] that we must select r such that 2−(r log 2t

t+1)/2 < 2−128.
This implies r = 438.

20 The increase in computational cost that comes with additional blinded responses is insigni�cant in
comparison to evaluations of theMQ function.

4.9. SOFIA-4-128 159

Functions

Before being able to implement the scheme, we must still de�ne several of the
functions we have assumed to exist. In particular, we need a string commitment
functionCom, pseudorandom generatorsGsk andGrte, extendable output functions
XOFF and XOFI B , permutation functions H1 and H2, and a cryptographic hash
functionH.

We instantiate the extendable output functions, the string commitment func-
tions,21 the permutations and the hash function with SHAKE-128 [BDP+11]. This
applies trivially, except for XOFI B , of which the output domain is a series of ternary
and binary indices (since t = 3). We resolve this by applying rejection sampling
to the output of SHAKE-128. Note that this does not enable a timing attack, as
the input to SHAKE-128 (i.e., md, the digest of the transcript) is public. For XOFF ,
we achieve a signi�cant speedup by dividing its output in four separate pieces,
generating each of them with a domain-separated call to cSHAKE-128 [BDP+11].
For the application ofH to the public key, the message and the transcript, collision
resilience is achieved by absorbing the transcript into the SHAKE-128 state �rst, as
the included randomness prevents internal collisions.

In principle we suggest to also instantiate Grte and Gsk with SHAKE-128, but
note that implementations can make di�erent choices without breaking compatibil-
ity. In fact, for the optimized Haswell implementation discussed in the next section,
we instantiate Grte with AES in counter mode, using the AES-NI instruction set.

4.9.2 Implementation details

As part of this work, we provide a C reference implementation and an implemen-
tation optimized for AVX2. The focus of this section is the evaluation of theMQ
function, given the aforementioned parameter setMQ(128, 128,F4). The rest of
the scheme depends on fairly straight-forward operations (such as multiplying
vectors of F4 elements by a constant scalar) and applications of existing imple-
mentations of AES-CTR and SHAKE-128. The used AES-CTR and SHAKE-128
implementations are in the public domain and run in constant time.

Before discussing the computation, we note that the chosen parameters lend
themselves to a very natural data representation. Throughout the entire scheme,

21 At the time of writing, we, as was the case for MQDSS, assumed that the inputs to the commitments
provided su�cient randomization. This does not take into account the recent work by Leichtle [Lei18]
yet. See also 4.6.4.

160 Chapter 4. MQ-based signatures

we interpret 256-bit vectors as vectors of 128 bitsliced F4 elements: the low 128 bits
make up the lower bits of the two-bit elements, and the high 128 bits make up the
higher bits of each element. This makes operations such as scalar multiplication
convenient in C code, as this can be easily expressed as logical operations on bit
sequences, but provides an even more important bene�t for AVX2 assembly code.
Notably, one vector of F4 elements �ts exactly into one 256-bit vector register, with
the lower bits now �tting into the low lane and the higher bits into the high lane.
Other parameter sets might have resulted in having to consider crossing the lanes,
but for these dimensions the separation �ts perfectly.

When sampling elements in F4 from the output of SHAKE-128 or AES-CTR,
we can freely interpret the random data to already be in bitsliced representation.
Similarly, we include the elements in the signature in this representation, as signa-
ture veri�cation enjoys precisely the same bene�ts. Throughout the entire scheme,
there is no point at which we need to actually perform a bitslicing operation.

As a side e�ect of this choice of representation, the naive approach to per-
forming theMQ evaluation runs in constant time. While bigger underlying �elds
might have implied approaches based on lookup tables, for vectors over F4 it is hard
to imagine a platform on which it would not be faster to perform the evaluation
using bitsliced �eld arithmetic.

EvaluatingMQ

For a given input x, we split the evaluation into two phases: computing all quadratic
monomial terms xix j , and composing them to evaluate the quadratic polynomials.

To perform the �rst step, we use a similar approach as described in Sections 4.6.2
and 4.A.2. It can be seen as a combination of the approach for F2 and for F31, as
we now operate on a single register that contains all input elements but view each
lane as 16 separate single-byte registers. We use vpshufb instructions to arrange
the elements such that all multiplications can be performed using only a minimal
number of rotations. To do this, we modify the script to generate arrangements
that was described in Section 4.6.2.

A bitsliced multiplication in F4 can be e�ciently performed using only a few
logical operations. The inputs to these multiplications are a register containing x
and a register containing some rotated arrangement of x. Some of these operations
require the low and high lanes of the vector registers to interact, which is typically
costly. As x is constant, we speed up these multiplications by rewriting them as

4.9. SOFIA-4-128 161

shown below, combined with presetting two registers that contain [xhiдh ∣xhiдh]
and [xhiдh ⊕ xlow ∣xlow], respectively. Note that all of these operations are not
performed on single bits, but rather on 128-bit vector lanes. The multiplication of
128 elements then requires only two vpand instructions and one vperm instruction,
and a vpxor to combine the results.

chiдh = (ahiдh ∧ (blow ⊕ bhiдh))⊕ (alow ∧ bhiдh)
clow = (alow ∧ blow)⊕ (ahiдh ∧ bhiдh)

We focus on two approaches to perform the second and most costly part of
the evaluation, in which all of the above monomials need to be multiplied with
coe�cients from F and added into the output vector. They are best described as
iterating either ‘horizontally’ or ‘vertically’ through the required multiplications.
For the vertical approach, we iterate over all22 registers of monomials, broadcasting
each of the monomials to each of the 128 possible positions (using rotations), before
multiplying with a sequence of coe�cients from F and adding into an accumulator.
Alternatively, we iterate over the output elements in the outer-most loop. For
each output element, we iterate over all registers of monomials, perform the
multiplications, and horizontally sum the results using the popcnt instruction.

Intuitively, the latter approach may seem like more work, in particular because
it requires more loads from memory, but in practice it turns out to be faster for
our parameters. The main reason for this is that by maintaining multiple separate
accumulators, loaded monomials can be re-used while still maintaining chains of
logic operations that operate on independent results, as the accumulators are only
joined together later. This leads to highly e�cient scheduling.

For both approaches, delaying part of the multiplication in F4 provides a sig-
ni�cant speedup. This is done by computing both [x̂hiдh ∧ fhiдh ∣x̂low ∧ flow] and
[x̂low ∧fhiдh ∣x̂hiдh ∧flow], with f from F and x̂ a sequence of quadratic monomials,
and accumulating these results separately. After accumulating, all multiplications
and reductions can be completed at once, eliminating duplicate operations that
would otherwise be performed for each of the 65 multiplications.

22 There are n⋅(n+1)
2 = 8256 such monomials, which results in 64 1

2 256-bit sequences. We round up to 65
by zeroing out half of the high and half of the low lane. To still get results that are compatible with
implementations on other platforms, we create similar gaps in the stream of random values used to
construct F, ensuring that the same random elements are aligned with the original coe�cients.

162 Chapter 4. MQ-based signatures

EvaluatingMQ instances in parallel

As each of the coe�cients in F is used only once, loading these elements from
memory causes a considerable burden. We observe that F is constant across eval-
uations, leading to a signi�cant speedup when processing multiple instances of
theMQ function at once. This applies in particular to the vertical approach, as its
critical section leaves several registers unused. Horizontally, there is a trade-o�
with registers used for parallel accumulators, but we still bene�t from parallelizing
evaluations. For SOFIA-4-128, the signer evaluates r = 438 instances of F and its
polar form G on completely independent inputs, which can be trivially batched.

Parallel SHAKE-128 and cSHAKE-128

As will be apparent in the next section, many cycles are spent computing the
Keccak permutation (as part of either SHAKE-128 or cSHAKE-128). Some of the
main culprits are the commitments, the blinding of responses and the expansion of
F. While the Keccak permutation does not lend itself well to internal parallelism, it
is straightforward to compute four instances in parallel in a 256-bit vector register.
This allows us to seriously speed up the many commitments and blindings, as these
are all fully independent and can be grouped together across rounds. Deriving F
can be parallelized by splitting it into four domain-separated cSHAKE-128 calls
operating on the same seed, as was alluded to in Section 4.9.1.

4.9.3 Performance

Evaluating theMQ function horizontally in batches of three turns out to give the
fastest results, measuring in at 17 558 cycles per evaluation. Evaluating vertically
costs 18 598 cycles. The cost for evaluating the polar form G is not signi�cantly
di�erent, di�ering by approximately a hundred cycles from the regularMQ func-
tion; generating the monomial terms xiyj + x jyi is somewhat more costly, but this
is countered by the fact that the linear terms cancel out.

We spend 21 305 472 cycles to generate a signature. Of this, 15 420 520 cycles can
be attributed to evaluatingMQ, and 43 954 to AES-CTR. The remainder is almost
entirely accounted for by the various calls to SHAKE-128 and cSHAKE-128 for the
commitments, blindings and randomness expansion. In particular, expanding F
costs 1 120 782 cycles. Note, however, that if many signatures are to be generated,
this expansion only needs to be done once and F can be kept in memory across

4.9. SOFIA-4-128 163

Table 4.5: Benchmark overview

key generation signing veri�cation

SOFIA-4-128 1 157 112 21 305 472 15 492 686
MQDSS-31-64 1 826 612 8 510 616 5 752 612
SPHINCS-256a 3 237 260 51 636 372 1 451 004

Picnic-10-38 ≈36 000 ≈112 716k ≈58 680 000
TESLA-1 ?b 143 402 231 19 284 672

a Benchmarked on an Intel Xeon E3-1275 (Haswell).
b The benchmarks in [ABB+17] omit key generation. In [CDG+17], a measurement of

approximately 173 billion cycles is reported for the smaller TESLA-768 [ABB+15] scheme.

Table 4.6: Overview of key and signature sizes

pk sk signature

SOFIA-4-128 64 32 126 176
MQDSS-31-64 72 64 40 952
SPHINCS-256 1056 1088 41 000

Picnic-10-38 64 32 195 458
TESLA-1 11 653k 6 769k 2 444
TESLA-2 ≥21 799ka ≥7 700ka ≥4.0ka

a “Sizes are theoretic sizes for fully compressed keys and signatures” [ABB+17].

subsequent signatures. Veri�cation costs 15 492 686 cycles, and key generation
costs 1 157 112; key generation is dominated by expansion of F.

The keys of SOFIA-4-128 are small, with the secret key consisting of only a
single 32 byte seed, and the 64 byte public key of a seed and a singleMQ output.

The natural candidate for direct comparison is MQDSS-31-64 [CHR+16]. While
MQDSS has a proof in the ROM, we focus further comparison on post-quantum
schemes that have proofs in the QROM or standard model. See Table 4.5 and
Table 4.6, below; we include SPHINCS-256 [BHH+15], which has a proof in the
standard model, and Picnic-10-38 [CDG+17] and TESLA-2 [ABB+17], which come
with proofs in the QROM. Since [ABB+17] does not implement the TESLA-2
parameter set, we include the ROM variant, TESLA-1, for context. Except for
SPHINCS-256, all benchmarks were obtained on an Intel Core i7 (Haswell).

164 Chapter 4. MQ-based signatures

Appendices to Chapter 4

4.A The 3-pass scheme over F2

In this appendix, we discuss the result of applying the Fiat-Shamir transform to
the 3-pass IDS introduced in [SSH11] (see Figure 4.A.1).

As the resulting scheme is similar to the transformed 5-pass scheme (MQDSS)
described in Section 4.5 in many ways, we occasionally refer back to that description
to prevent needless redundancy and duplication.

The scheme is parameterized by k,m,n ∈ N in much the same way as MQDSS.
While the 5-pass variant required several functions that ranged over F31, however,
we can su�ce with a slightly simpler setup for the 3-pass scheme. We require the
following functions:

• Cryptographic hash functions H ∶ {0, 1}∗ → {0, 1}k and H1 ∶ {0, 1}k ×
{0, 1}k → {0, 1, 2}r ,

• a string commitment function Com ∶ Fn2 × Fm2 → {0, 1}k , and

• pseudorandom generators GF ∶ {0, 1}k → FFlen2 and Grte ∶ {0, 1}k × {0, 1}k →
F
r ⋅(2n+m)
2 .

Key generation

As before, we randomly sample Ssk
$← {0, 1}k and SF $← {0, 1}k . Given param-

eters n,m ∈ N, we expand SF to obtain F = GSF (SF), a random system from
MQ(n,m,F2). The equation system F is de�ned by Flen =m ⋅ n⋅(n+1)

2 elements23

in F2. We then apply F to Ssk to obtain the rest of the public key, v = F(Ssk). The
key generation algorithm outputs sk = (Ssk,SF) and pk = (SF ,v) as the key pair.

23 As we are computing over F2, we have xi ⋅ xi = xi ∧ xi = xi . This allows us to merge the linear
monomial terms into the quadratics, reusing n ⋅m �eld elements in F.

165

166 Chapter 4. MQ-based signatures

P V
r0, t0 $← Fnq
e0

$← Fmq
r1 ← s − r0

t1 ← r0 − t0
c0 ← Com(r1,G(t0, r1) + e0)
c1 ← Com(t0, e0)
c2 ← Com(t1, e1)

(c0 ,c1 ,c2)ÐÐÐÐÐÐÐÐ→
ch $← {0, 1, 2}

ch←ÐÐÐÐÐÐÐÐ
If ch = 0, resp← (r0, t1, e1)
If ch = 1, resp← (r1, t1, e1)
If ch = 2, resp← (r1, t0, e0)

respÐÐÐÐÐÐÐÐ→
If ch = 0, Parse resp = (r0, t1, e1), check
c1

?= Com(r0 − t1, F(r0) − e1)
c2

?= Com(t1, e1)
If ch = 1, Parse resp = (r1, t1, e1), check
c0

?= Com(r1, v − F(r1) −G(t1, r1) − e1)
c2

?= Com(t1, e1)
If ch = 2, Parse resp = (r1, t0, e0), check
c0

?= Com(r1,G(t0, r1) + e0)
c1

?= Com(t0, e0)

Figure 4.A.1: The [SSH11] 3-pass IDS

4.A. The 3-pass scheme over F2 167

Signing

The signature algorithm takes as input a message m ∈ {0, 1}∗ and a secret key
sk = (Ssk,SF). The message-dependent randomness R and digest md are derived
in the same way as was done for the 5-pass scheme, and F = GSF (SF) as during
key generation. Let r be the required number of rounds.

The pair (Ssk,md) is expanded usingGrte to produce the values (r(1)
0 , . . . , r

(r)
0 ,

t(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0). We then compute c(i)0 , c(i)1 and c

(i)
2 using the string

commitment function Com, as follows:

c
(i)
0 = Com(r(i)1 ,G(t(i)0 , r

(i)
1) + e(i)0)

c
(i)
1 = Com(t(i)0 , e

(i)
0)

c
(i)
2 = Com(t(i)1 , e

(i)
1)

Let σ0 =H(c(1)
0 ∥c(1)

1 ∥c(1)
2 ∥ . . . ∥c(r)0 ∥c(r)1 ∥c(r)2). We now derive the challenges

chi from the pair (md,σ0) using H1. Then, for each of the rounds, we include the
responses to each challenge, i.e., (r(i)0 , t

(i)
1 , e

(i)
1), (r(i)1 , t

(i)
1 , e

(i)
1) or (r(i)1 , t

(i)
0 , e

(i)
0),

respectively), in σ1. For each round, σ1 must also contain the one commitment the
veri�er cannot recompute: cch(i) . The resulting signature is σ = (R,σ0,σ1), for a
total of 2 ⋅ k + r ⋅ (2 ⋅ n +m + k) bits.

Verification

The veri�cation algorithm takes as input the message m, the signatureσ = (R,σ0,σ1)
and the public key pk = (SF ,v).

As for MQDSS, the veri�er uses R and m to compute md = H(R ∥ m) and
derives F from SF using GSF , which is available in pk. Once more mimicking the
signing procedure, the veri�er can now derive ch(i) for all r rounds using H1 and
the pair (md,σ0). They then extract (r(i), t(i), e(i)) from σ1, and, depending on
the values of ch(i), computes two thirds of the committed values as follows:

if ch(i) = 0
⎧⎪⎪⎨⎪⎪⎩

c
(i)
1 = Com(r(i) − t(i), F(r(i)) − e(i))
c
(i)
2 = Com(t(i), e(i))

if ch(i) = 1
⎧⎪⎪⎨⎪⎪⎩

c
(i)
0 = Com(r(i),PKv − F(r(i)) −G(t(i), r(i)) − e(i))
c
(i)
2 = Com(t(i), e(i))

if ch(i) = 2
⎧⎪⎪⎨⎪⎪⎩

c
(i)
0 = Com(r(i),G(t(i), r(i)) + e(i))
c
(i)
1 = Com(t(i), e(i))

168 Chapter 4. MQ-based signatures

For each round, the other commitments c(i)
ch(i)

can be extracted from σ1, allowing
the veri�er to compute σ ′0 = H(c(1)

0 ∥ c(1)
1 ∥ c(1)

2 ∥ . . . ∥ c(r)0 ∥ c(r)1 ∥ c(r)2). If σ ′0 = σ0,
veri�cation succeeds.

4.A.1 Parameter selection

As in the case of the 5-pass scheme we motivate our choice of parameters both from
security and from implementation point of view. First of all, the security arguments
for n =m are the same as for the 5-pass scheme. From an implementation point of
view, choosing n =m as a power of two provides various bene�ts. Most notably,
the fact that we operate over a binary �eld in combination with a number of
elements that neatly �t typical registers greatly enhances the ease of using bitwise
operations. Therefore, we choose n = 256.

In terms of classical security, we can use the known generic algorithms for
solving systems of quadratic equations [Fau99; Fau02; CKP+00], or the more
recently proposed BooleanSolve [BFS+13], crafted speci�cally for the Boolean
case. This algorithm performs similar to XL over F2. Indeed, the analysis in [YC04;
YCC04b] and that of [BFS+13] both show that for large enough systems (i.e. where
n ⩾ 200) it is possible to outperform exhaustive search in terms of time complexity.
When n =m, the asymptotic complexity of the FXL algorithm isO(20.875n) [YC04],
and of the BooleanSolve algorithm it is O(20.841n) in the deterministic variant and
O(20.792n) in the probabilistic variant [BFS+13]. At n = 256, this would lead to a
computation complexity of 2202 operations. Using the same reasoning as for the
5-pass scheme, the complexity of Grover’s algorithm will be ≈ 2128 operations.

As was also mentioned in Section 4.6.1, we aim forκr ≤ 2−256 in order to achieve
128 bits of post-quantum security. Thus, given the soundness error κ = 2

3 , we must
perform r = 438 rounds of the transformed identi�cation scheme.24

As before, we choose SHA3-256 for the functions H and Com. For H1, GSF
and Grte, we select the SHAKE-128 extendable output function [BDP+11]. To map
to the appropriate output domain, i.e., sample ternary challenges, we reject and
resample unusable output from H1.

24 In retrospect, this number of rounds is excessive. See Footnote 9 on page 138.

4.A. The 3-pass scheme over F2 169

& 0 1 2 3 4 5 6 7

0 00 01 02 03 04 05 06 07

1 - 11 12 13 14 15 16 17

2 - - 22 23 24 25 26 27

3 - - - 33 34 35 36 37

4 - - - - 44 45 46 47

5 - - - - - 55 56 57

6 - - - - - - 66 67

7 - - - - - - - 77

Figure 4.A.2: Naive and of 8 bits

& 0 1 2 3 4 5 6 7

00 11 22 33 44 55 66 77

10 21 32 43 54 65 76 07

20 31 42 53 64 75 06 17

30 41 52 63 74 05 16 27

40 51 62 73 - - - -

Figure 4.A.3: E�cient and of 8 bits

4.A.2 Implementation details

We operate on n = 256 elements from F2, which means that an input vector x �ts
precisely in one 256-bit SIMD vector register. In essence, the computation of F
comes down to computing the product of all unique pairs of elements in x. We can
visualize such a multiplication as the triangle depicted in Figure 4.A.2 (note that
we do not incur any costs for register-wide gaps in the arrangement). As we are
using vector registers, we can perform 256 such multiplications in parallel. In F2,
such a multiplication is simply a bitwise and operations. To do this, we rearrange
the products in a way that makes them more easily computable – see Figure 4.A.3.

The elements as arranged in Figure 4.A.3 can be generated by rotating the
original vector and computing the bitwise and with the original after each rotation.
Consequently, we require only n

2 + 1 vectorized and operations (one of which is
the last half-row). After computing a row of products, each of the output bits in
the result is multiplied withm bits from the system parameter, one at a time.

To compute G(x,y), one can iterate through two instances of Figure 4.A.3
in parallel; one for each input. Computing ai , j ,l ∧ ((xi ∧yj)⊕ (x j ∧yi)), where
ai , j ,l is an element of F, is then a matter of computing a crosswise xor before
masking with system parameter bits. Note that the �rst row can be skipped, as
(xi ∧yi)⊕ (xi ∧yi) trivially results in 0.

4.A.3 Performance

For the 3-pass scheme, the signature size is fairly large because of the high number
of rounds, as well as the large n and m. With each vector consuming 256 bits and

170 Chapter 4. MQ-based signatures

each of the 438 rounds adding three vectors and a commitment hash, the total
amounts to 2 ⋅ 256 + 438 ⋅ (3 ⋅ 256 + 256) = 449 024 bits, or 54.81 KiB. Both the secret
key and the public key are 64 bytes.

As one would expect, the calls to theMQ function are the most time-consuming.
Theoretically, we can calculate that we require n ⋅ n+1

2 and operations to compute
all quadratic monomials in a call to F. For each of them output bits, the results are
masked with bits from the system parameter, incurring anotherm ⋅n ⋅ n+1

2 and oper-
ations, as well asm ⋅(n ⋅ n+1

2 −1) xor operations. Using vector instructions, the most
optimal scenario would allow us to do 256 such operations in parallel. While this is
almost achieved (although not fully for the half-row of monomials, and because the
accumulators used to compute the �nal result need to be folded onto themselves at
the end), this is o�set greatly by the amount of loads and stores required to manage
the 256 accumulators for the output results. Some additional costs are also incurred
for having to rotate the vector register for every 256 monomials, at the cost of two
shifts, a quadword permute and an or operation. Costs of the application of the
function G are similar, although distributed slightly di�erently: each ‘binomial’
costs two and operations and a xor operation, and two vectors need to be rotated,
but as the symmetric monomials can be omitted, one entire iteration of updating
accumulators can be spared.

For one iteration of theMQ function, we measure25 122 564 cycles (again, G
is marginally cheaper: 121 928 cycles), while we measure 118 088 992 cycles for the
complete signature generation. Key generation comes in at 8 066 324 cycles, and
veri�cation costs 82 650 156 cycles. On the used CPU, that comes down to 33.7 ms,
2.30 ms and 23.6 ms, respectively. On average, veri�cation should require 1 1

3 calls
to anMQ function, varying with the challenge value.

25 As mentioned in Section 4.5, benchmarks were performed on an Intel Core i7-4770K CPU at 3.5 GHz.

Chapter 5

La�ice-based KEMs

This chapter is based on the peer-reviewed papers “High-speed key encapsulation from

NTRU” [HRS+17a] and “Faster multiplication in Z2m [x] on Cortex-M4 to speed up

NIST PQC candidates” [KRS19], and the NTRU-HRSS / NTRU submission to NIST’s
Post-Quantum Cryptography Standardization project [HRS+17b; CDH+19].

So far, we have focused on one of two basic public-key primitives. After
discussing two methods of producing post-quantum digital signatures, this chapter
will touch upon key-encapsulation mechanisms (KEMs). In terms of speed, key size
and ciphertext size, arguably the most promising candidates are found in the area of
lattice-based cryptography. It is not surprising that various recent papers propose
a variety of constructions and parameters for lattice-based encryption schemes
and KEMs, often together with implementations. See, for example, [BCN+15;
ADP+16; BCD+16; CKL+18; BCL+17; Saa17b; CHK+17; PLP16]. These schemes
di�er in terms of security notions (e.g., passive vs. active security), underlying
hard problems (e.g., learning-with-errors vs. learning with rounding), structure
of the underlying lattices (standard vs. ideal lattices), cryptographic functionality
(encryption vs. key encapsulation), and performance in terms of speed and sizes. It
is also no coincidence that Google chose lattice-based schemes for their experiments
with real-world deployment of post-quantum TLS [Bra16; Lan18]. The �rst of
these experiments involved NewHope [ADP+16], a key exchange based on the
ring-learning-with-errors (Ring-LWE or RLWE) problem. The second, two years
later, is based on NTRU-HRSS [HRS+17b], a KEM based on the NTRU problem. It
is the latter of these two schemes that we will discuss in the upcoming sections.

Dating back to the nineties, NTRU [HPS96; HPS98] is one of the oldest lattice-
based schemes. Since then, several variants [HGSS+03; Con03; HGSW05; IEE09]
have been proposed, and their security analyzed [May99; Sch03; BL06; Lud03;
HG07; HHHG+09; Wun16]. Perhaps most famously, variants of the NTRU con-

171

172 Chapter 5. La�ice-based KEMs

struction have been encumbered with patents, hindering its deployment. The
NTRU cryptosystem was patented in [HPS00], and NTRU with “product-form
keys” was patented in [HS06]. The former patent was due to expire on August 19,
2017, but in March of that year Security Innovation released both patents [Sec17],
placing NTRU into the public domain.

Recent work in lattice-based cryptography may have given the impression that
NTRU has been superseded. Indeed, both schemes based on Ring-LWE [LPR10] as
well as NTRU Prime [BCL+17] present interesting alternatives. We argue that the
choice is not as clear-cut, both in terms of performance and in terms of security.

As part of this work, we revisit the original proposal [HPS98] (sometimes
referred to as ‘classic NTRU’), and use it to construct an IND-CCA2-secure KEM,
satisfying De�nition 2.1.13. We describe the resulting scheme in detail in Section 5.1,
and touch upon the subsequent submission to NIST’s Post-Quantum Cryptography
Standardization project in Section 5.1.4.

In the remainder of this chapter, we shift the focus towards high-speed software
implementations. Initially, we will look at what it takes to speed up NTRU-HRSS.
Part of the motivation underlying the work of [HRS+17a] was showing that classic
NTRU can indeed lead to a highly performant key-encapsulation mechanism, even
when instantiated without �xed-weight sampling, guaranteeing correctness, and
implemented to run in constant time. We describe a highly optimized implementa-
tion, and demonstrate its competitiveness.

We then broaden our scope somewhat, discussing optimizations that apply to
a larger class of lattice-based schemes. In particular, we optimize the polynomial
arithmetic underlying several submissions to NIST that make use of a ring similar
to the one chosen for NTRU-HRSS, i.e., rings of the form Z2m [x]. We speci�cally
target the Cortex-M4 microcontroller, and use code generation to explore a wide
range of multiplication strategies.

While it may seem counterintuitive, this chapter will not discuss lattices at all.
The problems that underly the hardness of the discussed schemes �nd their origin
in lattice problems, but, given a set of parameters, merely examining the properties
and arithmetic of these constructions requires no context in lattices.

5.1 NTRU-HRSS

In this section, we review and instantiate the classic NTRU cryptosystem. As we
did not name the resulting system in the paper [HRS+17a] presenting it, its name

5.1. NTRU-HRSS 173

stems from subsequent citations: NTRU-HRSS. We later adopted this name for
the round 1 submission1 to NIST’s Post-Quantum Cryptography Standardization
project, which we will discuss in Section 5.1.4. Throughout this thesis, we refer to
the scheme as NTRU-HRSS.

We begin by introducing the underlying public-key encryption scheme. This
PKE is passively CPA-secure. Directly constructing an IND-CCA2-secure scheme
from NTRU appears to be non-trivial [HGSS+03]. However, already [Sta05]
and [Sak07] showed that most of this complexity can be avoided when constructing
an NTRU-based IND-CCA2-secure KEM. We follow this approach, and apply a
modi�ed version of a transform by Dent [Den03], which �nds its roots in the
popular Fujisaki-Okamoto transform [FO99]. Before presenting any construction,
we must �rst establish some parameters and context.

5.1.1 Parameters

NTRU operates over quotient rings — in particular, the rings Z[x]/(p,xn − 1) and
Z[x]/(q,xn − 1) with p, q, and n co-prime integers. For ease of exposition, we
typically denote these rings as Zp[x]/(xn − 1) and Zq[x]/(xn − 1), and even as
Rp andRq , respectively, leaving the irreducible polynomial xn − 1 implicit.2

For NTRU-HRSS, we further require subrings ofRp andRq , which we de�ne
using cyclotomic polynomials. We denote the d th cyclotomic polynomial as Φd . In
particular, we remark that Φ1 = x − 1, and, if d is prime, Φd = 1+x +x2 + ⋅ ⋅ ⋅ +xd−1.
We mimic the shorthand notation above to write Sp for Z[x]/(p,Φn) and Sq
for Z[x]/(q,Φn), with p, q, and n as �xed before. When n is prime, we have
xn − 1 = Φ1Φn and thusRp ≅ Z[x]/(p,Φ1) × Sp andRq ≅ Z[x]/(q,Φ1) × Sq .

NTRU-HRSS di�ers from other NTRU instantiations in several ways. First, we
work directly with Sp and Sq to avoid common security issues associated with the
Z[x]/(Φ1) subring. While it is possible to instantiate NTRU directly in Z[x]/(Φn)
and not use Z[x]/(xn −1) at all, we still lift elements of Sp and Sq toRp andRq to
take advantage of convenient computational and geometric features of the larger
ring. Second, we choose parameters so that decryption failures are completely
eliminated, and we do this without restricting the key and message spaces. Finally,
we eliminate any need for �xed-weight distributions like those used in [HPS98;

1 For the round 2 update, the merger of NTRU-HRSS and NTRUEncrypt was renamed to NTRU.
2 Note that this notation slightly di�ers from the notation as used in [HRS+17a], but more closely relates

to notation used in RLWE literature. We use the same notation in [KRS19].

174 Chapter 5. La�ice-based KEMs

Con03; HGSW05; HHHG+09; HPS+17; BCL+17; PLP16]. All of our sampling
routines are chosen to admit simple and e�cient constant-time implementations.

For the remainder of this section, we let p = 3; we often explicitly write 3
instead of p. In [HRS+17a], we show that we then require q ≥ 8192 to achieve zero
decryption failures. By choosing n such that Φn is irreducible modulo p and q, we
guarantee that all polynomials computed during key generation are invertible.3

This simpli�es key generation, and makes it easier to implement the entire routine
in constant time. With only several candidates left, we choose n = 701.

We claim that our n = 701 parameter set o�ers 128-bit security in a post-
quantum setting. As a consequence of the parameter selection described above, n
is the only free parameter; for n = 701 we have p = 3 and q = 8192. The claim of
128-bit post-quantum security is based on two separate numerical analyses. First,
an analysis of the “known quantum” primal attack described in [ADP+16] with
the cost model of the same paper. Second, an analysis of the hybrid attack [HG07]
using the cost model of [HPS+17]. We defer the details of this to [HRS+17a], where
we also review the cryptanalytic literature around NTRU and provide some insight
into how security analyses of NTRU have evolved since 1996.

5.1.2 CPA-secure NTRU encryption

We now de�ne an intermediate public-key encryption scheme NTRU-HRSS-PKE

by subsequently de�ning KeyGen, Enc and Dec. These functions explicitly serve
as building blocks towards constructing NTRU-HRSS.

Key generation

For NTRU-HRSS-PKE, the secret key is a non-zero element f ∈ S3. From f , we
compute the public key h as h = Φ1 ⋅ д ⋅ f −1 ∈ Rq for some д ∈ S3. This requires
inverting f with respect to Rq . To aid decryption, we also compute f −1 with
respect to S3 and store it as part of the secret key. To avoid confusion, we refer
to these inverses as f −1

q and f −1
3 , respectively. By construction, f is invertible in

both S3 and Sq . Previous NTRU variants have typically taken f to be an element
ofR, requiring invertibility testing. We must still compute f −1 both with respect

3 A similar condition has been recommended since the original description of NTRU [HPS96; HPS98],
but has not previously been a requirement. Streamlined NTRU Prime has an analogous requirement
for q, but not for p [BCL+17].

5.1. NTRU-HRSS 175

to S3 and to Sq , but this never fails. It su�ces that f is invertible in Sq rather than
Rq , as multiplication by Φ1 during decryption accounts for this di�erence.

Rather than directly sampling f and д from S3, we sample them from the subset

T + = {v ∈ S3 ∶ ⟨xv,v⟩ ≥ 0} .

This correlation restriction is new in NTRU-HRSS. In Section 3.4 and 3.5 of the
original publication [HRS+17a], we discuss how sampling from T + is simple and
e�cient in constant-time, as well as showing how it enables the correctness proof.

Algorithm 27 NTRU-HRSS-PKE.KeyGen () Rq,S3,Φ1,T +
1: f $← T +
2: f −1

3 ← f −1 ∈ S3

3: f −1
q ← f −1 ∈ Sq

4: д $← T +
5: h ← Φ1 ⋅д ⋅ f −1

q ∈Rq

6: return pk = h, sk = (f , f −1
3)

Encryption and decryption

Let m ∈ S3 be an encoding of the message, and r ∈ S3 a random element.4 The
computationally hard problem underlying NTRU variants is that it is now di�cult
to �ndm, given a relation rh +m. We compute the ciphertext e as

e ← p ⋅ r ⋅h +m ∈Rq .

Note that this requires liftingm from S3 toRq . When decrypting, we �rst compute
e ⋅ f ∈ Rq . We then take this result, reduce it to S3, and multiply by f −1

3 . This
results in a messagem′. See Algorithms 28 and 29.

Algorithm 28 NTRU-HRSS-PKE.Enc (m,h = pk) p,Rq,S3

1: r $← S3

2: e ← p ⋅ r ⋅h + [m]3 ∈Rq

3: return e

4 Previous NTRU variants often required m and r to be balanced, i.e., have coe�cients in {−1, 0, 1}
with each coe�cient occurring a �xed number of times. Our variant does not have such a restriction,
simplifying random sampling.

176 Chapter 5. La�ice-based KEMs

Algorithm 29 NTRU-HRSS-PKE.Dec (e, (f , f −1
3) = sk) Rq,S3

1: m′ ← [e ⋅ f]q ⋅ f −1
3 ∈ S3

2: returnm′

It is not immediately trivial to observe correctness, i.e., that m =m′ holds after
encapsulation and decapsulation; the mixed operations in S3 and Rq make this
somewhat hard to grasp. We justify this in more detail in the proof of correctness
in [HRS+17a], where we explicitly de�ne the lifting operation between the rings. In
the derivation below, we brie�y use the notation [. . .]q and [. . .]3 to make explicit
in what ring a computation takes place. Here, we note that

m′ ≡ [[e ⋅ f]q ⋅ f −1
3]3

≡ [[(p ⋅ r ⋅h + [m]3) ⋅ f]q ⋅ f −1
3]3

= [[p ⋅ r ⋅h ⋅ f + [m]3 ⋅ f]q ⋅ f −1
3]3

≡ [[p ⋅ r ⋅д ⋅ Φ1 ⋅ f −1
q ⋅ f + [m]3 ⋅ f]q ⋅ f −1

3]3 h ≡ д ⋅ Φ1 ⋅ f −1
q

≡ [[p ⋅ r ⋅д ⋅ Φ1 + [m]3 ⋅ f]q ⋅ f −1
3]3

= [3 ⋅ [r ⋅д ⋅ Φ1]q + [[m]3 ⋅ f]q ⋅ f −1
3]3 p = 3

≡ [[[m]3 ⋅ f]q ⋅ f −1
3]3 [3 ⋅ [r ⋅ д ⋅ Φ1]q]3 ≡ 0

∼∼∼ [m ⋅ f ⋅ f −1
3]3 Rq → S3

≡ [m]3 ∈ S3.

5.1.3 Fujisaki-Okamoto and an IND-CCA2-secure KEM

We now discuss how to turn the previously described CPA-secure encryption
scheme into an IND-CCA2-secure key-encapsulation mechanism: NTRU-HRSS.
We achieve this using a generic transform by Dent [Den03, Table 5]. Similar
transforms have already been used for the NTRU-based KEMs described in [Sta05;
Sak07] and [BCL+17]. This transform comes with a security reduction in the
random oracle model. As we are interested in post-quantum security, we have to
deal with the quantum-accessible random oracle model (QROM) [BDF+11]. As it
turns out, Dent’s transform can be viewed as a variant of the Fujisaki-Okamoto
transform [FO99]. In [TU15], Targhi and Unruh show how to modify this transform
to obtain a security reduction in the QROM.

5.1. NTRU-HRSS 177

The resulting KEM works as follows. First, a random string m is sampled
from the message space of the encryption scheme. This string is encrypted using
random ‘coins’ to seed the randomness of the PKE, deterministically derived from
m using a hash function. This hash function is modeled as a random oracle (RO) in
the proof — in practice, we use domain-separated extendable output functions to
instantiate all random oracles. The shared secret is derived from m by applying
another random oracle. Finally, the ciphertext and the shared secret are output.

The decapsulation algorithm decrypts the ciphertext to obtainm, derives the
random coins from m, and re-encrypts m using these coins. If the resulting cipher-
text matches the received one, it generates the shared secret fromm.

In the QROM setting, Targhi and Unruh add a hash of m to the ciphertext
for the sake of the proof. In the QROM, a reduction that involves simulating
the random oracles has no way of learning the actual content of adversarial RO
queries. This issue can be circumvented using a length-preserving hash function
in much the same way as we have seen in Section 4.7.1 when discussing Unruh’s
transform [Unr15] for signatures. In the proof, this function is simulated using an
invertible function and inverts it to recover the corresponding input.

For our speci�c parameters, this ‘con�rmation hash’ leads to an increase of the
ciphertext of 141 bytes. This accounts for 11% of the �nal encapsulation size, and
users that do not consider a QROM proof necessary can simply omit the hash.

In Algorithms 31 and 32, we explicitly describe the encapsulation and decapsu-
lation routines that result from applying the transform described above. Note that
the random polynomial r is the instantiation of the random coins, and that we as-
sume three hash functions: Hr ∶S3 → S3, Hss∶S3 → {0, 1}k , and Hqrom∶S3 → {0, 1}∗.
Here, k is the security parameter, dictating the length of the resulting shared secret.
We do not necessarily care about the range of Hqrom, but only require it to be
length-preserving. For completeness, we also include the practically unchanged
key generation in Algorithm 30; we include h in sk to allow re-encryption.

5.1.4 The NIST submission

In November of 2017, NTRU-HRSS was submitted to the NIST’s Post-Quantum
Cryptography Standardization project (see Section 2.2). In January of 2019, NIST
announced that NTRU-HRSS has progressed as one of the second-round candidates.
After merging with the NTRUEncrypt submission, the two schemes continue under
the joint banner of NTRU.

178 Chapter 5. La�ice-based KEMs

Algorithm 30 NTRU-HRSS.KeyGen () Rq,S3,Φ1,T +
1: f $← T +
2: f −1

3 ← f −1 ∈ S3

3: f −1
q ← f −1 ∈Rq

4: д $← T +
5: h ← Φ1 ⋅д ⋅ f −1

q ∈Rq

6: return pk = h, sk = (f , f −1
3 ,h)

Algorithm 31 NTRU-HRSS.Encaps (h = pk) p,Rq,S3,Hr ,Hss,Hqrom

1: m $← S3

2: r ← Hr (m)
3: ss← Hss(m)
4: e1 ← p ⋅ r ⋅h + [m]3 ∈Rq

5: e2 ← Hqrom(m)
6: return e1, e2, ss

Algorithm 32 NTRU-HRSS.Decaps (e1, e2, sk) p,Rq,S3,Hr ,Hss,Hqrom

1: (f , f −1
3 ,h) = sk

2: m′ ← [e1 ⋅ f]q ⋅ f −1
3 ∈ S3

3: r ′ ← Hr (m′)
4: ss← Hss(m′)
5: e′1 ← p ⋅ r ′ ⋅h + [m′]3 ∈Rq

6: e′2 ← Hqrom(m′)
7: if (e1, e2) ≠ (e′1, e′2) then
8: ss← �
9: end if

10: return ss

5.1. NTRU-HRSS 179

The description of NTRU-HRSS as given above very closely aligns with the
submission to the �rst round of the NIST project, recommending the presented
parameter set where n = 701. The second-round submission contains several
changes. While these are largely outside the scope of this thesis, we brie�y outline
the most signi�cant di�erences for completeness.

NTRU-HRSS and NTRU-HPS

In the NTRU submission, we specify four distinct parameter sets: ntruhps2048509,
ntruhps2048677, ntruhps4096821, and ntruhrss701. While ntruhrss701 closely
follows the previously described NTRU-HRSS design, the NTRU-HPS instances
di�er slightly in their use of �xed-weight sampling of polynomials, following the
original work by Ho�stein, Pipher and Silverman [HPS96; HPS98]. This allows
for a more �exible combination of choices for q and n. In all other aspects, the
two proposed variants share design choices — in particular, all parameter sets are
selected to guarantee absence of decryption failures.

The [SXY18] transform

Saito, Xagawa, and Yamakawa [SXY18] propose an alternative transform to obtain
an IND-CCA2 KEM, based on a deterministic public-key encryption (DPKE) scheme.
They demonstrate this by transforming a variant of the NTRU-HRSS-PKE scheme
that underlies NTRU-HRSS. This transform allows for a tight reduction to the CPA-
security of the PKE in the ROM, as well as a reduction in the QROM – the QROM
reduction is also tight under slightly stronger assumptions. Whereas the transform
described in Section 5.1.3 required a con�rmation hash, the [SXY18] transform
avoids this. Besides requiring the PKE to be deterministic, the proof also requires
implicit rejection: rather than returning � in case of failure, the shared secret ss is
set to a random bit string.5 In the round 2 submission, we apply an interoperable
variant of the [SXY18] transform, relying on work by [BP18] to construct the DPKE
without requiring the re-encryption step that [SXY18] introduced as part of the
DPKE decryption.

5 While this is a minor technicality in the proof, arising from preventing distinguishability of simulated
ciphertexts, it has some consequences for the API of actual implementations. In particular, this shifts
the burden of detecting failure from the decapsulation routine to the overarching protocol that later
relies on a mutually shared secret. Note that this is not limited to decryption failure as captured in
De�nition 2.1.11, but also includes, e.g., failure because of ciphertexts outside the domain of Decaps.

180 Chapter 5. La�ice-based KEMs

5.2 High-speed key encapsulation

As part of the software accompanying [HRS+17a] and the submission to NIST’s
Post-Quantum Cryptography Standardization project [HRS+17b], we provide a
portable reference implementation. More importantly in context of this thesis,
we also provide an optimized implementation using vector instructions from the
AVX2 instruction set. Both implementations run in constant time. For the AVX2
implementation, we strongly rely on the speci�c properties of the parameter
set de�ned by n = 701 (and thus q = 8192 and p = 3). This section highlights
some of the relevant building blocks to consider when implementing the scheme,
focusing on the AVX2 implementation. Recall that the AVX2 extensions (see
Section 2.4.1) provide 16 vector registers of 256 bits that support a wide range of
SIMD instructions. As before, all benchmarks in this section were obtained on one
core of an Intel Core i7-4770K Haswell CPU at 3.5 GHz unless otherwise speci�ed.

5.2.1 Polynomial multiplication

It will come as no surprise that one of the most crucial implementation aspects
is polynomial multiplication. For NTRU-HRSS, we require multiplication inRq

during key generation as well as during encryption and decryption. Additionally,
decryption uses multiplication in S3. Furthermore, we use multiplication of binary
polynomials in order to perform inversion in Sq , which we will describe in Sec-
tion 5.2.2. Refer to Algorithms 30, 31, and 32 for the respective pseudocode. Before
looking at speci�c routines, we discuss multiplication strategies more generally.

Popular choices for the ring in Ring-LWE schemes typically make it convenient
to use the number-theoretic transform (NTT) to perform multiplication. As is often
the case for NTRU variants, however, the ring of choice is particularly unsuitable
(see, e.g., the discussion in [BCL+17]).6 This is a consequence of q being a power
of two, and the polynomials being of prime degree. Instead, we rely on more
generically applicable multiplication methods.

Schoolbook multiplication

At the heart of almost any multiplication method lies ‘schoolbook’ multiplication.
This is literally the way multiplication is typically taught in schools: the operands

6 Recently, Lyubashevsky and Seiler demonstrated that this is not necessarily the case [LS19], describing
and implementing a record-shattering NTRU variant over a ring that permits the use of the NTT.

5.2. High-speed key encapsulation 181

are split into parts, the parts are multiplied pairwise, and the resulting products are
accumulated. This apparently trivial operation leaves much room for optimization,
and a long history of extensive literature exists [Bar86; Com90; GPW+04; HW11] on
exactly how to schedule the multiplications. In practice, memory-access patterns
have a de�ning impact on performance, and processors may support operations
that e�ciently combine certain multiplications and additions. Overall, though,
the complexity of schoolbook multiplication is clear, and its cost predictable: the
number of additions and multiplications is quadratic in the size of the operands.
We discuss this in some more detail in the next section, when we more carefully
optimize schoolbook multiplications on a more constrained device. In the imple-
mentation described here, we simply decompose multiplications using Toom-Cook
and Karatsuba until a schoolbook multiplication can be performed within the
available registers.

Karatsuba and Toom-Cook

In the early 1960s, Karatsuba [KO63] showed that the asymptotic complexity of
multiplication is, in fact, not plainly quadratic. Instead, using a method that would
later be named after him, Karatsuba showed that the complexity is Θ(nlog2 3). We
brie�y illustrate the key idea of the method using an example of multiplication of
polynomials (but note that it applies more generally).

Let a and b be polynomials of n terms, which we write as a composition of
limbs of n/2 terms, i.e., a = ah ⋅ xn/2 + al and b = bh ⋅ xn/2 + bl . We then see that:

a ⋅ b = (ah ⋅ xn/2 + al) ⋅ (bh ⋅ xn/2 + bl)
= ahbh ⋅ xn + (albh + ahbl) ⋅ xn/2 + albl
= ahbh ⋅ xn + ((ah + al) ⋅ (bh + bl) − ahbh − albl) ⋅ xn/2 + albl

Plainly counting operations now suggests that the computational load increased
from 4 to 5 multiplications of limbs, and several extra additions. However, crucially,
ahbh and albl occur twice, and can be reused after the initial computation. This
results in only three multiplications with operands of n/2 terms.

The derivation above suggests three n-sized additions and subtractions,7,8

as well as two n/2-sized additions. A further optimization, commonly known as
7 Three additions, and not four: the resultant limbs ahbh ⋅ xn and albl do not overlap at all, and thus do

not introduce any additions of coe�cients.
8 To be exact, the full-size additions are actually not n-sized. Multiplying two polynomials of n/2 terms

produces n − 1 resultant terms: no term of degree n − 1 is produced.

182 Chapter 5. La�ice-based KEMs

‘re�ned Karatsuba’ [Ber09], reduces this to two n-sized additions and three n/2-sized
additions by sharing additions between the subtraction of ahbh ⋅ xn/2 and albl ⋅ xn/2.

Toom [Too63] subsequently generalized Karatsuba’s method, setting lower
bounds in the asymptotics. The algorithm is typically called Toom-Cook, as
Cook [Coo66] is credited for cleaning up the algorithm and making it accessi-
ble. The intuition behind this algorithm is to partially evaluate polynomials and
multiply the results rather than directly multiplying the polynomials themselves.
To this end, each of the two input polynomials is �rst evaluated at a �xed set of
points, resulting in two sets of polynomials of a lower degree. After multiplying
these smaller polynomials, the results are interpolated with respect to the chosen
points, producing limbs that are then recomposed to derive the output polynomial.

While Karatsuba’s method can be applied somewhat more generally to produce
six multiplications (instead of nine) for a three-way split, or recursively to reduce
the sixteen multiplications of a four-way split to only nine, Toom-Cook turns nine
multiplications into �ve (‘Toom-3’) and sixteen into seven (‘Toom-4’). Naturally this
comes at the cost of a more involved process of additions and subtractions, making
the trade-o� less worthwhile for low-degree polynomials. Both Karatsuba’s method
and Toom-Cook’s algorithm scale arbitrarily, and can be arbitrarily and recursively
combined. As we will see in the next sections, polynomials of degrees relevant
in lattice-based cryptography typically require one or two layers of Toom-Cook
before Karatsuba becomes the optimal decomposition strategy.

There is more to multiplication than schoolbook, Karatsuba and Toom-Cook
(such as the work by Schönhage and Strassen [SS71], Fürer’s algorithm [Für09],
and the recent improvements by Harvey, Van Der Hoeven and Lecerf [HHL16]).
For the context of the work presented here, Karatsuba and Toom-Cook su�ce.

Multiplication inRq

We now describe how the multiplication in Rq can be composed of smaller in-
stances by combining Toom-Cook multiplication with Karatsuba’s method. Con-
sider that elements ofRq are polynomials with 701 coe�cients in Z8192; 16 such
coe�cients �t in a vector register. With this in mind, we look for a sequence of
decompositions that results in multiplications best suited for parallel computation.

By applying Toom-Cook to split into 4 limbs, we decompose into 7 multiplica-
tions of polynomials of degree 176. We decompose each of those by recursively
applying two instances of Karatsuba to obtain 63 multiplications of polynomials

5.2. High-speed key encapsulation 183

of 44 coe�cients. Consider the inputs to these multiplications as elements of a
matrix, rounding the dimensions up to 64 and 48. By transposing this matrix we
can e�ciently perform the 63 multiplications in a vectorized manner — rather than
storing fragments of polynomials in vector registers, we designate registers only
for leading coe�cients, for secondary coe�cients, et cetera. As a consequence,
from this point onwards, we are no longer bound to polynomials with degrees that
approximate multiples of 16. Using three more applications of Karatsuba, we de-
compose �rst into 22 and 11 coe�cients, until �nally we are left with polynomials
of degree 5 and 6. At this point a straight-forward schoolbook multiplication can
be performed completely in registers, without any memory interaction.

The full sequence of operations is as follows. We �rst combine the evaluation
step of Toom-4 and the two layers of Karatsuba. Then, we transpose the obtained
44-coe�cient results by applying transposes of 16x16 matrices, and perform the
block of 63 multiplications. The 88-coe�cient products remain in 44-coe�cient
form (i.e. aligned on the �rst and 45th coe�cient), allowing for easy access and
parallelism during interpolation: limbs of 44 coe�cients are the smallest interacting
elements that interact during this phase, making it possible to operate on each part
individually and keep register pressure low.

Multiplication inRq costs 11 722 cycles. Of this, 512 cycles are spent on point
evaluation, 3 692 cycles are used to transpose, 4 776 are spent computing 64-way
parallel multiplications, and interpolation and recomposition take 2 742 cycles.

Multiplication in S3

In the ring S3, it appears to be e�cient to decompose the multiplication by applying
Karatsuba recursively �ve times, resulting in 243 multiplications of polynomials
of degree 22. One could then bitslice the two-bit coe�cients into 256-bit registers
with only very minimal wasted space, and perform schoolbook multiplication on
the 22-register operands, or even decide to apply another layer of Karatsuba.

For our implementation, however, we instead decide to use ourRq multipli-
cation as though it were a generic Z[x]/(xn − 1) multiplication. Even though in
general these operations are not compatible, it works out for our parameters. After
multiplication and summation of the products, each result is at most 701 ⋅ 4 = 2804,
staying well below the threshold of 8192. While a dedicated S3 multiplication
would out-perform this use ofRq multiplication, the choice of parameters makes
this an attractive alternative at a marginal cost.

184 Chapter 5. La�ice-based KEMs

Multiplication in Z2[x]

Dedicated processor instructions have made multiplications in Z2[x] considerably
easier. As part of the CLMUL instruction set, the pclmulqdq instruction computes
a carry-less multiplication of two 64-bit quadwords, performing a multiplication
of two 64-coe�cient polynomials over Z2.

We set out to e�ciently decompose into polynomials of degree close to 64, and
do so by recursively applying a Karatsuba layer of degree 3 followed by a regular
Karatsuba layer and a schoolbook multiplication. This reduces the full multiplica-
tion to 72 multiplications of 59-bit operands, which we perform using pclmulqdq.
By interleaving the evaluation and interpolation steps with the multiplications,
we require no intermediate loads and stores, and a single multiplication ends up
measuring in at only 244 cycles.

5.2.2 Inverting polynomials

Computing the inverse of f plays a critical role in the performance of key gener-
ation. Recall that we compute f −1 ∈ Sq when producing the public key, but also
pre-compute f −1 ∈ S3 as part of the secret key, to be used during decryption.

Inversion in Sq

We �rst compute f −1 with respect to S2 and then apply a variant of Newton
iteration [Sil99] inRq to obtain f −1

q ≡ f −1 (mod (q,Φn)). It may not be the case
that f −1

q = f −1 ∈ Sq , i.e., that fq is the smallest representative, but the di�erence
this makes in the calculation of h is eliminated after the multiplication by Φ1 (see
Algorithm 30). The Newton iteration adds an additional cost of eight multiplications
inRq on top of the cost of an inversion in S2.

Finding an inverse in S2 is done using the fact that f 2n−1−1 ≡ 1 (mod (2,Φn)),
and thus f 2700−2 ≡ f −1 (mod (2,Φ701)) [IT88]. This exponentiation can be done
e�ciently using an addition chain, resulting in twelve multiplications, interleaved
with thirteen series of repeated squarings.

Performing a squaring operation in Z2[x] is equivalent to inserting 0-bits
between the bits representing the coe�cients: the odd-indexed products cancel
out in Z2. When working modulo xn − 1 with odd n, the subsequent reduction of
the polynomial causes the terms with degree exceeding xn to wrap around and
�ll the empty coe�cients. Consider the toy example in Figure 5.1. This allows us

5.2. High-speed key encapsulation 185

f = x6
+ x5
+ x3
+ x + 1 0000 0000 0110 1011

f 2
= x12

+ 2x11
+ x10

+ 2x9
+ 2x8

+ 2x7
+ 5x6

+ 2x5
+ 2x4

+ 2x3
+ x2
+ 2x + 1

≡ x12
+ x10

+ x6
+ x2
+ 1 0001 0100 0100 0101

. . . → 0 0010 1000
≡ x6
+ x5
+ x3
+ x2
+ 1 0000 0000 0110 1101

Figure 5.1: Squaring binary polynomials modulo x7 − 1

to express the problem of computing a squaring as performing a permutation on
bits. More importantly: repeated squaring operations can be considered repeated
permutations, which compose into a single bit permutation.

Rewording the problem to that of performing bit permutations allows for
di�erent approaches — both generically and for speci�c permutations. In order to
aid in constructing routines that perform these permutations, we have developed
a tool to simulate a subset of the assembly instructions related to bit movement.
Rather than representing the bits by their value, we label them by index, making it
signi�cantly easier to maintain an overview. The assembly code corresponding to
the simulated instructions is generated as output. While we have used this tool to
construct permutations that represent multi-squarings, it may be of interest in a
broader context. We include it with this work as separately packaged software.

We use two distinct generic approaches to construct permutation routines,
based respectively on pext/pdep from the BMI2 instruction set, and on vshufb.

The �rst approach amounts to extracting and depositing bits that occur within
the same 64-bit block in both the source and destination bit sequence, under the
constraint that their order remains unchanged. By relabeling the bits according to
their destination and using the patience sorting algorithm [Mal63], we iteratively
�nd the longest increasing subsequence in each block until every bit has been
extracted. Note that the number of required bit extractions is equal to the number
of piles patience sort produces. To minimize this, we examine the result of each
possible input rotation, and rotate it by the o�set that produces the least amount
of disjunct increasing subsequences. Heuristically keeping the most recently used
masks in registers reduces the number of load operations, as the BMI2 instructions
do not allow operands from memory. Further improvements could include dynam-
ically �nding the right trade-o� between rotating registers and re-using masks,
as well as grouping similar extractions. For the permutations we required, these
changes do not seem to hold any promises towards signi�cant improvements.

186 Chapter 5. La�ice-based KEMs

The second approach uses byte-wise shu�ing to position the bits within 256-bit
registers. We consider all eight rotations of the input bytes and use vshufb to
reposition the bytes (as well as vpermq to cross the 128-bit lanes). The number of
required shu�es is minimized by gathering bytes for all three destination registers
at the same time, and where possible, rotation sequences are replaced by shifts (as
the rotated bits often play no role in the bit deposit step, and shifts are signi�cantly
cheaper). The bit extraction approach works for well-structured permutations,
but it is beaten by the more constant shu�ing-based method for more erratic
transpositions. There is room for improvement by hand-crafting permutations, but
it turns out to be non-trivial to beat the generated multi-squarings.

The multi-squaring routines vary around 235 cycles, with a single squaring
taking only 58. Including converting fromRq to S2, an inversion in S2 costs 10 332
cycles. Combining this with the multiplication in Rq described above, the full
inversion in Sq takes 107 726 cycles.

Inversion in S3

Inversion in S3 is done using the ‘Almost Inverse’ algorithm described in [SOO+95]
and [Sil99].9 However, the algorithm as described in [Sil99] does not run in
constant time. Notably, it performs a varying number of consecutive divisions and
multiplications by x depending on the coe�cients in f , and halts as soon as f has
degree zero. We eliminate this issue by iterating through every term in f , (i.e.,
including potential zero terms, up to the nth term), and always performing the same
operations for each term (i.e., constant-time swaps and always performing the same
addition, multiplied with a sign �ag). We list the original algorithm as Algorithm 33,
and the constant-time variant in Algorithm 34. Note that fmadd(f, g, s) is the
operation fi + s ⋅дi mod 3, for all coe�cients fi and дi of the polynomials f and д.

While the number of loop iterations is constant, the �nal value of the rotation
counterk is not — the done �ag may be set before the �nal iteration. We compensate
for k after the loop has �nished by rotating 2i bits for each bit in the binary
representation of k (with i = 0 indicating the least-signi�cant bit), and subsequently
performing a constant-time move when the respective bit is set.

Bene�ting from the width of the vector registers, we operate on bitsliced
vectors of coe�cients. This allows us to e�ciently perform the multiplications
and additions in parallel modulo 3, and makes register swaps comparatively easy.

9 The latest software instead uses the inversion algorithm described by Bernstein and Yang in [BY19].

5.2. High-speed key encapsulation 187

Algorithm 33 AlmostInverse(f) n

1: k ← 1, b ← 1, c ← 0, д ← xn − 1
2: while f0 = 0 do
3: f ← f /x
4: c ← c ⋅ x
5: k ← k + 1
6: end while
7: if deд(f) < deд(д) then
8: swap f and д, swap b and c

9: end if
10: if f = ±1 then
11: return ±xn−k ⋅ b mod xn − 1
12: end if
13: if f0 = д0 then
14: f ← f −д mod 3
15: b ← b − c mod 3
16: else
17: f ← f +д mod 3
18: b ← b + c mod 3
19: end if
20: return b

188 Chapter 5. La�ice-based KEMs

Algorithm 34 AlmostInverseConst(f) n

1: k ← 1, b ← 1, c ← 0, д ← xn − 1, deдf ← n − 1, deдд ← n − 1
2: for i ∈ {1, . . . , 2 ⋅ (n − 1)} do
3: s ← 2 ⋅ f0 ⋅д0 mod 3
4: swap ← s ∧ ¬done ∧ (deдf < deдд)
5: cswap(f , д, swap)
6: cswap(b, c , swap)
7: cswap(deдf , deдд , swap)
8: fmadd(f , д, s ⋅ ¬done)
9: fmadd(b, c , s ⋅ ¬done)

10: f ← f /x
11: c ← c ⋅ x
12: deдf ← deдf − ¬done
13: k ← k + ¬done
14: done ← (deдf = 0)
15: end for
16: return f0 ⋅ xn−kb mod xn − 1

On the other hand, shifts are still fairly expensive, and two are performed for
each loop iteration to multiply and divide by x . With 159 606 cycles, the inversion
remains a costly operation that determines a large chunk of the cost of the key
generation operation. As each instruction in the loop is executed 1400 times, small
incremental improvements in the critical section may still have signi�cant impact.

5.2.3 Performance and comparison

Table 5.1 gives an overview of the performance of various lattice-based encryption
schemes and KEMs. Note that these numbers were collected at the time of this
work, considerably before many of these schemes were revisited and revised in the
context of their submission to NIST’s Post-Quantum Cryptography Standardization
project, and a plethora of new schemes were designed. We consider maintaining
an up-to-date comparison out of scope for this thesis.

As memory is typically not a big concern on the given platforms, concrete
memory usage �gures are often not available and we do not attempt to include this
in the comparison. In the same spirit, our reference implementation uses almost

5.3. Polynomials in Z2m [x] 189

11 KiB of stack space and our AVX2 software uses over 43 KiB, but this should not
be considered to be a lower bound. We warn the reader that direct comparison
of the listed schemes and implementations is near impossible for various reasons.
First of all, there are signi�cant di�erences in the security level; however, at least
most schemes aim at a level of around 128 bits of post-quantum security. More
importantly, the passively secure KEMs have a very fast decapsulation routine,
but turning them into CCA2-secure KEMs via the Targhi-Unruh transform would
add the cost of encapsulation to decapsulation. Also, the level of optimization
of implementations is di�erent. For example, we expect that Frodo as presented
in [BCD+16] or the spLWE-based KEM from [CHK+17] could be sped up through
vectorization. Finally, not all implementations protect against timing attacks and
adding protection may incur a serious overhead. However, the results show that
carefully optimized NTRU is very competitive, even for key generation and even
with full protection against timing attacks.

The column ‘ct?’ indicates whether the software is running in constant time,
i.e., with protection against timing attacks. The results come with several footnotes,
which we enumerate here for readability. a According to the conservative estimates
obtained by the approach from [ADP+16]. b Benchmarked on a 2.6 GHz Intel Xeon E5
(Sandy Bridge). c As reported by SUPERCOP, version 20170725 [BL] for ntruprime-20170815
on Intel Core i-7 4770K (Haswell). d Benchmarked on “PC (Macbook Pro) with 2.6 GHz Intel
Core i5”. e Benchmarked by eBACS [BL] on Intel Xeon E3-1275 (Haswell). f Unlike most
others, the secret key of Lizard does not include the public key required for decryption in the
Targhi-Unruh transform. g According to the authors’ analysis, i.e., not following [ADP+16].
h Derived from the implementation – can be compressed to 10/16 of its size at a marginal
increase in cost of K, E and D by representing each coe�cient using log(q) bits.

5.3 Polynomials in Z2m[x]

Having discussed and optimized NTRU-HRSS, we now broaden our scope some-
what. The work discussed in this section follows from attempts to optimize NTRU-

HRSS for the ARM Cortex-M4 microcontroller, which quickly dissolved into more
generally applicable optimized arithmetic. In particular, we look at the polynomial
arithmetic underlying schemes that operate in the ring Z2m [x].

In 2017, NIST’s Post-Quantum Cryptography Standardization project received
69 “complete and proper” submissions to round 1. By December 2018, �ve of these
had subsequently been withdrawn. Out of the remaining schemes, 22 are based on

190 Chapter 5. La�ice-based KEMs

Table 5.1: Comparison of lattice-based KEMs and public-key encryption.

scheme PQ sec. ct? cycles bytes

Passively secure KEMs
BCNS [BCN+15] 78a yes K : ≈ 2 477 958 sk: 4096

E: ≈ 3 995 977 pk: 4096
D: ≈ 481 937 c: 4224

NewHope [ADP+16] 255a yes K : 88 920 sk: 1792
E: 110 986 pk: 1824
D: 19 422 c: 2048

Frodo [BCD+16] 130a yes K : ≈ 2 938 000b sk: 11 280
(recommended parameters) E: ≈ 3 484 000b pk: 11 296

D: ≈ 338 000b c: 11 288
CCA2-secure KEMs

Streamlined NTRU 137a yes K : 6 115 384c sk: 1600
Prime 4591761 [BCL+17] E: 59 600 pk: 1218

D: 97 452 c: 1047
spLWE-KEM [CHK+17] 128g ? K : ≈ 336 700d sk: ?
(128-bit PQ parameters) E: ≈ 813 800d pk: ?

D: ≈ 785 200d c: 804
Kyber [BDK+17] 161a yes K : 77 892 sk: 2400
(AVX2 optimized) E: 119 652 pk: 1088

D: 125 736 c: 1184
NTRU-HRSS 123a yes K : 307 914 sk: 1422

E: 48 646 pk: 1140
D: 67 338 c: 1281

CCA2-secure public-key encryption
NTRU ees743ep1[HPS+17] 159a no K : 1 194 816 sk: 1 120

E: 57 440 pk: 1 027
D: 110 604 c: 980

Lizard [CKL+18] 128g no K : ≈ 97 573 000 sk: 466 944f,h

(recommended parameters) E: ≈ 35 000 pk: 2 031 616h

D: ≈ 80 800 c: 1 072

5.3. Polynomials in Z2m [x] 191

lattice structures. Most of those lattice-based schemes use structured lattices and, as
a consequence, require fast arithmetic in a polynomial ringRq = Zq[x]/f for some
n-coe�cient polynomial f ∈ Zq[x]. Typically the largest performance bottleneck
of these schemes is multiplication inRq ; the optimization of NTRU-HRSS in the
previous section is a testament to this.

As noted in Section 5.2.1, many proposals, such as NewHope [ADP+16; AAB+17],
Kyber [ABD+17], and LIMA [SAL+17], choose q, n, and f such that multiplication
inRq can be done using the number-theoretic transform (NTT). Because of the
choice of q of the form 2m , this does not apply to NTRU-HRSS (recall the brief
discussion in Section 5.2.1). Similarly, �ve other submissions choose q = 2m with
some small m: Round2 [GMZB+17], Saber [DKR+17], NTRUEncrypt [ZCH+17],
Kindi [Ban17], and RLizard [CPL+17]. Round2 merged with Hila5 [Saa17a] into
Round5 [BGML+18], and the Round5 team presented optimized software for the
ARM Cortex-M4 processor in [SBGM+18]; the multiplication in Round5 has more
structure, allowing for a specialized high-speed routine. Here, we focus on op-
timizing the other �ve schemes (i.e., including NTRU-HRSS [HRS+17b]) on the
Cortex-M4. We do this by programmatically exploring a large design space for the
routines to perform their multiplication operations, combining various instances
of Karatsuba’s method and Toom-Cook’s algorithm.

In related work, we note that Saber has previously been optimized on the ARM
Cortex-M4 [KMR+18] as well; our multiplication implementation outperforms
the results by 42% which improves the overall performance of key generation by
22%, encapsulation by 20%, and decapsulation by 22%. For the other four schemes
the only software that was readily available for the Cortex-M4 was the reference
implementation and, unsurprisingly, our optimized code signi�cantly outperforms
these implementations. For example, our optimized versions of RLizard-1024

and Kindi-256-3-4-2 encapsulation and decapsulation are more than a factor of
20 faster. Our implementation of NTRU-HRSS encapsulation and decapsulation
solidly outperform the optimized Round5 software presented in [SBGM+18].

Most of the work presented in this section was performed between the publica-
tion of round-1 candidates to NIST’s Post-Quantum Cryptography Standardization
project and the elimination of several of these in round 2. In particular, at the
current time of writing, Kindi and RLizard are no longer being considered. Round5,
Saber, NTRU-HRSS, and NTRUEncrypt made it into the second round. As described
in Section 5.1.4, the latter two merged into the NTRU [CDH+19] scheme.

192 Chapter 5. La�ice-based KEMs

Before discussing the multiplication routines, we brie�y introduce Saber, NTRU-

Encrypt, Kindi and RLizard. We follow with an overview of the relevant extensions
to the ARMv7E-M instruction set, and then detail our approach to exploring di�er-
ent Toom-Cook and Karatsuba decomposition strategies for multiplication inRq .
After decomposition, the multiplications dissolve into small schoolbook routines,
which we carefully hand-optimize. We conclude this section (and, indeed, this chap-
ter) with a comparison, presenting record-setting benchmarks for post-quantum
key encapsulation on the Cortex-M4.

5.3.1 Kindi, NTRUEncrypt, RLizard, and Saber

We now present simpli�ed algorithmic descriptions of the optimized schemes; we
omit NTRU-HRSS, as it was discussed in detail in the previous sections.10 For the
sake of brevity, we only provide an overview of the other schemes, and highlight the
aspects relevant in the context of this work. Refer to their respective speci�cations
as submitted to NIST for complete descriptions. Readers solely interested in the
optimized multiplication routine are encouraged to skip ahead to the next section.

As we have seen with NTRU-HRSS, an IND-CCA2-secure KEM can be con-
structed by �rst constructing a passively secure public-key encryption scheme and
applying a transformation. We only include algorithmic descriptions of the under-
lying encryption schemes, omitting the generic transformations. This is su�cient
to show the relevant arithmetic. In particular, we highlight the multiplications in
Rq by denoting these operations using the in�x ⍟.

Similarly, we do not go into any detail with respect to the sampling of random
bit strings, polynomials, or matrices, and simply denote all of these functions as
SampleS , where S is the set from which the elements are drawn. While we specify
a set to which the sampled elements belong, we leave the distribution according to
which they are sampled unspeci�ed. Where deterministic sampling from a speci�c
seed is relevant, SampleS is parameterized with this seed.

Finally, most schemes make use of rounding coe�cients of polynomials. We
denote any such rounding operation by ⌊. . . ⌉ and specify the domain in which the
result lives, but again omit the details of how the rounding operation is de�ned.

10 In the context of this work, we do not optimize all arithmetic involved in NTRU-HRSS. Notably, by
only focusing on the multiplications, we address the core operations required in encapsulation and
decapsulation, but not all inversions as performed during key generation. As before, we note that the
multiplications in the smaller subring can be performed using the multiplication inRq .

5.3. Polynomials in Z2m [x] 193

RLizard

RLizard is part of the Lizard proposal [CPL+17]. It is a cryptosystem based on the
Ring-Learning-with-Errors (Ring-LWE) and Ring-Learning-with-Rounding (Ring-
LWR) problems. As the names suggest, these problems are closely related, and
e�cient reductions exist [BPR12; BGM+16]. The submission motivates the choice
for the Learning-with-Rounding problem by stressing its deterministic encryption
routine and reduced ciphertext size compared to Learning-with-Errors. The main
structure underlying RLizard is the ring Rq = Zq[x]/(xn + 1), but coe�cients
of the ciphertext are ultimately reduced to Rp , where p < q. We consider the
parameter set where n = 1024, q = 2048 and p = 512. In the submission the derived
KEM is referred to as RING_CATEGORY3_N1024 – for the sake of brevity, we denote
it as RLizard-1024 from this point onwards. As both p and q are powers of 2, all
multiplications in RLizard �t the structure that we target in this work.

Algorithm 35 RLizard.KeyGen () Rq

1: a, s, e ← SampleRq

2: b ← −a ⍟ s + e ∈Rq

3: return (pk = (a,b), sk = s)

Algorithm 36 RLizard.Enc (m, (a,b) = pk) p,q,Rp,Rq

1: r ← SampleRq

2: c′1 ← a ⍟ r ∈Rq

3: c′2 ← b ⍟ r ∈Rq

4: c1 ← ⌊(p/q) ⋅ c′1⌉ ∈Rp

5: c2 ← ⌊(p/q) ⋅ ((q/2) ⋅m + c′2)⌉ ∈Rp

6: return (c1,c2)

Algorithm 37 RLizard.Dec ((c1,c2), s = sk) p,R2

1: m′ ← ⌊(2/p) ⋅ (c2 + c1 ⍟ s)⌉ ∈R2

2: returnm′

194 Chapter 5. La�ice-based KEMs

NTRUEncrypt

Like NTRU-HRSS, the NTRUEncrypt scheme [ZCH+17] is based on the standard
NTRU construction [HPS98]. Its choice of parameters is based on a recent revisiting
in [HPS+17]. The NIST submission of NTRUEncrypt [ZCH+17] presents several
instantiations, but we limit ourselves to the instances where q = 2k . We look
at the parameter set NTRU-KEM-743, where p = 3, q = 2048, and n = 743; the
arithmetic takes place in the ring Rq = Zq[x]/(xn − 1), but coe�cients are also
reduced modulo p when moving toRp . The optimizations in this work carry over
to the smaller NTRU-KEM-443 parameter set, but not to NTRU-KEM-1024 (which
uses a prime q). As in NTRU-HRSS, the relevant multiplication occurs when the
noise polynomial r is multiplied with the public key h, but we also utilize our
multiplication routine for the other multiplication in Dec.

Algorithm 38 NTRUEncrypt.KeyGen () p,Rq

1: f ,д ← SampleRq

2: h ← (p ⋅д)/(p ⋅ f + 1) ∈Rq

3: return (pk = h, sk = (f ,h))

Algorithm 39 NTRUEncrypt.Enc (m,h = pk) p,Rp,Rq

1: r ← SampleRq
(m,h)

2: t ← r ⍟h

3: mmask ← SampleRq
(t)

4: m′ ←m −mmask ∈Rp

5: c ← t +m′
6: return c

Saber

Like Lizard and RLizard, Saber [DKR+17; DKR+18] also relies on the Learning-
with-Rounding problem. Rather than directly targeting LWR or the ring variant, it
positions itself in the middle-ground formed by the Module-LWR problem [BPR12;
DKR+18]. Like RLizard, Saber operates in the ringRq = Zq[x]/(xn +1), and in the
smallerRp . Because of the Module-LWR structure, however, n is �xed to 256 for
all parameter sets. Instead of varying the degree of the polynomial, Saber variants
use matrices of varying sizes with entries in the polynomial ring (denotedR`×`).

5.3. Polynomials in Z2m [x] 195

Algorithm 40 NTRUEncrypt.Dec (c, (f ,h) = sk) p,Rp,Rq

1: m′ ← f ⍟ c ∈Rp

2: t ← c −m′
3: mmask ← SampleRq

(t)
4: m ←m′ +mmask ∈Rp

5: r ← SampleRq
(m,h)

6: if p ⋅ r ⍟h = t then
7: returnm

8: else
9: return �

10: end if

With the �xed q = 8192, this ensures that an optimized routine for multiplication
inRq directly applies to the smaller LightSaber and the larger FireSaber instances
as well. Other parameters p and t are powers of 2 smaller than q; for the Saber

instance,11 p = 1024 and t = 8. The vector h is a �xed constant inR`
q .

Note that some of the multiplications in Saber are inRq and some are inRp

— in our software, both use the same routine. As we will explain in Section 5.4,
the smaller value of p would in principle allow us to explore a larger design space
for multiplications inRp , but for the small value of n = 256 there is nothing to be
gained from using, e.g., higher-degree Toom-Cook instances.

Algorithm 41 Saber.KeyGen () h, `,Rp,Rq

1: ρ ← Sample{0,1}256

2: A← SampleR`×`
q

(ρ)
3: s ← SampleR`

q

4: b ← ⌊A⍟ s +h⌉ ∈R`
p

5: return (pk = (ρ,b), sk = s)

KINDI

In the same vein as Saber, Kindi [Ban17] is based on a matrix of polynomials,
relating it to the Module-LWE problem [LS15]. Somewhat more intricate than
the standard approach, it relies on a trapdoor construction, and constructs a CPA-

11 Note that both the scheme and the category-3 parameter set are called Saber.

196 Chapter 5. La�ice-based KEMs

Algorithm 42 Saber.Enc (m, (ρ,b) = pk) p, `,R2t ,Rp,Rq

1: A← SampleR`×`
q

(ρ)
2: s′ ← SampleR`

q

3: b′ ← ⌊A⍟ s′ +h⌉ ∈R`
p

4: v′ ← b ⍟ ⌊s′⌉ ∈Rp

5: cm ← ⌊v′ + (p/2) ⋅m⌉ ∈R2t

6: return (cm,b′)

Algorithm 43 Saber.Dec ((cm,b′), s = sk) p, t,R2,Rp

1: v ← b′ ⍟ ⌊s⌉ ∈Rp

2: m′ ← ⌊v − (p/(2t)) ⋅ cm +h⌉ ∈R2

3: returnm′

secure PKE that is already close to a key-encapsulation mechanism. Kindi oper-
ates in the polynomial ring Rq = Zq[x]/(xn + 1) with q = 2k , the more general
Rb = Zb[x]/(xn + 1) for some integer b, and in the polynomial ring with integer
coe�cientsR = Z[x]/(xn + 1). The relevant arithmetic primarily happens in the
ringRq , though, meaning that the performance of Kindi still considerably improves
as a consequence of this work. We consider the parameter set Kindi-256-3-4-2,
where n = 256 and q = 214. This also de�nes д ∈Rq , ` = 3 and p = 4.

Algorithm 44 Kindi.KeyGen() `,Rq

1: µ ← Sample{0,1}256

2: A← SampleR`×`
q

(µ)
3: r , r ′ ← SampleR`

q

4: b ← A⍟ r + r ′
5: return (pk = (b, µ), sk = (r ,b, µ))

5.3.2 ARM Cortex-M4

Our target platform is the ARM Cortex-M4, which implements the ARMv7E-M

architecture. See Section 2.4.2. We recall the most relevant properties here.
The architecture de�nes 16 general-purpose registers, of which 14 are freely

usable by the developer. In contrast to smaller architectures like the Cortex-M3, the
Cortex-M4 supports the DSP instructions smuad, smuadx, smlad, and smladx, which

5.3. Polynomials in Z2m [x] 197

Algorithm 45 Kindi.Enc (m, (b, µ) = pk) д, `,n,p,R2,Rp,Rq

1: s1 ← SampleR2

2: A← SampleR`×`
q

(µ)
3: p← b +д
4: s̄1 ← SampleRp

(s1)
5: (s2, . . . , s`)← SampleR`−1

p
(s1)

6: s ← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , s` − [p]) ∈R`
q

7: ū ← Sample{0,1}n(`+1) log 2p (s1)
8: u ← ū ⊕m

9: e ← (u1 − [p], . . . ,u` − [p]) ∈R`
q

10: e`+1 ← u`+1 − [p]
11: (c,c`+1)← (A⍟ s + e, p⍟ s +д ⋅ [p] + e) ∈R`+1

q

12: return (c,c`+1)

Algorithm 46 Kindi.Dec ((c,c`+1), (r ,b, µ) = sk) д, `,n,p,q,R2,Rp,Rq

1: A← SampleR`×`
q

(µ)
2: p← b +д
3: v ← c`+1 − c ⍟ r

4: s1 ← (⌊v1/2logq−1⌉, . . . , ⌊vn/2logq−1⌉) ∈R2

5: s̄1 ← SampleRp
(s1)

6: (s2, . . . , s`)← SampleR`−1
p

(s1)
7: s ← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , s` − [p])
8: ū ← Sample{0,1}n(`+1) log 2p (s1)
9: (e, e`+1)← (c −A⍟ s,c`+1 − p⍟ s) ∈R`+1

q

10: u ← (e1 + [p], . . . e` + [p])
11: u`+1 ← e`+1 + [p]
12: m ← u ⊕ ū

13: returnm

198 Chapter 5. La�ice-based KEMs

Table 5.2: Dual 16-bit multiplication instructions supported by the ARM Cortex-M4.

instruction semantics
smuad Ra, Rb, Rc Ra← RbL ⋅ RcL + RbH ⋅ RcH
smuadx Ra, Rb, Rc Ra← RbL ⋅ RcH + RbH ⋅ RcL
smlad Ra, Rb, Rc, Rd Ra← RbL ⋅ RcL + RbH ⋅ RcH + Rd

smladx Ra, Rb, Rc, Rd Ra← RbL ⋅ RcH + RbH ⋅ RcL + Rd

we use to signi�cantly speed up low-degree polynomial multiplication using the
schoolbook method. Those low-degree multiplication routines are used as a core
building block for higher-degree polynomial multiplication. The DSP instructions
perform two half-word multiplications, accumulate the two products and optionally
add another 32-bit word in one clock cycle (as illustrated in Table 5.2). There is
strong synergy between these DSP instructions and the fact that loading a 32-bit
word using ldr is as expensive as loading a halfword using ldrh.

As we will be performing loops of the same operation across polynomials, we
stress that it is important to perform load operations sequentially (i.e., uninter-
rupted by other instructions) to bene�t from pipelining. This shows in the ldm

instruction, but also when simply adjoining multiple ldr instructions. While the
same behavior occurs for store instructions, combining loads and stores only incurs
pipelining bene�ts when stores follow loads, but not when loads follow stores.

The ARMv7E-M instruction set contains support for 16-bit Thumb instructions,
such as simple arithmetic and memory operations with register parameters. Using
these instructions has an obvious bene�t for code size, but comes at the cost of
introducing misalignment: instruction fetching is signi�cantly more expensive
when instruction o�sets are not aligned to multiples of four bytes. To combat this,
Thumb instructions can be expanded to full-word width using the .w su�x.

In our experiments we use the STM32F407, featuring 1 MiB of Flash ROM, 192
KiB of RAM, and a maximum frequency of 168 MHz. See Section 2.4.2 for more
details on this platform. For benchmarking, we use the reduced clock frequency of
24 MHz to not be impacted by wait states caused by slow memory [SS17]. We use
the GNU ARM Embedded Toolchain12 (arm-none-eabi) with arm-none-eabi-gcc-

8.3.0, using the optimization �ag -O3.

12 https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

5.4. Multiplication in Z2m [x] 199

5.4 Multiplication in Z2m[x]

Rather than implementing multiplication inRq = Zq[x]/f for some f ∈ Zq[x], we
focus on non-reduced multiplication in Z2m [x]. This is identical across all schemes
we investigate — the reduction is done outside. At little extra cost, this greatly
generalizes the usability of our results without introducing additional complexity.

In this section, we describe the way we break down such a multiplication
for a speci�c number of coe�cients n, modulo a speci�c q. This is done using
combinations of Toom-Cook’s and Karatsuba’s multiplication algorithms. For
a given n and q, there are multiple possible approaches; we explore the entire
space and select the optimum for each parameter set. We use Python scripts that
generate optimized assembly functions for all combinations, for arbitrary-degree
polynomials (with degree below 1024). These scripts are parameterized by the
degree, the variant of Toom’s method (Toom-3, Toom-4, both Toom-4 and Toom-3
or no Toom layer at all), and the threshold at which to switch from recursive
Karatsuba to schoolbook multiplication. We analyze these results in Section 5.5.1.

5.4.1 Revisiting Karatsuba and Toom-Cook

The multiplication algorithms by Karatsuba [KO63] and Toom [Too63; Coo66]
were brie�y introduced in Section 5.2.1. We now revisit speci�c instances in the
context of multiplications in Z2m [x]. For this work, we make use of Toom-3 and
Toom-4, and recursive application of degree-2 Karatsuba. While Toom-4 is more
e�cient than Toom-3 in the asymptotics (which, in turn, outperforms Karatsuba),
in practice the additional additions and subtractions make it non-trivial to reason
about the cut-o� points. In particular, the expensive and complex memory-access
patterns make this hard to analyze.

Toom-Cook

It is important to note that there is a loss in precision when using Toom’s method,
as it involves division over the integers. While divisions by three and �ve can
be replaced by multiplications by their inverses modulo 216, i.e., 43691 and 52429,
this is not possible for divisions by powers of two. Consequently, for our choice
of evaluation points, Toom-3 loses one bit of precision, and Toom-4 loses three
bits. Since our Karatsuba and schoolbook implementations operate in Z216[x],
this imposes constraints on the values of q for which our implementations can

200 Chapter 5. La�ice-based KEMs

be used; Toom-3 can be used for q ≤ 215, Toom-4 can be used for q ≤ 213. These
losses accumulate, and a combination of both is only possible if q ≤ 212. This also
rules out higher-order Toom methods. While switching to 32-bit arithmetic would
allow using higher-order Toom, this slows down Karatsuba and the schoolbook
multiplications signi�cantly by increasing load-store overhead and ruling out DSP
instructions.

We reiterate that the runtime is signi�cantly impacted by the additions and
subtractions, as well as the increased and more intricate memory-access patterns.
This makes it not immediately obvious in general which degree of Toom-Cook is
the fastest for a given n. We �rst evaluate whether to decompose using a layer of
Toom-4, Toom-3, both Toom-4 and Toom-3, or no Toom at all. We then repeatedly
apply Karatsuba’s method to break down the multiplications further. Through
trial and error, this continues up to the threshold at which the ‘naive’ schoolbook
method becomes the fastest approach.

Karatsuba

The call to the topmost Karatsuba layer is a function call, but from that point on,
we recursively inline the separate layers. Upon reaching the threshold at which the
schoolbook approach takes precedence, we jump to the schoolbook multiplication
as an explicit subroutine. This provides a trade-o� that keeps code size reasonable
and is �exible to implement and experiment with, but does imply that the register
allocation between the �nal Karatsuba layer and the underlying schoolbook is
disjoint. It may be worthwhile to further optimize this for speci�c n. Note that we
only apply Karatsuba’s method at degree-2, and also do not combine operations
across recursive calls. See [WP06] for details on a more general approach.13

As we perform several nested layers of Karatsuba multiplication, it is important
to carefully manage memory usage. We do not go for a largely in-place approach,
as is done in [KMR+18], but instead allocate stack space for the sums of the high
and low limbs, relying on the input and output bu�ers for all other terms. This
leads to e�ective memory usage without paying with performance.

13 The approach by Weimerskirch and Paar provides a middle ground between Karatsuba and Toom-Cook.
While allowing for a wider range of splits than traditional Karatsuba and a more e�cient way of dealing
with the newly introduced additions, it does come at the cost of more small-sized multiplications
than similarly-sized Toom-Cook instances. A key advantage, though, is the fact that this approach
does not introduce divisions that lead to a loss of precision. This could be relevant in particular for
multiplications where both n and q are large.

5.4. Multiplication in Z2m [x] 201

Assembly-level optimizations

For both Toom and Karatsuba, most operations involve adding and subtracting
polynomials of moderate size from a given address. We stress the importance of
careful pipelining, loading and storing 16-bit coe�cients pairwise into full-word
registers, and using uadd16 and usub16 arithmetic operations. We rely on o�set-
based instructions for memory operations, in particular for the more intricate
memory-access patterns in Toom and Karatsuba. This leads to a slight increase in
code size compared to using ldm and stm, (and some bookkeeping for polynomials
exceeding the maximal o�set of 4095 bytes), but ensures that addresses can be
computed during code generation.

For ease of implementation, our code generator for Toom is restricted to di-
mensions that divide without remainder. For Karatsuba, we do not restrict the
dimensions at all: the implementation can work on unbalanced splits, and thus
polynomials of unequal length. In order not to waste any memory or cycles here
(e.g., by applying common re�nement approaches), the Python script becomes a
rather complex composition of conditionals. Rather than trying to combine pairs
of 16-bit additions into uadd16 operations on the �y, we run a post-processing step
over the scheduled instructions to do so.

Similarly, instead of considering alignment to 32-bit word boundaries during
code generation, we use a post-processing step. After compilation, we disassemble
the resulting binary and expand Thumb instructions in the cases where they cause
misalignment. This allows us to use the smaller Thumb instructions where possible,
but avoids paying the overhead of misalignment. In particular, this is important
when an odd number of Thumb instructions is followed by a large block of 32-bit
instructions. The alignment post-processing is done using a Python script that is
included with our code generation software, and may be of independent interest.

5.4.2 Small schoolbook multiplications

We carefully investigate several approaches to perform the small-degree schoolbook
multiplications that underlie Karatsuba and Toom-Cook, varying the approaches
and implementing distinct generation routines for di�erent n.

For each approach, we keep the polynomial in packed representation, loading
coe�cients into the 32-bit registers in pairs. The ARMv7E-M instruction set
provides multiplication instructions that e�ciently operate on data in this format.

202 Chapter 5. La�ice-based KEMs

a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

Figure 5.2: Pairing coe�cients to reduce the number of multiplications using
smladx / smlad. Dashed boxes represent multiplications involving repacked b.

It includes the discussed parallel multiplications, but also instructions that operate
only on speci�c halfwords.

For n ≤ 10, all input coe�cients can be kept in registers simultaneously, with
several registers remaining to keep the pointers to the source and destination
polynomials around. We �rst compute all coe�cients of terms with odd exponents,
before using pkh instructions to repack one of the input polynomials and computing
the remaining coe�cients. This ensures that the vast majority of the multiplications
can be computed using the two-way parallel multiply-accumulate dual instructions.
See Figure 5.2 for an illustration of this — here, b is repacked to create the dashed
pairs. This is somewhat similar to the approach used in [KMR+18], but ends up
needing less repacking and memory interaction.

For n = 11 and n = 12, we spill the source pointers to the stack after loading
the complete polynomials. At these dimensions the registers are used to their
full potential, and by using the DSP instructions we end up needing only 78
multiplication instructions: 66 combined multiplications, 12 single multiplications,
and not a single dedicated addition instruction. This o�sets the extra cost of the
six packing instructions considerably. For n = 13 and n = 14, not all coe�cients �t
in registers at the same time. This leads to spills for the middle columns (i.e., the
computation of coe�cients around xn , which are a�ected by all input coe�cients).
Even when using the Python abstraction layer, manual register allocation becomes
somewhat tedious in the cases that involve many spills to the stack. We remedy this
by using bare-bone register-allocation functions akin to the scripts in [HRS+17a].

For larger n, the above strategy leads to an excessive amount of register spills.
Instead, we compose the multiplication of a grid of smaller instances. For 15 ≤

5.5. Measuring multiplication performance 203

1
23

4
1

2
34

5
67

8
9

Figure 5.3: Decomposing larger schoolbook multiplications

n ≤ 24, we compose the multiplication out of four smaller multiplications, for
25 ≤ n ≤ 36, we use a grid of nine multiplications, et cetera. Note that we use at
most n = 12 for the building blocks, given the extra overhead of the register spills
for n ∈ {13, 14}. We further remark that it is important to carefully schedule the
(re)loading and repacking of input polynomials. We illustrate this in Figure 5.3.

The approach described above works trivially when n is divisible by ⌈ n
12⌉, but

leads to a less symmetric pattern for other dimensions. We plug these holes by
starting from a value of n that divides evenly, and either adding a layer ‘around’
the parallelogram or nullifying the super�uous operations by post-processing.

Figure 5.4 and Table 5.3 illustrate the performance of these routines.

5.5 Measuring multiplication performance

In this section we present benchmark results for polynomial multiplication, and for
key generation, encapsulation, and decapsulation of the round-1 versions of Kindi,
NTRUEncrypt, NTRU-HRSS, RLizard, and Saber. We attempt to select parameter
sets that target NIST security category 3, but have to make an exception for NTRU-

HRSS and Kindi. The NTRU-HRSS submission only provides a single parameter
set, rated at category 1. For Kindi, the reference implementations of the category 3
parameter sets require more than 128 KiB of RAM, and thus do not trivially �t our
platform. We use Kindi-256-3-4-2 instead, which targets security category 1. See
Section 2.2 for details on the NIST security categories.

All cycle counts presented in this section were obtained by using an adapted
version of the pqm4 benchmarking framework [KRS+18], which uses the built-in
24-bit hardware timer. We also obtain memory-usage measurements using the
measurement code from pqm4. This is done by writing a canary to the entire stack
space, running the scheme under test and subsequently checking how much of the
canary was overwritten.

204 Chapter 5. La�ice-based KEMs

0 5 10 15 20 25 30 35 40
Polynomial degree

0

1000

2000

3000
Cl

oc
k

cy
cle

s
Schoolbook
Karatsuba

Figure 5.4: Runtime of generated optimized polynomial multiplication for small n.
For n < 20 our hand-optimized schoolbook multiplications are clearly superior, for
n > 36 �rst applying at least one layer of Karatsuba is faster.

5.5.1 Isolated multiplications

We �rst present performance results for polynomial multiplication as a building
block. We obtain benchmarks for the multiplication for all possible n < 1024,
iterating over the di�erent alternatives to �nd the optimal decomposition.

Figure 5.4 shows the runtime of our hand-optimized schoolbook implementa-
tions and the generated optimized Karatsuba code for small n. For the Karatsuba
benchmarks, we provide measurements at the optimal optimal ‘schoolbook thresh-
old’. To illustrate this, consider n = 32. Here, we can either apply one layer of
Karatsuba and then use the schoolbook method for n = 16 or, alternatively, use
two layers of Karatsuba and use schoolbook multiplications at n = 8. The former
variant is faster in this scenario, which leads to a schoolbook threshold of 16. The
graph shows that directly applying the schoolbook method is optimal for n < 20,
and that Karatsuba outperforms schoolbook for n > 36. For values in between
these bounds, the plot is inconclusive. To some extent, this can be attributed to the
amount of hand-optimization that went into some of the more relevant schoolbook
implementations. More importantly, it is strongly in�uenced by register pressure:
there is a large performance hit in the step from n = 14 to n = 15, which then
propagates to dimensions that break down to these schoolbook multiplications
after applying Karatsuba. For dimensions relevant in the decomposition of the
multiplications used in the schemes, we found that the cross-over point is at n = 22,
i.e., for values n > 22 one should use an additional layer of Karatsuba.

5.5. Measuring multiplication performance 205

Table 5.3: Benchmarks for small schoolbook multiplication routines. The cycle
counts include an overhead of approximately 50 cycles for benchmarking.

n cycles

1 56
2 59
3 69
4 74
5 85
6 92
7 107
8 114
9 131
10 140
11 168
12 177

n cycles

13 232
14 252
15 341
16 343
17 467
18 466
19 508
20 510
21 626
22 626
23 670
24 672

n cycles

25 926
26 1 057
27 1 057
28 1 168
29 1 167
30 1 170
31 1 264
32 1 266
33 1 431
34 1 547
35 1 546
36 1 549

n cycles

37 1 965
38 1 966
39 1 963
40 1 965
41 2 294
42 2 588
43 2 595
44 2 594
45 2 824
46 2 825
47 2 822
48 2 824

0 200 400 600 800 1000
Polynomial degree

0

50000

100000

150000

200000

250000

300000

350000

400000

Cl
oc

k
cy

cle
s

Karatsuba
Toom-3
Toom-4 + Toom-3
Toom-4

Figure 5.5: Runtime of di�erent decomposition variants for multiplications of
polynomials of large degree.

206 Chapter 5. La�ice-based KEMs

Figure 5.5 shows the performance of the di�erent multiplication approaches
for larger n. While the general trend is visible, we still observes a jagged line. We
speculate that the main cause for this is similar to the irregularities in Figure 5.4:
the variance in the increasing cost of the schoolbooks is magni�ed as n grows
larger and speci�c schoolbook sizes are repeated in the decomposition of large
multiplications. Because of the di�erence in decomposition between Toom-3 and
Toom-4, this favors each method for di�erent ranges of n, resulting in alternating
optimality. The speci�c decomposition choices also strongly a�ect the memory-
access patterns and, by extension, data alignment, sometimes resulting in a large
performance penalty. In practice, comparing benchmarks for speci�c n seems to
be the only way to come to conclusive results. We observe that the lines are not
even monotonically increasing — it is, of course, trivial to pad a smaller-degree
polynomial and use a larger multiplication routine to bene�t of a more e�cient
decomposition. Through careful post-processing, one can then eliminate many
redundant instructions while retaining the apparently bene�cial decompositions.

As Figure 5.5 does not allow us to identity which method performs best for
clear bounds on n, we focus on individual n as relevant for the �ve cryptographic
schemes we intend to cover. This restricts n to {256, 701, 743, 1024}. We report the
cycle counts for each method in Table 5.4, as well as the additional stack usage. All
cycle counts are for multiplication excluding subsequent reduction needed to obtain
an n-coe�cient polynomial; the additional cost of reduction di�ers depending on
the speci�c choice of ring. While there is some performance bene�t to performing
the reduction inline, the main improvement is in memory usage. For the Toom
variants, this would allow for in-place recomposition of the output polynomial,
reducing stack usage by roughly 2n coe�cients. We leave this for future work.

For the rather small n = 256 (Saber, Kindi), we already see that Toom-4 followed
by two layers of Karatsuba is slightly faster than directly applying Karatsuba. As
the di�erence is small, one might decide to not use a Toom layer at all, at the bene�t
of a much simpler implementation and considerably reduced stack usage. Toom-4
is not suitable for Kindi (n = 256,q = 214), as q is too large. Again the impact is
marginal, though, as Karatsuba is only a few percent slower at this dimension, also
outperforming Toom-3 by a small di�erence. For larger n ∈ {701, 743, 1024} (NTRU-

HRSS, NTRUEncrypt,RLizard) applying Toom-4 is most e�cient. The second layer
ends up in the same range as the smaller n, where it is again a close competition
between applying Toom-3 or directly switching to recursive Karatsuba.

5.5. Measuring multiplication performance 207

Table 5.4: Benchmarks for polynomial multiplication, excluding reduction. The
fastest approach is marked with a ▷ symbol. The ‘Toom-4’ and ‘Toom-4 + Toom-3’
approaches are not applicable to all parameter sets, as q may be too large.

approach threshold cycles stack

Saber

(n = 256, q = 213)

Karatsuba only 16 38 000 2 020
Toom-3 11 39 043 3 480

▷ Toom-4 16 36 274 3 800

Kindi-256-3-4-2

(n = 256, q = 214)
▷ Karatsuba only 16 38 000 2 020

Toom-3 11 39 043 3 480

NTRU-HRSS

(n = 701, q = 213)

Karatsuba only 11 202 889 5 676
Toom-3 15 205 947 9 384

▷ Toom-4 11 172 882 10 596

NTRU-KEM-743

(n = 743, q = 211)

Karatsuba only 12 217 130 6 012
Toom-3 16 211 588 9 920

▷ Toom-4 12 186 639 11 208
Toom-4 + Toom-3 16 192 503 12 152

RLizard-1024

(n = 1024, q = 211)

Karatsuba only 16 356 046 8 188
Toom-3 11 352 770 13 756

▷ Toom-4 16 302 504 15 344
Toom-4 + Toom-3 11 310 712 16 816

208 Chapter 5. La�ice-based KEMs

5.5.2 Encapsulation and decapsulation

We now present performance results for RLizard, Saber, Kindi, NTRUEncrypt, and
NTRU-HRSS. All the software described in this section started from the reference
implementations submitted to round 1 of NIST’s Post-Quantum Cryptography
Standardization project, but went considerably further than just replacing the
multiplication routines with the optimized routines described in Section 5.4. For
Saber, we considered starting from the already optimized implementation by
Karmakar, Bermudo Mera, Sinha Roy, and Verbauwhede [KMR+18], but achieved
marginally better performance by starting from the reference code. We start by
describing the changes that apply to the reference implementations; some of these
changes might be more generally advisable as updates to reference software. Where
relevant for round 2 of NIST’s Post-Quantum Cryptography Standardization project,
we have brought the suggestions to the attention of the respective submitters.

Memory allocations

The reference implementations of Kindi, RLizard, and NTRUEncrypt make use of
dynamic memory allocation on the heap. The RLizard implementation does not free
all the allocated memory, which results in memory leaks; also it misinterprets the
NIST API and assumes that the public key is always stored right behind the secret
key. This may result in reads from uninitialized (or even unallocated) memory.
Luckily none of the implementations require dynamically allocated memory; the
sum of all allocated memory is reasonably small and known at compile time. We
eliminated all dynamic memory allocations and only rely on the stack to store
temporary data, signi�cantly improving performance.

Hashing

Each of the �ve schemes makes use of variants of SHA-3, SHAKE [NIST15b],
or SHA-512 [NIST15a]. We attempt to eliminate the in�uence of di�erence in
implementation quality for the symmetric primitives by making use of the same
implementations for all schemes. For SHA-3 and SHAKE we use the optimized
assembly implementation available in pqm4 [KRS+18], which makes use of the
optimized Keccak-permutation from the Keccak Code Package [DHP+]. For SHA-

512, we use a reference C implementation from SUPERCOP [BL] that proved to be
hard to outperform with hand-written assembly.

5.5. Measuring multiplication performance 209

Table 5.5: Benchmarks for the �ve schemes targeted in this work.

implementation clock cycles stack usage

Saber

NIST reference
K: 6 530k K: 12 616
E: 8 684k E: 14 896
D: 10 581k D: 15 992

[KMR+18]
K: 1 147k K: 13 883
E: 1 444k E: 16 667
D: 1 543k D: 17 763

This work
K: 895k K: 13 248
E: 1 161k E: 15 528
D: 1 204k D: 16 624

Kindi-256-3-4-2

NIST reference
K: 21 794k K: 59 864
E: 28 176k E: 71 000
D: 37 129k D: 84 096

This work
K: 969k K: 44 264
E: 1 320k E: 55 392
D: 1 517k D: 64 376

NTRU-HRSS

NIST reference
K: 205 156k K: 10 020
E: 5 166k E: 8 956
D: 15 067k D: 10 204

This work
K: 145 963k K: 23 396
E: 404k E: 19 492
D: 819k D: 22 140

NTRU-KEM-743

NIST reference
K: 59 815k K: 14 148
E: 7 540k E: 13 372
D: 14 229k D: 18 036

This work
K: 5 198k K: 25 320
E: 1 601k E: 23 808
D: 1 881k D: 28 472

RLizard-1024

NIST reference
K: 26 423k K: 4 272
E: 32 156k E: 10 532
D: 53 181k D: 12 636

This work
K: 525k K: 27 720
E: 1 345k E: 33 328
D: 1 716k D: 35 448

210 Chapter 5. La�ice-based KEMs

Table 5.6: Benchmarks on the Cortex-M4 for other KEMs submitted to NIST’s
Post-Quantum Cryptography Standardization project.

implementation clock cycles stack usage

R5ND_1PKEb [SBGM+18]
K: 658k K: ?
E: 984k E: ?
D: 1 265k D: ?

R5ND_3PKEb [SBGM+18]
K: 1 032k K: ?
E: 1 510k E: ?
D: 1 913k D: ?

NewHopeCCA1024 [KRS+18; AJS16]
K: 1 244k K: 11 152
E: 1 963k E: 17 448
D: 1 979k D: 19 648

Kyber768 [KRS+18]
K: 1 200k K: 10 544
E: 1 446k E: 13 720
D: 1 477k D: 14 880

5.5. Measuring multiplication performance 211

Comparison to reference code

Table 5.5 lists benchmarks for the optimized implementations as well as for the ref-
erence implementations with the modi�cations described above. We dramatically
increase the performance for all schemes covered by this work; the improvements
go up to a factor of 49 for the key generation of RLizard-1024. Since both Karat-
suba and Toom-Cook require storing additional intermediate polynomials on the
stack, we increase stack usage for all schemes except Kindi-256-3-4-2. The refer-
ence implementations of Kindi-256-3-4-2 already contained optimized polynomial
multiplication methods, which did not take stack usage into account.

Comparison to previous results

To the best of our knowledge, at the time of writing, Saber was the only scheme
of the �ve schemes targeted in this work that had been optimized for the ARM
Cortex-M family in previous work [KMR+18]. Our optimized implementation
outperforms this CHES 2018 implementation by 22% for key generation, 20% for
encapsulation, and 22% for decapsulation. Karmakar, Bermudo Mera, Sinha Roy,
and Verbauwhede report 65 459 clock cycles for their optimized 256-coe�cient
polynomial multiplication, but we should note that their polynomial multiplication
includes the reduction. Including the reduction, our multiplication requires 38 215
clock cycles, which is an improvement of 42%. On a more granular level, they claim
587 cycles for 16-coe�cient schoolbook multiplication, while we require only 343
cycles (see Table 5.3; this includes approximately 50 cycles for benchmarking).

Several other NIST candidates have been evaluated on Cortex-M4 platforms.
We list their performance results in Table 5.6 for comparison. Most recently, record-
setting results were published for Round5 on Cortex-M4 [SBGM+18]. The fastest
scheme described in our work, targeting NIST security category 1, NTRU-HRSS,
is 59% faster for encapsulation and 35% faster for decapsulation compared to the
corresponding CCA variant of Round5 at the same security level. The key gen-
eration of NTRU-HRSS is considerably slower, but its inversions have not been
optimized yet. The fastest scheme described here that targets NIST security cat-
egory 3, Saber, is 13% faster for key generation, 23% faster for encapsulation,
and 37% faster for decapsulation. We also make note of the optimized implemen-
tations of NewHopeCCA1024 [KRS+18; AJS16] and Kyber768 [KRS+18]. Both
implementations are outperformed by NTRU-HRSS and Saber.

212 Chapter 5. La�ice-based KEMs

Side-channel resistance

While side-channel resistance was not a focus of this work, we ensure that our
polynomial multiplication is protected against timing attacks. More speci�cally, in
the multiplication routines we avoid all data �ow from secrets into branch condi-
tions and into memory addresses. The special multiplication routine in [SBGM+18]
is less conservative and does use secret-dependent lookup indices with a refer-
ence to [ARMc] saying that the Cortex-M4 does not have internal data caches.
However, it is not clear to us that really all Cortex-M4 cores do not have any
data cache; [ARMc] states that the “Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3,
and Cortex-M4 processors do not have any internal cache memory. However, it is
possible for a SoC design to integrate a system level cache.” Also, it is clear that some
ARMv7E-M processors (for example, the ARM Cortex-M7) have data caches. Our
multiplication code is also protected against timing attacks on those devices.

Key-generation performance

The focus of this work is to improve performance of encapsulation and decapsula-
tion. All key-encapsulation mechanisms considered in this work are CCA-secure,
so the impact of a poor key-generation performance can in principle be minimized
by caching ephemeral keys for some time. Such caching of ephemeral keys makes
software more complex and in some cases also requires changes to higher level
protocols; we therefore believe that key-generation performance, also for CCA-
secure KEMs, remains an important target of optimization. The key generation
of RLizard, Saber, and Kindi is rather straight-forwardly optimized by integrating
our fast multiplication. The key generation of NTRUEncrypt and NTRU-HRSS

also requires inversions, which we did not optimize in this work. We believe that
further research into e�cient inversions for those two schemes will signi�cantly
improve their key-generation performance on this platform.

5.5.3 Profiling optimized implementations

The speedup achieved by optimizing polynomial multiplication clearly shows that
it vastly dominates the runtime of reference implementations. Having replaced
this core arithmetic operation with highly optimized assembly, we analyze how
much time the optimized implementations still spend in non-optimized code. This
re�ects how much performance could still be gained by hand-optimizing scheme-

5.5. Measuring multiplication performance 213

Table 5.7: Time spent in multiplication, hashing, and sampling randomness.

scheme total polymul hashing random

Saber

K: 895k 327k (37%) 475k (53%) 2.0k
E: 1 161k 435k (38%) 615k (53%) 0.6k
D: 1 204k 544k (45%) 500k (42%) 0

Kindi-256-3-4-2

K: 969k 342k (35%) 409k (42%) 1.2k
E: 1 320k 456k (35%) 604k (46%) 0.6k
D: 1 517k 570k (38%) 603k (40%) 0

NTRU-HRSS

K: 145 963k 1 556k (1%) 80k (<1%) 0.6k
E: 404k 173k (43%) 107k (26%) 0.6k
D: 819k 519k (63%) 67k (8%) 0

NTRU-KEM-743

K: 5 198k 1 680k (32%) 0 85k
E: 1 601k 187k (12%) 1 171k (73%) 46k
D: 1 881k 373k (20%) 1 172k (63%) 0

RLizard-1024

K: 525k 303k (58%) 0 123k
E: 1 345k 605k (45%) 628k (47%) 2.2k
D: 1 716k 908k (53%) 628k (36%) 0

214 Chapter 5. La�ice-based KEMs

speci�c procedures. To this end, we measure the clock cycles spent in polynomial
multiplication, hashing, and random number generation. Table 5.7 shows that still
a considerable portion of encapsulation and decapsulation is spent in polynomial
multiplication, but cycles consumed by hashing and randomness generation become
much more prominent. For encapsulation, hashing (SHA-3 and SHA-2) dominates
the runtime of Kindi-256-3-4-2, NTRU-KEM-743, and Saber. We have replaced
these primitives with the fastest implementations available, but all schemes still
spend a substantial number of clock cycles computing hashes. This is partly
due to the Fujisaki-Okamoto transformation used to achieve CCA security, but
also because of sampling of random numbers. Kindi-256-3-4-2, NTRU-HRSS, and
Saber do not make use of randombytes extensively, but sample a small seed and
then expand this using SHAKE. RLizard-1024 and NTRU-KEM-743 directly sample
their randomness using randombytes. As we implement randombytes using the
hardware random number generator on the STM32F407, this is more e�cient than
using SHAKE to expand a seed — this is, of course, highly platform-speci�c. There
are, however, important caveats to consider when only using the hardware random
number generator. In particular, it is unclear what the cryptographic properties
of such an RNG are, and how this a�ects the security of the various schemes,
especially considering that most reveal randomness as part of the CCA transform.

Outlook

Even though it has been almost �fteen years since the �rst workshops on post-
quantum cryptography, the �eld is still very much in its infancy and exploratory
research is very much ongoing. Depending on the speci�c sub�eld, this varies
from theoretical novelty to deployment-focused experiments and standardization.
Perhaps the most important direction for future work lies in cryptanalysis — in
particular when accounting for non-generic adversaries with access to a quantum
computer. As the main focus of this thesis is primarily on engineering e�orts, we
instead highlight practical considerations within the discussed sub�elds.

Hash-based signatures have a long legacy, but only really caught popular inter-
est in recent years. As post-quantum cryptography is becoming more relevant, their
practical use is a real consideration. While the constructions are well-understood
and quite carefully tweaked, and there seems to be little purely academic work
remaining, there is a lot to be done in terms of deployment. It would be very
valuable to evaluate concrete deployment experiences with regards to stateful
variants (i.e., XMSS with di�erent tree traversal and state management strategies),
as well as actual use-case driven parameter choices for the SPHINCS+ framework.
While [BHK+19] provides a starting point towards more �exible parameter se-
lection, real-world use may present more speci�c bottlenecks (e.g., because of
properties of communication protocols) that allow for more informed trade-o�s.

Even when SPHINCS+ is standardized as-is, individual users might �nd it
worthwhile to make adjustments. In particular, this can include parameter sets that
target a smaller number of total signatures (and thus reduce the required hypertree
height), but also more structural changes such as the dismissed ‘larger top tree’ and
‘temporarily-stateful batch signing’ constructions. We refer to the latest version of
the speci�cation [BDE+17] (in particular Section 8.2) for some discussion on these
omissions, but welcome a more thorough experimental exploration.

It will be interesting to see what the e�ect of broader availability of hash
functions in hardware will be, especially when Keccak constructions become more

215

216 Outlook

commonplace. On a related (but e�ectively orthogonal) note, and perhaps only
tangentially related to this work, hash-based signatures present an interesting
application for e�cient short-length hash functions. Haraka is an important
starting point in this line of work, but has arguably not yet seen su�cient use or
cryptanalysis to warrant precedence over SHA-256 or SHAKE256.

We should, however, be careful to strike a balance between standard-wide
improvements and local, deployment-speci�c optimizations. Consider, e.g., that
SHA-512/256 is likely preferable over SHA-256 on some 64-bit platforms, but not
on smaller processors. With the current speci�cation proposing 36 parameter sets
across four dimensions, the framework is highly susceptible to a proliferation of
incompatible implementations and deployments.

The other discussed digital signature variant is perhaps a bit further away from
immediate deployment. In parallel with this work, a paper was publicized [KZ19]
describing a forgery attack against MQDSS, considerably reducing the claimed
security of the proposed instances. While accompanied by a security proof, this
shows the necessity for tightness: the margin in the proof allows for attacks like
these to be overlooked. In general, there is ample space for future work in the area
of tight proofs for signature schemes in the ROM and QROM, as well as attacks
such these that allow us to assess the degree to which such proof gaps are arti�cial
or a real concern. Recent work on proofs for the Fiat-Shamir transform in the
QROM takes important steps in this direction [KLS18; LZ19; DFM+19].

O� on a tangent: IDS-basedMQ signatures on small devices are a missing
data point. The arithmetic pairs well with vector units, but may be costly without.

Arguably the most active sub�eld by any metric is that of lattice-based primi-
tives. Their e�ciency successfully attracted several notable real-world experiments.
From an implementor’s perspective, the recent work on applying the number-
theoretic transform to NTRU [LS19] is highly relevant, but one could argue that,
moving forward, performance is no longer the main concern — however easy it
may be to measure and compare. Instead, one would hope for broader consensus
on security considerations and how to objectively assess di�erent structure and
parameter choices. This includes the actual, computational relation to lattice prob-
lems, but, perhaps more concretely, a better understanding of side-channel leakage
and its e�ects on reducing the di�culty of solving lattice problems, real-world
e�ects of decryption failures, and secure random sampling.

Bibliography

[AAB+17] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la
Piedra, Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila.
NewHope: Algorithm Speci�cation and Supporting Documentation.
Submission to NIST’s Post-Quantum Cryptography Standardization
project. 2017. url: https://newhopecrypto.org (cit. on p. 191).

[ABB+15] Erdem Alkim, Nina Bindel, Johannes Buchmann, and Özgür Dagde-
len. TESLA: Tightly-Secure E�cient Signatures from Standard Lat-
tices. IACR Cryptology ePrint Archive, Report 2015/755. 2015. url:
https://eprint.iacr.org/2015/755/20161117:055833 (cit. on
pp. 146, 163).

[ABB+17] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen,
Edward Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega.
“Revisiting TESLA in the quantum random oracle model.” In: Post-
Quantum Cryptography – PQCrypto 2017. Ed. by Tanja Lange and
Tsuyoshi Takagi. Vol. 10346. LNCS. Springer, 2017, pp. 143–162. url:
https://eprint.iacr.org/2015/755 (cit. on p. 163).

[ABD+17] Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé.CRYSTALS–Kyber: Algorithm Speci�cation
and Supporting Documentation. Submission to NIST’s Post-Quantum
Cryptography Standardization project. 2017. url: https://pq-
crystals.org/kyber (cit. on p. 191).

[ADP+16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
“Post-quantum key exchange – a new hope.” In: Proceedings of the
25th USENIX Security Symposium. Ed. by Thorsten Holz and Stefan
Savage. USENIX Association, 2016. url: https://eprint.iacr.
org/2015/1092 (cit. on pp. 64, 171, 174, 189–191).

217

https://newhopecrypto.org
https://eprint.iacr.org/2015/755/20161117:055833
https://eprint.iacr.org/2015/755
https://pq-crystals.org/kyber
https://pq-crystals.org/kyber
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092

218 Bibliography

[AE17] Jean-Philippe Aumasson and Guillaume Endignoux. Gravity-
SPHINCS. Submission to the NIST Post-Quantum Cryptography
Standardization project. 2017. url: https://sphincs.org (cit. on
pp. 88, 102, 111).

[AE18] Jean-Philippe Aumasson and Guillaume Endignoux. “Improving
stateless hash-based signatures.” In: Topics in Cryptology – CT-RSA
2018. Ed. by Nigel P. Smart. Vol. 10808. LNCS. Springer, 2018, pp. 219–
242. url: https://eprint.iacr.org/2017/933 (cit. on pp. 88, 102).

[AHM+08] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-
W Phan. “SHA-3 proposal BLAKE.” In: Submission to the NIST hash
function competition (2008). url: https://131002.net/blake/
blake.pdf (cit. on pp. 90, 93, 100).

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. “A new hope on
ARM Cortex-M.” In: Security, Privacy, and Advanced Cryptography
Engineering – SPACE 2016. Ed. by Claude Carlet, Anwar Hasan, and
Vishal Saraswat. Vol. 10076. LNCS. Springer, 2016, pp. 332–349. url:
https://eprint.iacr.org/2016/758 (cit. on pp. 210, 211).

[AMP10] Elena Andreeva, Bart Mennink, and Bart Preneel. “Security Re-
ductions of the Second Round SHA-3 Candidates.” In: Information
Security – ISC 2010. Ed. by Mike Burmester, Gene Tsudik, Spyros
Magliveras, and Ivana Ilić. Vol. 6531. LNCS. Springer, 2010, pp. 39–
53. url: https://eprint.iacr.org/2010/381 (cit. on p. 27).

[APR19] Pol Van Aubel, Erik Poll, and Joost Rijneveld. “Non-Repudiation
and End-to-End Security for EV-charging.” In: Innovative Smart Grid
Technologies Europe 2019. To appear. IEEE, 2019 (cit. on p. 259).

[ARMa] ARM Limited. Cortex-M0 Processor – ARM. url: http://www.arm.
com/products/processors/cortex-m/cortex-m0.php (cit. on
pp. 41, 92).

[ARMb] ARM Limited. Cortex-M3 Technical Reference Manual. Document ID:
ARM DDI 0337E. 2005. url: http://infocenter.arm.com/help/
topic/com.arm.doc.ddi0337e (cit. on p. 38).

https://sphincs.org
https://eprint.iacr.org/2017/933
https://131002.net/blake/blake.pdf
https://131002.net/blake/blake.pdf
https://eprint.iacr.org/2016/758
https://eprint.iacr.org/2010/381
http://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e

Bibliography 219

[ARMc] ARM Limited. ARM Cortex-M Programming Guide to Memory Barrier
Instructions. 2012. url: https://static.docs.arm.com/dai0321/
a/DAI0321A_programming_guide_memory_barriers_for_m_

profile.pdf (cit. on p. 212).

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. “Quan-
tum attacks on classical proof systems: The hardness of quantum
rewinding.” In: Annual Symposium on Foundations of Computer Sci-
ence – FOCS 2014. IEEE. 2014, pp. 474–483. url: https://eprint.
iacr.org/2014/296 (cit. on p. 136).

[Ban17] Rachid El Bansarkhani. KINDI: Algorithm Speci�cation and Support-
ing Documentation. Submission to NIST’s Post-Quantum Cryptog-
raphy Standardization project. 2017. url: http://kindi-kem.de
(cit. on pp. 191, 195).

[Bar86] Paul Barrett. “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor.”
In: Advances in Cryptology – CRYPTO ‘86. Vol. 263. LNCS. Springer.
1986, pp. 311–323 (cit. on p. 181).

[BBH13] Christoph Busold, Johannes Buchmann, and Andreas Hülsing. “For-
ward secure signatures on smart cards.” In: Selected Areas in Cryp-
tography – SAC 2012. Ed. by Lars R. Knudsen and Huapeng Wu.
Vol. 7707. LNCS. Springer. 2013, pp. 66–80. url: https://eprint.
iacr.org/2018/924 (cit. on pp. 61, 72, 78, 91, 92).

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung
Chou, Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. “Fast Ex-
haustive Search for Polynomial Systems in F2.” In: Cryptographic
Hardware and Embedded Systems – CHES 2010. Ed. by Stefan Man-
gard and François-Xavier Standaert. Vol. 6225. LNCS. Springer, 2010,
pp. 203–218. url: https://eprint.iacr.org/2010/313 (cit. on
p. 157).

[BCC+14] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, An-
dreas Hülsing, Tanja Lange, Ruben Niederhagen, and Christine
van Vredendaal. “How to manipulate curve standards: a white pa-
per for the black hat.” In: Security Standardization Research – SSR

https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://eprint.iacr.org/2014/296
https://eprint.iacr.org/2014/296
http://kindi-kem.de
https://eprint.iacr.org/2018/924
https://eprint.iacr.org/2018/924
https://eprint.iacr.org/2010/313

220 Bibliography

2015. Vol. 9497. LNCS. Springer, 2014, pp. 109–139. url: https:
//eprint.iacr.org/2014/571 (cit. on p. 130).

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila.
“Frodo: Take o� the Ring! Practical, Quantum-Secure Key Exchange
from LWE.” In: Conference on Computer and Communications Secu-
rity – CCS ‘16. Ed. by Christopher Kruegel, Andrew Myers, and Shai
Halevi. ACM, 2016, pp. 1006–1018. url: https://eprint.iacr.
org/2016/659 (cit. on pp. 171, 189, 190).

[BCL+17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Christine van Vredendaal. “NTRU Prime.” In: Selected Areas
in Cryptography – SAC 2017. Ed. by Jan Camenisch and Carlisle
Adams. Vol. 10719. LNCS. Springer, 2017, pp. 235–260. url: https:
//eprint.iacr.org/2016/461/20160513:121102 (cit. on pp. 171,
172, 174, 176, 180, 190).

[BCN+15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
“Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem.” In: Symposium on Security and Privacy
– S&P 2015. Ed. by Lujo Bauer and Vitaly Shmatikov. IEEE, 2015,
pp. 553–570. url: https://eprint.iacr.org/2014/599 (cit. on
pp. 171, 190).

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing,
and Markus Rückert. “On the Security of the Winternitz One-Time
Signature Scheme.” In: Progress in Cryptology – AFRICACRYPT 2018.
Ed. by Abderrahmane Nitaj and David Pointcheval. Vol. 6737. LNCS.
Springer, 2011, pp. 363–378. url: https://eprint.iacr.org/
2011/191 (cit. on pp. 63, 102).

[BDE+17] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott
Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, and
Peter Schwabe. SPHINCS+. Submission to the NIST Post-Quantum
Cryptography Standardization project. 2017. url: https://sphinc
s.org (cit. on pp. 17, 22, 43, 50, 72, 102, 215, 261).

https://eprint.iacr.org/2014/571
https://eprint.iacr.org/2014/571
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/461/20160513:121102
https://eprint.iacr.org/2016/461/20160513:121102
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2011/191
https://eprint.iacr.org/2011/191
https://sphincs.org
https://sphincs.org

Bibliography 221

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Scha�ner, and Mark Zhandry. “Random Oracles in a Quantum
World.” In: Advances in Cryptology – ASIACRYPT 2011. Ed. by Dong
Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, 2011,
pp. 41–69. url: https://eprint.iacr.org/2010/428 (cit. on
p. 176).

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS
- A Practical Forward Secure Signature Scheme Based on Minimal
Security Assumptions.” In: Post-Quantum Cryptography – PQCrypto
2011. Ed. by Bo-Yin Yang. Vol. 7071. LNCS. Springer, 2011, pp. 117–
129. url: https://eprint.iacr.org/2011/484 (cit. on pp. 44, 61,
63, 65, 102).

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki
Okeya, and Camille Vuillaume. “Merkle Signatures with Virtually
Unlimited Signature Capacity.” In: Applied Cryptography and Net-
work Security – ACNS 2017. Ed. by Jonathan Katz and Moti Yung.
Vol. 4521. LNCS. Springer, 2007, pp. 31–45 (cit. on pp. 91, 92).

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé.
“CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM.” In:
European Symposium on Security and Privacy – EuroS&P 2018. IEEE,
2017, pp. 353–367. url: https://eprint.iacr.org/2017/634
(cit. on p. 190).

[BDL+11] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. “High-speed high-security signatures.” In: Cryptographic
Hardware and Embedded Systems – CHES 2011. Ed. by Bart Preneel
and Tsuyoshi Takagi. Vol. 6917. LNCS. Springer, 2011, pp. 124–142.
url: https://eprint.iacr.org/2011/368 (cit. on pp. 63, 64).

[BDP+11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. The Keccak reference. 2011. url: http://keccak.noekeon.org
(cit. on pp. 33, 138, 159, 168).

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak Code Package. https://github.com/

https://eprint.iacr.org/2010/428
https://eprint.iacr.org/2011/484
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2011/368
http://keccak.noekeon.org
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage

222 Bibliography

gvanas/KeccakCodePackage, Retrieved on May 7, 2018. 2018 (cit.
on p. 138).

[BDS08] Johannes Buchmann, Erik Dahmen, and Michael Schneider. “Merkle
tree traversal revisited.” In: Post-Quantum Cryptography – PQCrypto
2008. Ed. by Johannes Buchmann and Jintai Ding. Vol. 5299. LNCS.
Springer, 2008, pp. 63–78. url: https://www.cdc.informatik.tu-
darmstadt.de/reports/reports/AuthPath.pdf (cit. on pp. 61, 62,
67, 70).

[BDS09] Johannes Buchmann, Erik Dahmen, and Michael Szydlo. “Hash-
based digital signature schemes.” In: Post-Quantum Cryptography.
Ed. by Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen.
Springer, 2009, pp. 35–93 (cit. on p. 21).

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. The State of the
Art of Stream Ciphers – SASC 2008. 2008. url: http://cr.yp.to/
papers.html\#chacha (cit. on pp. 90, 93).

[Ber09] Daniel J. Bernstein. “Batch binary edwards.” In: Advances in Cryptol-
ogy – CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS. Springer.
2009, pp. 317–336. url: https://www.iacr.org/archive/crypto
2009/56770315/56770315.pdf (cit. on p. 182).

[BFP09] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Hybrid
approach for solving multivariate systems over �nite �elds.” In:
Journal of Mathematical Cryptology 3.3 (2009), pp. 177–197. url:
http://www-polsys.lip6.fr/~jcf/Papers/JMC2.pdf (cit. on
p. 137).

[BFP12] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. “Solving
polynomial systems over �nite �elds: improved analysis of the
hybrid approach.” In: International Symposium on Symbolic and
Algebraic Computation – ISSAC 2012. Ed. by Joris van der Hoeven
and Mark van Hoeij. ACM, 2012, pp. 67–74. url: https://hal.
inria.fr/hal-00776070 (cit. on pp. 137, 157).

[BFS+13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean
Spaenlehauer. “On the complexity of solving quadratic Boolean
systems.” In: Journal of Complexity 29.1 (2013), pp. 53–75. url: www-
polsys.lip6.fr/~jcf/Papers/BFSS12.pdf (cit. on pp. 157, 168).

https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
https://www.cdc.informatik.tu-darmstadt.de/reports/reports/AuthPath.pdf
https://www.cdc.informatik.tu-darmstadt.de/reports/reports/AuthPath.pdf
http://cr.yp.to/papers.html\#chacha
http://cr.yp.to/papers.html\#chacha
https://www.iacr.org/archive/crypto2009/56770315/56770315.pdf
https://www.iacr.org/archive/crypto2009/56770315/56770315.pdf
http://www-polsys.lip6.fr/~jcf/Papers/JMC2.pdf
https://hal.inria.fr/hal-00776070
https://hal.inria.fr/hal-00776070
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf

Bibliography 223

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. “On the com-
plexity of the F5 Gröbner basis algorithm.” In: Journal of Symbolic
Computation 70 (2015), pp. 49–70. url: https://hal.inria.fr/
hal-01064519 (cit. on pp. 137, 157).

[BGD+06] Johannes Buchmann, L. C. Coronado García, Erik Dahmen, Mar-
tin Döring, and Elena Klintsevich. “CMSS - An Improved Merkle
Signature Scheme.” In: Progress in Cryptology – INDOCRYPT 2006.
Ed. by Rana Barua and Tanja Lange. Vol. 4329. LNCS. Springer, 2006,
pp. 349–363. url: https://eprint.iacr.org/2006/320 (cit. on
p. 60).

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and
Alon Rosen. “On the hardness of learning with rounding over small
modulus.” In: Theory of Cryptography. Ed. by Eyal Kushilevitz and
Tal Malkin. Vol. 9562. LNCS. Springer, 2016, pp. 209–224. url: https:
//eprint.iacr.org/2015/769 (cit. on p. 193).

[BGML+18] Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven,
Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen,
and Zhenfei Zhang. “Round5: Compact and Fast Post-Quantum
Public-Key Encryption.” In: Post-Quantum Cryptography – PQCrypto
2019. Ed. by Jintai Ding and Rainer Steinwandt. LNCS. Springer,
2018, pp. 83–102. url: https://eprint.iacr.org/2018/725
(cit. on p. 191).

[BH17] Leon Groot Bruinderink and Andreas Hülsing. ““Oops, I did it again”
– Security of One-Time Signatures under Two-Message Attacks.” In:
Selected Areas in Cryptography – SAC 2017. Ed. by Carlisle Adams
and Jan Camenisch. LNCS. Springer, 2017, pp. 299–322. url: https:
//eprint.iacr.org/2016/1042 (cit. on p. 44).

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider,
Peter Schwabe, and Zooko Wilcox-O’Hearn. “SPHINCS: practical
stateless hash-based signatures.” In: Advances in Cryptology – EURO-
CRYPT 2015. Ed. by Marc Fischlin and Elisabeth Oswald. Vol. 9056.
LNCS. Springer, 2015, pp. 368–397. url: https://eprint.iacr.

https://hal.inria.fr/hal-01064519
https://hal.inria.fr/hal-01064519
https://eprint.iacr.org/2006/320
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2018/725
https://eprint.iacr.org/2016/1042
https://eprint.iacr.org/2016/1042
https://eprint.iacr.org/2014/795
https://eprint.iacr.org/2014/795

224 Bibliography

org/2014/795 (cit. on pp. 16, 44, 71, 85–87, 90, 93, 94, 99, 102, 104,
114, 131, 146, 163).

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. “Subtleties in the
de�nition of IND-CCA: When and how should challenge decryption
be disallowed?” In: Journal of Cryptology 28.1 (2015), pp. 29–48. url:
https://eprint.iacr.org/2009/418 (cit. on p. 30).

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederha-
gen, Joost Rijneveld, and Peter Schwabe. “The SPHINCS+ signature
framework.” In: Conference on Computer and Communications Secu-
rity – CCS ‘19. Ed. by XiaoFeng Wang and Jonathan Katz. To appear.
ACM, 2019. url: https://eprint.iacr.org/2019/1086 (cit. on
pp. 17, 43, 92, 102–104, 106, 111, 146, 215, 259).

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. url: http://bench.cr.yp.to (cit. on
pp. 40, 189, 208).

[BL06] Johannes Buchmann and Christoph Ludwig. “Practical Lattice Basis
Sampling Reduction.” In: Algorithmic Number Theory – ANTS-VII. Ed.
by Florian Hess, Sebastian Pauli, and Michael Pohst. LNCS. Springer,
2006, pp. 222–237. url: https://eprint.iacr.org/2005/072 (cit.
on p. 171).

[BM99] Mihir Bellare and Sara K. Miner. “A forward-secure digital signature
scheme.” In: Advances in Cryptology – CRYPTO ‘99. Ed. by Michael
Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 431–448. url: https:
//cseweb.ucsd.edu/~mihir/papers/fsig.pdf (cit. on p. 52).

[BP18] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM Uni�ca-
tion. IACR Cryptology ePrint Archive, Report 2018/526. 2018. url:
https://eprint.iacr.org/2018/526 (cit. on p. 179).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom
functions and lattices.” In: Advances in Cryptology – EUROCRYPT
2012. Ed. by David Pointcheval and Thomas Johansson. Vol. 7237.
LNCS. Springer, 2012, pp. 719–737. url: https://eprint.iacr.
org/2011/401 (cit. on pp. 193, 194).

https://eprint.iacr.org/2014/795
https://eprint.iacr.org/2014/795
https://eprint.iacr.org/2009/418
https://eprint.iacr.org/2019/1086
http://bench.cr.yp.to
https://eprint.iacr.org/2005/072
https://cseweb.ucsd.edu/~mihir/papers/fsig.pdf
https://cseweb.ucsd.edu/~mihir/papers/fsig.pdf
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2011/401
https://eprint.iacr.org/2011/401

Bibliography 225

[Bra16] Matt Braithwaite. Experimenting with Post-Quantum Cryptography.
Posting on the Google Security Blog. 2016. url: https://security.
googleblog.com/2016/07/experimenting-with-post-quantum.

html (cit. on p. 171).

[BSI] Advanced Security Mechanisms for Machine Readable Travel Docu-
ments and eIDAS Token. Tech. rep. TR-03110. Version 2.20. German
Federal O�ce for Information Security (BSI), 2015. url: https:
//www.bsi.bund.de/EN/Publications/TechnicalGuidelines/

TR03110/BSITR03110.html (cit. on pp. 73, 80).

[BY18] Daniel J. Bernstein and Bo-Yin Yang. “Asymptotically faster quan-
tum algorithms to solve multivariate quadratic equations.” In: Post-
Quantum Cryptography – PQCrypto 2018. Ed. by Tanja Lange and
Rainer Steinwandt. Vol. 10786. LNCS. Springer. 2018, pp. 487–506.
url: https://eprint.iacr.org/2017/1206 (cit. on pp. 137, 158).

[BY19] Daniel J Bernstein and Bo-Yin Yang. “Fast constant-time gcd com-
putation and modular inversion.” In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2019.3 (2019), pp. 340–398.
url: https://eprint.iacr.org/2019/266 (cit. on p. 186).

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou
Cheng, Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and
Bo-Yin Yang. “SSE implementation of multivariate PKCs on modern
x86 CPUs.” In: Cryptographic Hardware and Embedded Systems –
CHES 2009. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. LNCS.
Springer, 2009, pp. 33–48. url: https://www.iacr.org/archive/
ches2009/57470031/57470031.pdf (cit. on pp. 138, 140, 142).

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. “Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives.” In: Conference on Computer and
Communications Security – CCS ‘17. Ed. by David Evans, Tal Malkin,
and Dongyan Xu. ACM, 2017, pp. 1825–1842. url: https://eprint.
iacr.org/2017/279 (cit. on pp. 146, 154, 163).

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://www.bsi.bund.de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.html
https://eprint.iacr.org/2017/1206
https://eprint.iacr.org/2019/266
https://www.iacr.org/archive/ches2009/57470031/57470031.pdf
https://www.iacr.org/archive/ches2009/57470031/57470031.pdf
https://eprint.iacr.org/2017/279
https://eprint.iacr.org/2017/279

226 Bibliography

[CDG+19] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha.
The Picnic Signature Scheme. Submission to round 2 of the NIST Post-
Quantum Cryptography Standardization project. 2019. url: https:
//github.com/microsoft/Picnic/blob/master/spec/design-

v2.0.pdf (cit. on pp. 102, 111).

[CDH+19] Cong Chen, Oussama Danba, Je�rey Ho�stein, Andreas Hülsing,
Joost Rijneveld, John M. Schanck, Peter Schwabe, William Whyte,
and Zhenfei Zhang. NTRU: Algorithm Speci�cation and Supporting
Documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project. 2019. url: https://ntru.org (cit. on
pp. 19, 171, 191, 261).

[CDM+05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. “Merkle-Damgård revisited: How to construct a
hash function.” In: Advances in Cryptology – CRYPTO 2005. Ed. by
Victor Shoup. Vol. 3621. LNCS. Springer. 2005, pp. 430–448. url:
https://iacr.org/archive/crypto2005/36210424/36210424.

pdf (cit. on p. 27).

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs
of partial knowledge and simpli�ed design of witness hiding pro-
tocols.” In: Advances in Cryptology – CRYPTO ‘95. Ed. by Yvo G.
Desmedt. Vol. 839. LNCS. Springer. 1994, pp. 174–187 (cit. on p. 117).

[CGP] Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFLASH, a
fast asymmetric signature scheme for low-cost smartcards - Primitive
speci�cation and supporting documentation. url: http://www.minr
ank.org/sflash-b-v2.pdf (cit. on p. 113).

[CHK+17] Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and
Yongha Son. “A Practical Post-Quantum Public-Key Cryptosystem
Based on spLWE.” In: Information Security and Cryptology – ICISC
2016. Ed. by Seokhie Hong and Jong Hwan Park. Vol. 10157. LNCS.
Springer, 2017, pp. 51–74. url: https://eprint.iacr.org/2016/
1055 (cit. on pp. 171, 189, 190).

https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://ntru.org
https://iacr.org/archive/crypto2005/36210424/36210424.pdf
https://iacr.org/archive/crypto2005/36210424/36210424.pdf
http://www.minrank.org/sflash-b-v2.pdf
http://www.minrank.org/sflash-b-v2.pdf
https://eprint.iacr.org/2016/1055
https://eprint.iacr.org/2016/1055

Bibliography 227

[CHR+16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. “From 5-Pass MQ-Based
Identi�cation to MQ-Based Signatures.” In: Advances in Cryp-
tology – ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Vol. 10032. LNCS. Springer, 2016, pp. 135–165. url:
https://eprint.iacr.org/2016/708 (cit. on pp. 18, 22, 113, 114,
124, 130, 132, 135, 137, 138, 142, 143, 146, 154, 156, 163, 260).

[CHR+17] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS. Submission to NIST’s
Post-Quantum Cryptography Standardization project. 2017. url:
http://mqdss.org (cit. on pp. 18, 113, 261).

[CHR+18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. “SOFIA: MQ-based signatures
in the QROM.” In: Public Key Cryptography – PKC 2018. Ed. by
Michel Abdalla and Ricardo Dahab. Vol. 10770. LNCS. Springer,
2018, pp. 3–33. url: https://eprint.iacr.org/2017/680 (cit. on
pp. 18, 22, 113, 114, 148, 155, 156, 158, 260).

[CKL+18] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song.
“Lizard: Cut o� the Tail! Practical Post-Quantum Public-Key En-
cryption from LWE and LWR.” In: Security and Cryptography for
Networks – SCN 2018. Ed. by Dario Catalano and Roberto De Prisco.
Vol. 11035. LNCS. Springer, 2018, pp. 160–177. url: https : / /
eprint.iacr.org/2016/1126 (cit. on pp. 171, 190).

[CKP+00] Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir. “Ef-
�cient Algorithms for Solving Overde�ned Systems of Multivari-
ate Polynomial Equations.” In: Advances in Cryptology – EURO-
CRYPT 2000. Ed. by Bart Preneel. Vol. 1807. LNCS. Springer, 2000,
pp. 392–407. url: www.iacr.org/archive/eurocrypt2000/1807/
18070398-new.pdf (cit. on pp. 137, 157, 168).

[CMF19] Michael Curcio, David McGrew, and Scott Fluhrer. Leighton-Micali
Hash-Based Signatures. Request for Comments 8554. IETF, 2019. url:
https://tools.ietf.org/html/rfc8554 (cit. on pp. 33, 108).

[Com90] Paul G. Comba. “Exponentiation cryptosystems on the IBM PC.” In:
IBM systems journal 29.4 (1990), pp. 526–538 (cit. on p. 181).

https://eprint.iacr.org/2016/708
http://mqdss.org
https://eprint.iacr.org/2017/680
https://eprint.iacr.org/2016/1126
https://eprint.iacr.org/2016/1126
www.iacr.org/archive/eurocrypt2000/1807/18070398-new.pdf
www.iacr.org/archive/eurocrypt2000/1807/18070398-new.pdf
https://tools.ietf.org/html/rfc8554

228 Bibliography

[Con03] Consortium for E�cient Embedded Security. EESS #1: Implemen-
tation Aspects of NTRUEncrypt and NTRUSign v. 2.0. 2003. url:
http://grouper.ieee.org/groups/1363/lattPK/submissions/

EESS1v2.pdf (cit. on pp. 171, 174).

[Coo66] Stephen Cook. “On the Minimum Computation Time of Functions.”
PhD thesis. Harvard University, 1966 (cit. on pp. 182, 199).

[Cop06] Jack B. Copeland, ed. Colossus: The Secrets of Bletchley Park’s Code-
breaking Computers. Oxford University Press, 2006. isbn: 978-0-19-
284055-4 (cit. on p. 13).

[Cou01] Nicolas T. Courtois. “E�cient zero-knowledge authentication based
on a linear algebra problem MinRank.” In: Advances in Cryptology
– ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Springer,
2001, pp. 402–421. url: https://eprint.iacr.org/2001/058
(cit. on pp. 113, 120).

[CPL+17] Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong Kim, Yong-
soo Song, Seungwan Hong, Dongwoo Kim, Jinsu Kim, Seong-Min
Hong, Aaram Yun, Jeongsu Kim, Haeryong Park, Eunyoung Choi,
Kimoon kim, Jun-Sub Kim, and Jieun Lee. Lizard: Algorithm Speci�-
cation and Supporting Documentation. Submission to NIST’s Post-
Quantum Cryptography Standardization project. Available at https:
//csrc.nist.gov/projects/post- quantum- cryptography/

round-1-submissions. 2017 (cit. on pp. 191, 193).

[CVE10] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yous�
Alaoui. “A zero-knowledge identi�cation scheme based on the q-
ary syndrome decoding problem.” In: Selected Areas in Cryptography
– SAC 2010. Ed. by Alex Biryukov, Guang Gong, and Douglas R.
Stinson. Vol. 6544. LNCS. Springer, 2010, pp. 171–186. url: https:
//hal.inria.fr/hal-00674249 (cit. on p. 124).

[Dam90] Ivan B. Damgård. “A design principle for hash functions.” In: Ad-
vances in Cryptology – CRYPTO ‘89. Ed. by Gilles Brassard. Vol. 435.
LNCS. Springer, 1990, pp. 416–427 (cit. on pp. 68, 109).

[Den03] Alexander W. Dent. “A Designer’s Guide to KEMs.” In: Cryptography
and Coding. Ed. by Kenneth G. Paterson. Vol. 2898. LNCS. Springer,

http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
https://eprint.iacr.org/2001/058
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://hal.inria.fr/hal-00674249
https://hal.inria.fr/hal-00674249

Bibliography 229

2003, pp. 133–151. url: http://www.cogentcryptography.com/
papers/designer.pdf (cit. on pp. 173, 176).

[DFG13] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. “The
Fiat-Shamir Transformation in a Quantum World.” In: Advances
in Cryptology - ASIACRYPT 2013. Ed. by Kazue Sako and Palash
Sarkar. Vol. 8270. LNCS. Springer, 2013, pp. 62–81. url: https:
//eprint.iacr.org/2013/245 (cit. on pp. 136, 144).

[DFM+19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Scha�ner.
Security of the Fiat-Shamir Transformation in the Quantum Random-
Oracle Model. Cryptology ePrint Archive, Report 2019/190. 2019.
url: https://eprint.iacr.org/2019/190 (cit. on pp. 117, 136,
144, 216).

[DFS+07] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern.
“Practical cryptanalysis of SFLASH.” In: Advances in Cryptology –
CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. LNCS. Springer,
2007, pp. 1–12. url: https://eprint.iacr.org/2007/141 (cit. on
p. 113).

[DH76] Whit�eld Di�e and Martin E. Hellman. “New Directions in Cryptog-
raphy.” In: Transactions on Information Theory 22.6 (1976), pp. 644–
654. url: http://www-ee.stanford.edu/\%7Ehellman/publicat
ions/24.pdf (cit. on p. 13).

[DHP+] Joan Daemen, Seth Ho�ert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. eXtended Keccak Code Package. url: https:
//github.com/XKCP/XKCP (cit. on p. 208).

[DHY+06] Jintai Ding, Lei Hu, Bo-Yin Yang, and Jiun-Ming Chen. Note on
Design Criteria for Rainbow-Type Multivariates. IACR Cryptology
ePrint Archive, Report 2006/307. 2006. url: https://eprint.iacr.
org/2006/307 (cit. on pp. 113, 120).

[Die04] Claus Diem. “The XL-Algorithm and a Conjecture from Commuta-
tive Algebra.” In: Advances in Cryptology – ASIACRYPT 2004. Ed. by
Pil Joong Lee. Vol. 3329. LNCS. Springer, 2004, pp. 323–337. url:
https://www.iacr.org/archive/asiacrypt2004/33290320/

33290320.pdf (cit. on pp. 137, 157).

http://www.cogentcryptography.com/papers/designer.pdf
http://www.cogentcryptography.com/papers/designer.pdf
https://eprint.iacr.org/2013/245
https://eprint.iacr.org/2013/245
https://eprint.iacr.org/2019/190
https://eprint.iacr.org/2007/141
http://www-ee.stanford.edu/\%7Ehellman/publications/24.pdf
http://www-ee.stanford.edu/\%7Ehellman/publications/24.pdf
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://eprint.iacr.org/2006/307
https://eprint.iacr.org/2006/307
https://www.iacr.org/archive/asiacrypt2004/33290320/33290320.pdf
https://www.iacr.org/archive/asiacrypt2004/33290320/33290320.pdf

230 Bibliography

[DKR+17] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and
Frederik Vercauteren. SABER: Algorithm Speci�cation and Support-
ing Documentation. Submission to NIST’s Post-Quantum Cryptogra-
phy Standardization project. Available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.
2017 (cit. on pp. 191, 194).

[DKR+18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and
Frederik Vercauteren. “Saber: Module-LWR based key exchange,
CPA-secure encryption and CCA-secure KEM.” In: Progress in Cryp-
tology – AFRICACRYPT 2018. Ed. by Antoine Joux, Abderrahmane
Nitaj, and Tajjeeddine Rachidi. Vol. 10831. LNCS. Springer, 2018,
pp. 282–305. url: https://eprint.iacr.org/2018/230 (cit. on
p. 194).

[DOT+08] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuil-
laume. “Digital Signatures Out of Second-Preimage Resistant Hash
Functions.” In: Post-Quantum Cryptography – PQCrypto 2008. Ed. by
Johannes Buchmann and Jintai Ding. Vol. 5299. LNCS. Springer,
2008, pp. 109–123 (cit. on pp. 63, 102).

[DR99] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael.” In:
(1999). url: https://csrc.nist.gov/csrc/media/projects/
cryptographic- standards- and- guidelines/documents/aes-

development/rijndael-ammended.pdf (cit. on p. 33).

[DS05] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivariable
Polynomial Signature Scheme.” In: Applied Cryptography and Net-
work Security. Ed. by John Ioannidis, Angelos D. Keromytis, and
Moti Yung. Vol. 3531. LNCS. Springer, 2005, pp. 164–175 (cit. on
p. 114).

[EDV+12] Sidi Mohamed El Yous� Alaoui, Özgür Dagdelen, Pascal Véron,
David Galindo, and Pierre-Louis Cayrel. “Extended Security
Arguments for Signature Schemes.” In: Progress in Cryptology
– AFRICACRYPT 2012. Ed. by Aikaterini Mitrokotsa and Serge
Vaudenay. Vol. 7374. LNCS. Springer, 2012, pp. 19–34. url:
https://eprint.iacr.org/2012/068 (cit. on pp. 124–127).

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2018/230
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://eprint.iacr.org/2012/068

Bibliography 231

[Eur17] Eurosmart. Digital Security Industry To Pass The 10 Billion Mark In
2018 For Worldwide Shipments Of Secure Elements. Press Release.
2017. url: http://www.eurosmart.com/news- publications/
press-release/296 (cit. on p. 72).

[EVMY14] Thomas Eisenbarth, Ingo Von Maurich, and Xin Ye. “Faster Hash-
based Signatures with Bounded Leakage.” In: Selected Areas in Cryp-
tography – SAC 2013. Ed. by Tanja Lange, Kristin Lauter, and Petr
Lisoněk. Vol. 8282. LNCS. Springer, 2014, pp. 223–243. url: http:
//users.wpi.edu/~teisenbarth/pdf/SignatureswithBounded

LeakageSAC.pdf (cit. on pp. 91, 92).

[Fau02] Jean-Charles Faugère. “A new e�cient algorithm for computing
Gröbner bases without reduction to zero (F5).” In: International
Symposium on Symbolic and Algebraic Computation – ISSAC 2002.
ACM, 2002, pp. 75–83. url: http://www-polsys.lip6.fr/~jcf/
Papers/F02a.pdf (cit. on pp. 137, 157, 168).

[Fau99] Jean-Charles Faugère. “A new e�cient algorithm for computing
Gröbner bases (F4).” In: Journal of Pure and Applied Algebra 139
(1999), pp. 61–88. url: http : / / www - polsys . lip6 . fr / ~jcf /
Papers/F99a.pdf (cit. on pp. 137, 157, 168).

[FGP+15] Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, Simona
Samardjiska, and Enrico Thomae. “A Polynomial-Time Key-
Recovery Attack on MQQ Cryptosystems.” In: Public-Key Cryptog-
raphy – PKC 2015. Ed. by Jonathan Katz. Vol. 9020. LNCS. Springer,
2015, pp. 150–174. url: https://eprint.iacr.org/2014/811
(cit. on p. 113).

[Fis05] Marc Fischlin. “Communication-E�cient Non-interactive Proofs of
Knowledge with Online Extractors.” In: Advances in Cryptology –
CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, 2005,
pp. 152–168. url: https://www.iacr.org/archive/crypto2005/
36210148/36210148.pdf (cit. on p. 147).

[FLP08] Jean-Charles Faugère, Françoise Levy-dit-Vehel, and Ludovic Perret.
“Cryptanalysis of MinRank.” In: Advances in Cryptology – CRYPTO
2008. Ed. by David Wagner. Vol. 5157. LNCS. Springer, 2008, pp. 280–

http://www.eurosmart.com/news-publications/press-release/296
http://www.eurosmart.com/news-publications/press-release/296
http://users.wpi.edu/~teisenbarth/pdf/SignatureswithBoundedLeakageSAC.pdf
http://users.wpi.edu/~teisenbarth/pdf/SignatureswithBoundedLeakageSAC.pdf
http://users.wpi.edu/~teisenbarth/pdf/SignatureswithBoundedLeakageSAC.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
https://eprint.iacr.org/2014/811
https://www.iacr.org/archive/crypto2005/36210148/36210148.pdf
https://www.iacr.org/archive/crypto2005/36210148/36210148.pdf

232 Bibliography

296. url: https://iacr.org/archive/crypto2008/51570280/
51570280.pdf (cit. on pp. 113, 120).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of
Asymmetric and Symmetric Encryption Schemes.” In: Advances in
Cryptology – CRYPTO ‘99. Ed. by Michael Wiener. Vol. 1666. LNCS.
Springer, 1999, pp. 537–554 (cit. on pp. 173, 176).

[For18] Java Card Forum. About the JCF. accessed 2018-03-1. 2018. url:
https://javacardforum.com (cit. on p. 73).

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: Practical so-
lutions to identi�cation and signature problems.” In: Advances in
Cryptology – CRYPTO ‘86. Vol. 263. LNCS. Springer. 1986, pp. 186–
194 (cit. on p. 117).

[Für09] Martin Fürer. “Faster integer multiplication.” In: Journal on Com-
puting 39.3 (2009), pp. 979–1005 (cit. on p. 182).

[Gar05] LC Coronado Garcıa. On the security and the e�ciency of the Merkle
signature scheme. IACR Cryptology ePrint Archive, Report 2005/192.
2005. url: https://eprint.iacr.org/2005/192 (cit. on p. 63).

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979 (cit. on pp. 113, 119).

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
“Practical lattice-based cryptography: a signature scheme for em-
bedded systems.” In: Cryptographic Hardware and Embedded Sys-
tems – CHES 2012. Ed. by Emmanuel Prou� and Patrick Schau-
mont. Vol. 7428. LNCS. Springer, 2012, pp. 530–547. url: https:
//www.iacr.org/archive/ches2012/74280529/74280529.pdf

(cit. on p. 92).

[GM84] Sha� Goldwasser and Silvio Micali. “Probabilistic encryption.” In:
Journal of computer and system sciences 28.2 (1984), pp. 270–299
(cit. on p. 30).

https://iacr.org/archive/crypto2008/51570280/51570280.pdf
https://iacr.org/archive/crypto2008/51570280/51570280.pdf
https://javacardforum.com
https://eprint.iacr.org/2005/192
https://www.iacr.org/archive/ches2012/74280529/74280529.pdf
https://www.iacr.org/archive/ches2012/74280529/74280529.pdf

Bibliography 233

[GMR88] Sha� Goldwasser, Silvio Micali, and Ronald L. Rivest. “A digital
signature scheme secure against adaptive chosen-message attacks.”
In: Journal on Computing 17.2 (1988), pp. 281–308. url: https:
//people.csail.mit.edu/silvio/Selected\%20Scientific\

%20Papers/Digital\%20Signatures/A_Digital_Signature_Sc

heme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf

(cit. on p. 28).

[GMZB+17] Oscar Garcia-Morchon, Zhenfei Zhang, Sauvik Bhattacharya,
Ronald Rietman, Ludo Tolhuizen, and Jose-Luis Torre-Arce. Round2:
Algorithm Speci�cation and Supporting Documentation. Submission
to NIST’s Post-Quantum Cryptography Standardization project.
2017. url: https : / / www . onboardsecurity . com / nist - post -
quantum-crypto-submission (cit. on p. 191).

[GØJ+11] Danilo Gligoroski, Rune S. Ødegård, Rune E. Jensen, Ludovic Perret,
Jean-Charles Faugère, Svein Johan Knapskog, and Smile Markovski.
“MQQ-SIG - An Ultra-Fast and Provably CMA Resistant Digital
Signature Scheme.” In: Trusted Systems – INTRUST 2011. Ed. by Liqun
Chen, Moti Yung, and Liehuang Zhu. Vol. 7222. LNCS. Springer,
2011, pp. 184–203. url: https://hal.inria.fr/hal-00778083
(cit. on p. 113).

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge, UK: Cambridge University Press, 2004 (cit. on
pp. 60, 85).

[Gol87] Oded Goldreich. “Two remarks concerning the Goldwasser-Micali-
Rivest signature scheme.” In: Advances in Cryptology – CRYPTO
‘86. Ed. by Andrew M. Odlyzko. Vol. 263. LNCS. Springer, 1987,
pp. 104–110. url: http://theory.csail.mit.edu/ftp-data/
pub/people/oded/gmr.ps (cit. on pp. 60, 85).

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-
ing Chang Shantz. “Comparing elliptic curve cryptography and RSA
on 8-bit CPUs.” In: Cryptographic Hardware and Embedded Systems –
CHES 2004. Ed. by Marc Joye and Jean-Jacques Quisquater. Vol. 3156.
LNCS. Springer. 2004, pp. 119–132. url: www.iacr.org/archive/
ches2004/31560117/31560117.pdf (cit. on p. 181).

https://people.csail.mit.edu/silvio/Selected\%20Scientific\%20Papers/Digital\%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://people.csail.mit.edu/silvio/Selected\%20Scientific\%20Papers/Digital\%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://people.csail.mit.edu/silvio/Selected\%20Scientific\%20Papers/Digital\%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://people.csail.mit.edu/silvio/Selected\%20Scientific\%20Papers/Digital\%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://hal.inria.fr/hal-00778083
http://theory.csail.mit.edu/ftp-data/pub/people/oded/gmr.ps
http://theory.csail.mit.edu/ftp-data/pub/people/oded/gmr.ps
www.iacr.org/archive/ches2004/31560117/31560117.pdf
www.iacr.org/archive/ches2004/31560117/31560117.pdf

234 Bibliography

[Gro15] Wouter de Groot. “A Performance Study of X25519 on Cortex-M3
and M4.” MA thesis. Technische Universiteit Eindhoven, 2015. url:
https://research.tue.nl/en/studentTheses/a-performance-

study-of-x25519-on-cortex-m3-and-m4 (cit. on p. 38).

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search.” In: Symposium on Theory of Computing – STOC ‘96. ACM,
1996, pp. 212–219. url: https://arxiv.org/pdf/quant- ph/
9605043v3.pdf (cit. on pp. 24, 137, 157).

[HBG+15] Andreas Hülsing, D. Butin, S. Gazdag, and A. Mohaisen. XMSS:
Extended Hash-Based Signatures. Crypto Forum Research Group
Internet-Draft. 2015. url: https://tools.ietf.org/html/draft-
irtf-cfrg-xmss-hash-based-signatures-01 (cit. on p. 99).

[HBG+18] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijn-
eveld, and Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme.
Request for Comments 8391. IETF, 2018. url: https://tools.ietf.
org/html/rfc8391 (cit. on pp. 17, 33, 44, 50, 52, 65–67, 70, 72, 75,
78, 82, 261).

[HG07] Nick Howgrave-Graham. “A hybrid lattice-reduction and meet-
in-the-middle attack against NTRU.” In: Advances in Cryptology –
CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. LNCS. Springer,
2007, pp. 150–169. url: http://www.iacr.org/archive/crypto
2007/46220150/46220150.pdf (cit. on pp. 171, 174).

[HGSS+03] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and
William Whyte. NAEP: Provable Security in the Presence of Decryp-
tion Failures. IACR Cryptology ePrint Archive, Report 2003/172.
2003. url: https://eprint.iacr.org/2003/172 (cit. on pp. 171,
173).

[HGSW05] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte.
“Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-
3.” In: Topics in Cryptology – CT-RSA 2005. Ed. by Alfred Menezes.
Vol. 3376. LNCS. Springer, 2005, pp. 118–135. url: https://eprint.
iacr.org/2005/045 (cit. on pp. 171, 174).

https://research.tue.nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4
https://research.tue.nl/en/studentTheses/a-performance-study-of-x25519-on-cortex-m3-and-m4
https://arxiv.org/pdf/quant-ph/9605043v3.pdf
https://arxiv.org/pdf/quant-ph/9605043v3.pdf
https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8391
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2005/045

Bibliography 235

[HHHG+09] Philip S. Hirschhorn, Je�rey Ho�stein, Nick Howgrave-Graham,
and William Whyte. “Choosing NTRUEncrypt Parameters in
Light of Combined Lattice Reduction and MITM Approaches.” In:
Applied Cryptography and Network Security – ACNS 2009. Ed. by
Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud. Vol. 5536. LNCS. Springer, 2009, pp. 437–455.
url: https://eprint.iacr.org/2005/045 (cit. on pp. 171, 174).

[HHL16] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. “Even
faster integer multiplication.” In: Journal of Complexity 36 (2016),
pp. 1–30 (cit. on p. 182).

[HK06] Shai Halevi and Hugo Krawczyk. “Strengthening digital signatures
via randomized hashing.” In: Advances in Cryptology – CRYPTO 2006.
Ed. by Cynthia Dwork. Vol. 4117. LNCS. Springer, 2006, pp. 41–59.
url: https://www.iacr.org/archive/crypto2006/41170039/
41170039.pdf (cit. on p. 130).

[HPS00] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. Public key
cryptosystem method and apparatus. United States Patent 6081597.
Application �led August 19, 1997, http://www.freepatentsonlin
e.com/6081597.html. 2000 (cit. on p. 172).

[HPS+17] Je� Ho�stein, Jill Pipher, John M. Schanck, Joseph H. Silverman,
William Whyte, and Zhenfei Zhang. “Choosing Parameters for
NTRUEncrypt.” In: Topics in Cryptology – CTA-RSA 2017. Ed. by
Helena Handschuh. Vol. 10159. LNCS. Springer, 2017, pp. 3–18. url:
https://eprint.iacr.org/2015/708 (cit. on pp. 174, 190, 194).

[HPS96] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A New
High Speed Public Key Cryptosystem. Preliminary draft CRYPTO
‘96 rump session. http://web.securityinnovation.com/hubfs/
files/ntru-orig.pdf. 1996 (cit. on pp. 171, 174, 179).

[HPS98] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. “NTRU: A
ring-based public key cryptosystem.” In: Algorithmic Number Theory
– ANTS-III. Ed. by Joe P. Buhler. Vol. 1423. LNCS. Springer, 1998,
pp. 267–288 (cit. on pp. 171–174, 179, 194).

https://eprint.iacr.org/2005/045
https://www.iacr.org/archive/crypto2006/41170039/41170039.pdf
https://www.iacr.org/archive/crypto2006/41170039/41170039.pdf
http://www.freepatentsonline.com/6081597.html
http://www.freepatentsonline.com/6081597.html
https://eprint.iacr.org/2015/708
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

236 Bibliography

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. “Optimal
Parameters for XMSSMT .” In: Security Engineering and Intelligence
Informatics. Ed. by Alfredo Cuzzocrea, Christian Kittl, Dimitris E.
Simos, Edgar Weippl, and Lida Xu. Vol. 8128. LNCS. Springer, 2013,
pp. 194–208. url: https://eprint.iacr.org/2017/966 (cit. on
pp. 63, 65, 72).

[HRS16a] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. “ARMed
SPHINCS – Computing a 41KB signature in 16KB of RAM.” In:
Public Key Cryptography – PKC 2016. Ed. by Chen-Mou Cheng, Kai-
Min Chung, Giuseppe Persiano, and Bo-Yin Yang. Vol. 9614. LNCS.
Springer, 2016, pp. 446–470. url: https://eprint.iacr.org/
2015/1042 (cit. on pp. 16, 21, 22, 43, 92, 260).

[HRS16b] Andreas Hülsing, Joost Rijneveld, and Fang Song. “Mitigating Multi-
Target Attacks in Hash-based Signatures.” In: Public Key Cryptogra-
phy – PKC 2016. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang. Vol. 9614. LNCS. Springer, 2016, pp. 387–
416. url: https://eprint.iacr.org/2015/1256 (cit. on pp. 16, 21,
43, 63, 65, 67, 70, 72, 90, 102, 108, 260).

[HRS+17a] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter
Schwabe. “High-speed key encapsulation from NTRU.” In: Cryp-
tographic Hardware and Embedded Systems – CHES 2017. Ed. by
Wieland Fischer and Naofumi Homma. Vol. 10529. LNCS. Springer,
2017, pp. 232–252. url: https://eprint.iacr.org/2017/667
(cit. on pp. 19, 22, 171–176, 180, 202, 260).

[HRS+17b] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter
Schwabe. NTRU-KEM-HRSS: Algorithm Speci�cation and Supporting
Documentation. Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project. 2017. url: https://ntru-hrss.org
(cit. on pp. 19, 171, 180, 191, 261).

[HS06] Je�rey Ho�stein and Joseph H. Silverman. Speed enhanced crypto-
graphic method and apparatus. United States Patent 7031468. Ap-
plication �led August 24, 2001, http://www.freepatentsonline.
com/7031468.html. 2006 (cit. on p. 172).

https://eprint.iacr.org/2017/966
https://eprint.iacr.org/2015/1042
https://eprint.iacr.org/2015/1042
https://eprint.iacr.org/2015/1256
https://eprint.iacr.org/2017/667
https://ntru-hrss.org
http://www.freepatentsonline.com/7031468.html
http://www.freepatentsonline.com/7031468.html

Bibliography 237

[Hül13a] Andreas Hülsing. “Practical Forward Secure Signatures using Mini-
mal Security Assumptions.” PhD thesis. TU Darmstadt, 2013. url:
http://tuprints.ulb.tu-darmstadt.de/3651 (cit. on pp. 52, 67,
69).

[Hül13b] Andreas Hülsing. “W-OTS+ – Shorter Signatures for Hash-Based
Signature Schemes.” In: Progress in Cryptology – AFRICACRYPT
2013. Ed. by Amr Youssef, Abderrahmane Nitaj, and Aboul-Ella
Hassanien. Vol. 7918. LNCS. Springer, 2013, pp. 173–188. url: https:
//eprint.iacr.org/2017/965 (cit. on pp. 63, 102).

[HW11] Michael Hutter and Erich Wenger. “Fast multi-precision multiplica-
tion for public-key cryptography on embedded microprocessors.” In:
Cryptographic Hardware and Embedded Systems – CHES 2011. Ed. by
Bart Preneel and Tsuyoshi Takagi. Vol. 6917. LNCS. Springer. 2011,
pp. 459–474. url: https://www.iacr.org/archive/ches2011/
69170459/69170459.pdf (cit. on p. 181).

[ICAO14] Supplemental Access Control for Machine Readable Travel Documents.
Tech. rep. Version 1.1. International Civil Aviation Organization
(ICAO), 2014 (cit. on pp. 73, 80).

[IEE09] IEEE. IEEE Standard Speci�cation for Public Key Cryptographic Tech-
niques Based on Hard Problems over Lattices. Std 1363.1-2008. 2009
(cit. on p. 171).

[IT88] Toshiya Itoh and Shigeo Tsujii. “A fast algorithm for computing
multiplicative inverses in GF(2m) using normal bases.” In: Infor-
mation and computation 78.3 (1988), pp. 171–177. url: https://
sciencedirect.com/science/article/pii/0890540188900247

(cit. on p. 184).

[JV17] Antoine Joux and Vanessa Vitse. “A crossbred algorithm for solving
Boolean polynomial systems.” In:Number-Theoretic Methods in Cryp-
tology – NuTMiC 2017. Ed. by Jerzy Kaczorowski, Josef Pieprzyk,
and Jacek Pomykała. Vol. 10737. LNCS. Springer, 2017, pp. 3–21.
url: https://eprint.iacr.org/2017/372 (cit. on p. 157).

[Kah96] David Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Scribner, 1996.
isbn: 978-0-68-483130-5 (cit. on p. 13).

http://tuprints.ulb.tu-darmstadt.de/3651
https://eprint.iacr.org/2017/965
https://eprint.iacr.org/2017/965
https://www.iacr.org/archive/ches2011/69170459/69170459.pdf
https://www.iacr.org/archive/ches2011/69170459/69170459.pdf
https://sciencedirect.com/science/article/pii/0890540188900247
https://sciencedirect.com/science/article/pii/0890540188900247
https://eprint.iacr.org/2017/372

238 Bibliography

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane
Krämer, and Johannes Buchmann. “Di�erential Power Analysis
of XMSS and SPHINCS.” In: Constructive Side-Channel Analysis
and Secure Design – COSADE 2018. Ed. by Junfeng Fan Benedikt
Gierlichs. Vol. 10815. LNCS. Springer, 2018, pp. 168–188. url:
https://eprint.iacr.org/2018/673 (cit. on p. 85).

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptog-
raphy. CRC press, 2014 (cit. on p. 30).

[KLM+17] Stefan Kölbl, Martin Lauridsen, Florian Mendel, and Chris-
tian Rechberger. “Haraka v2 – E�cient Short-Input Hashing
for Post-Quantum Applications.” In: IACR Transactions on
Symmetric Cryptology 2016.2 (2017), pp. 1–29. url: https :

//eprint.iacr.org/2016/098 (cit. on p. 106).

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Scha�ner. “A con-
crete treatment of Fiat-Shamir signatures in the quantum random-
oracle model.” In: Advances in Cryptology – EUROCRYPT 2018. Ed. by
Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS. Springer,
2018, pp. 552–586. url: https://eprint.iacr.org/2017/916 (cit.
on pp. 136, 144, 216).

[KMR+18] Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy,
and Ingrid Verbauwhede. “Saber on ARM.” In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018.3 (2018),
pp. 243–266. url: https://eprint.iacr.org/2018/682 (cit. on
pp. 191, 200, 202, 208, 209, 211).

[KO63] Anatolii Karatsuba and Yuri Ofman. “Multiplication of multidigit
numbers on automata.” In: Soviet Physics Doklady 7 (1963). Trans-
lated from Doklady Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–
294, July 1962. Scanned version on http://cr.yp.to/bib/1963/

karatsuba.html, pp. 595–596 (cit. on pp. 181, 199).

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. “Unbalanced Oil
and Vinegar Signature Schemes.” In: Advances in Cryptology – EU-
ROCRYPT ‘99. Ed. by Jacques Stern. Vol. 1592. LNCS. Springer, 1999,
pp. 206–222. url: http://www.goubin.fr/papers/OILLONG.PDF
(cit. on p. 114).

https://eprint.iacr.org/2018/673
https://eprint.iacr.org/2016/098
https://eprint.iacr.org/2016/098
https://eprint.iacr.org/2017/916
https://eprint.iacr.org/2018/682
http://cr.yp.to/bib/1963/karatsuba.html
http://cr.yp.to/bib/1963/karatsuba.html
http://www.goubin.fr/papers/OILLONG.PDF

Bibliography 239

[KRS+18] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko
Sto�elen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
2018. url: https://github.com/mupq/pqm4 (cit. on pp. 35, 41, 92,
203, 208, 210, 211).

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. “Faster
multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC can-
didates.” In: Applied Cryptography and Network Security – ACNS
2019. Ed. by Robert H. Deng, Valérie Gauthier, Martín Ochoa, and
Moti Yung. Vol. 11464. LNCS. Springer, 2019, pp. 281–301. url:
https://eprint.iacr.org/2018/1018 (cit. on pp. 20, 22, 35, 171,
173, 260).

[KRS+19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko
Sto�elen. pqm4: Testing and Benchmarking NIST PQC on ARMCortex-
M4. Second NIST PQC Standardization Conference. 2019 (cit. on
pp. 22, 41, 92, 260).

[KS98a] Burt Kaliski and Jessica Staddon. PKCS #1: RSA Cryptography Spec-
i�cations. Request for Comments 2437. IETF, 1998. url: https:
//tools.ietf.org/html/rfc2437 (cit. on p. 109).

[KS98b] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the Oil & Vinegar
Signature Scheme.” In: Advances in Cryptology – CRYPTO ‘98. Ed. by
Hugo Krawczyk. 1998. url: http://antoanthongtin.vn/Porta
ls/0/UploadImages/kiennt2/KyYe/DuLieuNuocNgoai/3.Adva

nces\%20in\%20cryptology-Crypto\%201998-LNCS\%201462/

14620257.PDF (cit. on p. 113).

[KZ19] Daniel Kales and Greg Zaverucha. “Forgery Attacks on MQDSSv2.0.”
In: (2019). url: https://groups.google.com/a/list.nist.gov/
d/msg/pqc-forum/LlHhfwg73eQ/omM6TWwlEwAJ (cit. on p. 216).

[Lam79] Leslie Lamport. Constructing digital signatures from a one way func-
tion. Technical Report SRI-CSL-98. SRI International Computer Sci-
ence Laboratory, 1979 (cit. on pp. 43, 45).

[Lan18] Adam Langley. CECPQ2. 2018. url: https://www.imperialviolet.
org/2018/12/12/cecpq2.html (cit. on p. 171).

https://github.com/mupq/pqm4
https://eprint.iacr.org/2018/1018
https://tools.ietf.org/html/rfc2437
https://tools.ietf.org/html/rfc2437
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYe/DuLieuNuocNgoai/3.Advances\%20in\%20cryptology-Crypto\%201998-LNCS\%201462/14620257.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYe/DuLieuNuocNgoai/3.Advances\%20in\%20cryptology-Crypto\%201998-LNCS\%201462/14620257.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYe/DuLieuNuocNgoai/3.Advances\%20in\%20cryptology-Crypto\%201998-LNCS\%201462/14620257.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYe/DuLieuNuocNgoai/3.Advances\%20in\%20cryptology-Crypto\%201998-LNCS\%201462/14620257.PDF
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/LlHhfwg73eQ/omM6TWwlEwAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/LlHhfwg73eQ/omM6TWwlEwAJ
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html

240 Bibliography

[Lei18] Dominik Leichtle. “Post-Quantum Signatures from Identi�cation
Schemes.” MA thesis. Universität Stuttgart, 2018. url: https://re
search.tue.nl/en/studentTheses/post-quantum-signatures-

from-identification-schemes (cit. on pp. 143, 155, 159).

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal
Lattices and Learning with Errors over Rings.” In: Advances in Cryp-
tology – EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS.
Springer, 2010, pp. 1–23. url: https://eprint.iacr.org/2012/
230 (cit. on p. 172).

[LPR+18] Ebo van der Laan, Erik Poll, Joost Rijneveld, Joeri de Ruiter, Peter
Schwabe, and Jan Verschuren. “Is Java Card ready for hash-based
signatures?” In: Advances in Information and Computer Security –
IWSEC 2018. Ed. by Atsuo Inomata and Kan Yasuda. Vol. 11049.
LNCS. Springer, 2018, pp. 127–142. url: https://eprint.iacr.
org/2018/611 (cit. on pp. 16, 21, 43, 260).

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case
reductions for module lattices.” In: Designs, Codes and Cryptography
75.3 (2015), pp. 565–599. url: https://eprint.iacr.org/2012/
090 (cit. on p. 195).

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly Fast NTRU
Using NTT. IACR Cryptology ePrint Archive, Report 2019/040. 2019.
url: https://eprint.iacr.org/2019/040 (cit. on pp. 180, 216).

[Lud03] Christoph Ludwig. “A Faster Lattice Reduction Method Using Quan-
tum Search.” In: Algorithms and Computation – ISAAC 2003. Ed. by
Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono. Vol. 2906. LNCS.
Springer, 2003, pp. 199–208. url: https://www.cdc.informatik.
tu-darmstadt.de/reports/TR/TI-03-03.QSamplingPaper.pdf

(cit. on p. 171).

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting Post-Quantum Fiat-Shamir.
IACR Cryptology ePrint Archive, Report 2019/262. 2019. url: https:
//eprint.iacr.org/2019/262 (cit. on pp. 136, 144, 216).

[Mal63] Colin L. Mallows. “Patience sorting.” In: SIAM review 5.4 (1963),
p. 375 (cit. on p. 185).

https://research.tue.nl/en/studentTheses/post-quantum-signatures-from-identification-schemes
https://research.tue.nl/en/studentTheses/post-quantum-signatures-from-identification-schemes
https://research.tue.nl/en/studentTheses/post-quantum-signatures-from-identification-schemes
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2018/611
https://eprint.iacr.org/2018/611
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2019/040
https://www.cdc.informatik.tu-darmstadt.de/reports/TR/TI-03-03.QSamplingPaper.pdf
https://www.cdc.informatik.tu-darmstadt.de/reports/TR/TI-03-03.QSamplingPaper.pdf
https://eprint.iacr.org/2019/262
https://eprint.iacr.org/2019/262

Bibliography 241

[May99] Alexander May. Cryptanalysis of NTRU. 1999. url: https://www.
cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/

cryptanalysisofntru.ps (cit. on p. 171).

[Mer79] Ralph Charles Merkle. “Secrecy, authentication, and public key
systems.” PhD thesis. Stanford University, 1979 (cit. on pp. 68, 109).

[Mer90] Ralph Merkle. “A Certi�ed Digital Signature.” In: Advances in Cryp-
tology – CRYPTO ‘89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer,
1990, pp. 218–238. url: www.merkle.com/papers/Certified1979.
pdf (cit. on pp. 13, 45, 47, 48, 52–54, 57).

[MM+85] Stephen Matyas, Carl Meyer, and Jonathan Oseas. “Generating
strong one-way functions with cryptographic algorithm.” In: IBM
Technical Disclosure Bulletin 27 (1985), pp. 5658–5659 (cit. on p. 78).

[Moo18] Dustin Moody. Let’s Get Ready to Rumble – The NIST PQC "Compe-
tition". Presentation at PQCrypto 2018. 2018. url: https://csrc.
nist.gov/Presentations/2018/Let-s-Get-Ready-to-Rumble-

The-NIST-PQC-Competiti (cit. on p. 33).

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. “Indi�er-
entiability, impossibility results on reductions, and applications
to the random oracle methodology.” In: Theory of Cryptography –
TCC 2004. Vol. 2951. LNCS. Springer. 2004, pp. 21–39. url: https:
//eprint.iacr.org/2003/161 (cit. on p. 27).

[NIST01] FIPS PUB 197: Advanced Encryption Standard (AES). National In-
stitute of Standards and Technology, 2001. url: http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (cit. on p. 33).

[NIST15a] FIPS PUB 180-4: Secure Hash Standard. National Institute of Standards
and Technology, 2015. url: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.180-4.pdf (cit. on pp. 33, 106, 208).

[NIST15b] FIPS PUB 202 – SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. National Institute of Standards and
Technology, 2015. url: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf (cit. on pp. 26, 33, 106, 208).

https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/cryptanalysisofntru.ps
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/cryptanalysisofntru.ps
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/cryptanalysisofntru.ps
www.merkle.com/papers/Certified1979.pdf
www.merkle.com/papers/Certified1979.pdf
https://csrc.nist.gov/Presentations/2018/Let-s-Get-Ready-to-Rumble-The-NIST-PQC-Competiti
https://csrc.nist.gov/Presentations/2018/Let-s-Get-Ready-to-Rumble-The-NIST-PQC-Competiti
https://csrc.nist.gov/Presentations/2018/Let-s-Get-Ready-to-Rumble-The-NIST-PQC-Competiti
https://eprint.iacr.org/2003/161
https://eprint.iacr.org/2003/161
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

242 Bibliography

[NIST16] Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. National
Institute of Standards and Technology, 2016. url: https :

/ / csrc . nist . gov / CSRC / media / Projects / Post - Quantum -

Cryptography/documents/call- for- proposals- final- dec-

2016.pdf (cit. on p. 33).

[NIST19] Round 2 Submissions. National Institute of Standards and Technology,
2019. url: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions (cit. on p. 33).

[NSA15] Commercial National Security Algorithm Suite. National Security
Agency, 2015. url: https://apps.nsa.gov/iaarchive/programs/
iad-initiatives/cnsa-suite.cfm (cit. on p. 33).

[NSW05] Dalit Naor, Amir Shenhav, and Avishai Wool. One-time signatures re-
visited: Have they become practical? IACR Cryptology ePrint Archive.
2005. url: https://eprint.iacr.org/2005/442 (cit. on p. 62).

[OPG14] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. “Beyond
ECDSA and RSA: lattice-based digital signatures on constrained
devices.” In: Design Automation Conference – DAC 2014. ACM, 2014,
pp. 1–6. url: https://www.sha.rub.de/media/attachments/
files/2014/06/bliss_arm.pdf (cit. on p. 92).

[Pat96] Jacques Patarin. “Hidden Field Equations (HFE) and Isomorphisms
of Polynomials (IP): Two new families of asymmetric algorithms.”
In: Advances in Cryptology – EUROCRYPT ‘96. Ed. by Ueli Maurer.
Vol. 1070. LNCS. Springer, 1996, pp. 33–48. url: http://www.minr
ank.org/hfe.pdf (cit. on pp. 113, 120).

[Pat97] Jacques Patarin. “The Oil and Vinegar signature scheme.” In:
Dagstuhl Workshop on Cryptography. 1997 (cit. on p. 113).

[PCG01] Jacques Patarin, Nicolas Courtois, and Louis Goubin. “QUARTZ, 128-
Bit Long Digital Signatures.” In: Topics in Cryptology – CT-RSA 2001.
Ed. by David Naccache. Vol. 2020. LNCS. Springer, 2001, pp. 282–
297. url: http://www.goubin.fr/papers/rsa2001b.pdf (cit. on
p. 113).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://eprint.iacr.org/2005/442
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
http://www.minrank.org/hfe.pdf
http://www.minrank.org/hfe.pdf
http://www.goubin.fr/papers/rsa2001b.pdf

Bibliography 243

[PCY+15] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao,
and Jintai Ding. “Design Principles for HFEv- Based Multivariate
Signature Schemes.” In: Advances in Cryptology – ASIACRYPT 2015.
Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9452. LNCS. Springer,
2015, pp. 311–334. url: https://www.iacr.org/archive/asiacr
ypt2015/94520213/94520213.pdf (cit. on p. 114).

[PKCS11] Susan Gleeson and Chris Zimman, eds. PKCS #11 Cryptographic
Token Interface Base Speci�cation Version 2.40. OASIS Standard. 2015.
url: http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.
40/errata01/os/pkcs11-base-v2.40-errata01-os-complete.

html (cit. on p. 74).

[PLP16] Rafael del Pino, Vadim Lyubashevsky, and David Pointcheval. “The
Whole is Less Than the Sum of Its Parts: Constructing More E�cient
Lattice-Based AKEs.” In: Security and Cryptography for Networks –
SCN 2016. Ed. by Vassilis Zikas and Roberto De Prisco. Vol. 9841.
LNCS. Springer, 2016, pp. 273–291. url: https://eprint.iacr.
org/2016/435 (cit. on pp. 171, 174).

[PO95] Bart Preneel and Paul C. van Oorschot. “MDx-MAC and Building
Fast MACs from Hash Functions.” In: Advances in Cryptology –
CRYPTO ‘95. Ed. by Don Coppersmith. Vol. 963. LNCS. Springer,
1995, pp. 1–14. url: https://people.scs.carleton.ca/~paulv/
papers/Crypto95.pdf (cit. on p. 110).

[PP03] David Pointcheval and Guillaume Poupard. “A New NP-Complete
Problem and Public-Key Identi�cation.” In: Designs, Codes and Cryp-
tography 28.1 (2003), pp. 5–31 (cit. on p. 124).

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature
Schemes.” In: Advances in Cryptology – EUROCRYPT ‘96. Ed. by
Ueli Maurer. Vol. 1070. LNCS. Springer, 1996, pp. 387–398. url:
https://www.di.ens.fr/~pointche/Documents/Papers/1996_

eurocrypt.pdf (cit. on pp. 117, 130, 144, 147).

[RED+08] Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen, Johannes
Buchmann, and Christof Paar. “Fast hash-based signatures
on constrained devices.” In: Smart Card Research and Ad-
vanced Applications – CARDIS 2008. Ed. by Gilles Grimaud

https://www.iacr.org/archive/asiacrypt2015/94520213/94520213.pdf
https://www.iacr.org/archive/asiacrypt2015/94520213/94520213.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os-complete.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os-complete.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os-complete.html
https://eprint.iacr.org/2016/435
https://eprint.iacr.org/2016/435
https://people.scs.carleton.ca/~paulv/papers/Crypto95.pdf
https://people.scs.carleton.ca/~paulv/papers/Crypto95.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf

244 Bibliography

and François-Xavier Standaert. Vol. 5189. LNCS. Springer, 2008,
pp. 104–117. url: https : / / www - old . cdc . informatik . tu -

darmstadt.de/reports/reports/REDBP08.pdf (cit. on pp. 72, 91).

[Rom90] John Rompel. “One-way functions are necessary and su�cient for
secure signatures.” In: Symposium on Theory of Computing – STOC
‘90. ACM, 1990, pp. 387–394. url: https://www.cs.princeton.
edu/courses/archive/spr08/cos598D/Rompel.pdf (cit. on p. 43).

[RR02] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-
Time Signatures with Fast Signing and Verifying.” In: Information
Security and Privacy – ACISP 2002. Ed. by Lynn Batten and Jennifer
Seberry. Vol. 2384. LNCS. Springer, 2002, pp. 144–153. url: https:
//eprint.iacr.org/2002/014 (cit. on p. 87).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. “A method
for obtaining digital signatures and public-key cryptosystems.” In:
Communications of the ACM 21.2 (1978), pp. 120–126 (cit. on p. 13).

[Saa17a] Markku-Juhani O. Saarinen. HILA5: Algorithm Speci�cation and
Supporting Documentation. Submission to NIST’s Post-Quantum
Cryptography Standardization project. 2017. url: https://mjos.
fi/hila5 (cit. on p. 191).

[Saa17b] Markku-Juhani O. Saarinen. “Ring-LWE Ciphertext Compression
and Error Correction: Tools for Lightweight Post-Quantum Cryp-
tography.” In: IoT Privacy, Trust, and Security – IoTPTS 2017. ACM,
2017, pp. 15–22. url: https://eprint.iacr.org/2016/1058 (cit.
on p. 171).

[Sak07] Halvor Sakshaugh. “Security analysis of the NTRUEncrypt pub-
lic key encryption scheme.” MA thesis. Norwegian University of
Science and Technology, 2007. url: https://brage.bibsys.no/
xmlui/handle/11250/258846 (cit. on pp. 173, 176).

[Sal05] David Salomon. Coding for Data and Computer Communications.
Springer, 2005. isbn: 978-0-38-721245-6 (cit. on p. 13).

[SAL+17] Nigel P. Smart, Martin R. Albrecht, Yehuda Lindell, Emmanuela
Orsini, Valery Osheter, Kenny Paterson, and Guy Peer. LIMA: Algo-
rithm Speci�cation and Supporting Documentation. Submission to

https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://eprint.iacr.org/2002/014
https://eprint.iacr.org/2002/014
https://mjos.fi/hila5
https://mjos.fi/hila5
https://eprint.iacr.org/2016/1058
https://brage.bibsys.no/xmlui/handle/11250/258846
https://brage.bibsys.no/xmlui/handle/11250/258846

Bibliography 245

NIST’s Post-Quantum Cryptography Standardization project. 2017.
url: https://lima-pq.github.io (cit. on p. 191).

[SBGM+18] Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Oscar Garcia-
Morchon, Ronald Rietman, Ludo Tolhuizen, and Zhenfei Zhang.
“Shorter Messages and Faster Post-Quantum Encryption with
Round5 on Cortex M.” In: Smart Card Research and Advanced
Applications – CARDIS 2018. Ed. by Begül Bilgin and Jean-Bernard
Fischer. Vol. 11389. LNCS. Springer, 2018, pp. 95–110. url:
https://eprint.iacr.org/2018/723/20181013:085018 (cit. on
pp. 191, 210–212).

[Sch03] Claus-Peter Schnorr. “Lattice Reduction by Random Sampling and
Birthday Methods.” In: Symposium on Theoretical Aspects of Com-
puter Science – STACS 2003. Ed. by Helmut Alt and Michel Habib.
Vol. 2607. LNCS. Springer, 2003, pp. 145–156. url: https://www.
math.uni-frankfurt.de/~dmst/research/papers/ABRStacs.

pdf (cit. on p. 171).

[Sec17] Safran Identity & Security. The impact of Java Card technology
yesterday and tomorrow: Safran Identity & Security celebrates 20
years with the Java Card Forum. Press Release. accessed 2018-03-12.
2017. url: https://www.morpho.com/en/media/impact-java-
card-technology-yesterday-and-tomorrow-safran-identity-

security-celebrates-20-years-java-card-forum-20170302

(cit. on p. 73).

[Sec17] Security Innovation. Security Innovation Makes NTRUEncrypt Patent-
Free. 2017. url: https://www.securityinnovation.com/compa
ny/news-and-events/press-releases/security-innovation-

makes-ntruencrypt-patent-free (cit. on p. 172).

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer.” In: Journal
on Computing 26.5 (1997), 1484–1509 (cit. on p. 14).

[Sil99] Joseph H. Silverman. Almost inverses and fast NTRU key creation.
Tech. rep. #014. Version 1. https://assets.onboardsecurity.co
m/static/downloads/NTRU/resources/NTRUTech014.pdf. NTRU
Cryptosystems, 1999 (cit. on pp. 184, 186).

https://lima-pq.github.io
https://eprint.iacr.org/2018/723/20181013:085018
https://www.math.uni-frankfurt.de/~dmst/research/papers/ABRStacs.pdf
https://www.math.uni-frankfurt.de/~dmst/research/papers/ABRStacs.pdf
https://www.math.uni-frankfurt.de/~dmst/research/papers/ABRStacs.pdf
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302
https://www.securityinnovation.com/company/news-and-events/press-releases/security-innovation-makes-ntruencrypt-patent-free
https://www.securityinnovation.com/company/news-and-events/press-releases/security-innovation-makes-ntruencrypt-patent-free
https://www.securityinnovation.com/company/news-and-events/press-releases/security-innovation-makes-ntruencrypt-patent-free
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf

246 Bibliography

[Sin99] Simon Singh. The Code Book: The Science of Secrecy from Ancient
Egypt to Quantum Cryptography. Doubleday, 1999. isbn: 978-1-85-
702879-9 (cit. on p. 13).

[SOO+95] Richard Schroeppel, Hilarie Orman, Sean O’Malley, and Oliver
Spatscheck. “Fast key exchange with elliptic curve systems.” In:
Advances in Cryptology – CRYPTO ‘95. Ed. by Don Coppersmith.
Vol. 963. LNCS. Springer, 1995, pp. 43–56. url: https://www.cs.
arizona.edu/sites/default/files/TR95-03.pdf (cit. on p. 186).

[SS17] Peter Schwabe and Ko Sto�elen. “All the AES you need on Cortex-
M3 and M4.” In: Selected Areas in Cryptology – SAC 2016. Ed. by
Roberto Avanzi and Howard Heys. Vol. 10532. LNCS. Springer, 2017,
pp. 180–194. url: https://eprint.iacr.org/2016/714 (cit. on
p. 198).

[SS71] Arnold Schönhage and Volker Strassen. “Schnelle multiplikation
grosser zahlen.” In: Computing 7.3 (1971), pp. 281–292 (cit. on p. 182).

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. “Public-Key
Identi�cation Schemes Based on Multivariate Quadratic Polyno-
mials.” In: Advances in Cryptology – CRYPTO 2011. Ed. by Phillip
Rogaway. Vol. 6841. LNCS. Springer, 2011, pp. 706–723. url: https:
//www.iacr.org/archive/crypto2011/68410703/68410703.pdf

(cit. on pp. 114, 120, 121, 124, 127, 130, 133, 136, 145–148, 155, 156,
165, 166).

[Sta05] Martijn Stam. “A Key Encapsulation Mechanism for NTRU.” In:
Cryptography and Coding. Ed. by Nigel P. Smart. Vol. 3796. LNCS.
Springer, 2005, pp. 410–427 (cit. on pp. 173, 176).

[Ste93] Jacques Stern. “A new identi�cation scheme based on syndrome
decoding.” In: Advances in Cryptology – CRYPTO ‘93. Ed. by Douglas
R. Stinson. Vol. 773. LNCS. Springer, 1993, pp. 13–21. url: https:
//www.di.ens.fr/~stern/data/St47.pdf (cit. on p. 124).

[Ste96] Jacques Stern. “A new paradigm for public key identi�cation.” In:
Transactions on Information Theory 42.6 (1996), pp. 1757–1768. url:
https://www.di.ens.fr/users/stern/data/St55b.pdf (cit. on
p. 133).

https://www.cs.arizona.edu/sites/default/files/TR95-03.pdf
https://www.cs.arizona.edu/sites/default/files/TR95-03.pdf
https://eprint.iacr.org/2016/714
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.di.ens.fr/~stern/data/St47.pdf
https://www.di.ens.fr/~stern/data/St47.pdf
https://www.di.ens.fr/users/stern/data/St55b.pdf

Bibliography 247

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-
secure key-encapsulation mechanism in the quantum random oracle
model.” In: Advances in Cryptology – EUROCRYPT 2018. Ed. by Jesper
Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS. Springer. 2018,
pp. 520–551. url: https://eprint.iacr.org/2017/1005 (cit. on
p. 179).

[TGT+10] Shigeo Tsujii, Masahito Gotaishi, Kohtaro Tadaki, and Ryou Fujita.
“Proposal of a Signature Scheme Based on STS Trapdoor.” In: Post-
Quantum Cryptography – PQCrypto 2010. Ed. by Nicolas Sendrier.
Vol. 6061. LNCS. Springer, 2010, pp. 201–217. url: https://eprint.
iacr.org/2010/118 (cit. on p. 113).

[Tho13] Enrico Thomae. “About the Security of Multivariate Quadratic Pub-
lic Key Schemes.” PhD thesis. Ruhr-University Bochum, Germany,
2013. url: https://www.iacr.org/phds/116_EnricoThomae_
AboutSecurityMultivariateQuadr.pdf (cit. on pp. 113, 120).

[Too63] Andrei L. Toom. “The complexity of a scheme of functional elements
realizing the multiplication of integers.” In: Soviet Mathematics Dok-
lady 3 (1963), pp. 714–716. url: www.de.ufpe.br/~toom/my-
articles/engmat/MULT-E.PDF (cit. on pp. 182, 199).

[TU15] Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum Security of
the Fujisaki-Okamoto and OAEP Transforms. IACR Cryptology ePrint
Archive, Report 2015/1210. 2015. url: https://eprint.iacr.org/
2015/1210 (cit. on pp. 176, 177).

[TW12] Enrico Thomae and Christopher Wolf. “Cryptanalysis of Enhanced
TTS, STS and All Its Variants, or: Why Cross-Terms Are Important.”
In: Progress in Cryptology – AFRICACRYPT 2012. Ed. by Aikaterini
Mitrokotsa and Serge Vaudenay. Vol. 7374. LNCS. Springer, 2012,
pp. 188–202 (cit. on p. 113).

[Unr15] Dominique Unruh. “Non-Interactive Zero-Knowledge Proofs in the
Quantum Random Oracle Model.” In: Advances in Cryptology – EU-
ROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
LNCS. Springer, 2015, pp. 755–784. url: https://eprint.iacr.
org/2014/587 (cit. on pp. 18, 114, 115, 145, 147, 154, 177).

https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2010/118
https://eprint.iacr.org/2010/118
https://www.iacr.org/phds/116_EnricoThomae_AboutSecurityMultivariateQuadr.pdf
https://www.iacr.org/phds/116_EnricoThomae_AboutSecurityMultivariateQuadr.pdf
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2014/587
https://eprint.iacr.org/2014/587

248 Bibliography

[Unr17] Dominique Unruh. “Post-Quantum Security of Fiat-Shamir.” In: Ad-
vances in Cryptology – ASIACRYPT 2017. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10624. LNCS. Springer. 2017, pp. 65–95.
url: https://eprint.iacr.org/2017/398 (cit. on pp. 117, 136).

[WHC+13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes
Buchmann. Instantiating Treeless Signature Schemes. IACR Cryptol-
ogy ePrint Archive, Report 2013/065. 2013. url: https://eprint.
iacr.org/2013/065 (cit. on p. 138).

[Win84] Robert S. Winternitz. “A secure one-way hash function built from
DES.” In: Symposium on Security and Privacy – S&P 1984. Ed. by
Dorothy E. Denning and Jonathan K. Millen. IEEE, 1984, pp. 88–90
(cit. on p. 78).

[WP06] André Weimerskirch and Christof Paar. Generalizations of
the Karatsuba Algorithm for E�cient Implementations. IACR
Cryptology ePrint Archive, Report 2006/224. 2006. url: https :
//eprint.iacr.org/2003/172 (cit. on p. 200).

[WS16] Bas Westerbaan and Peter Schwabe. “Solving binary MQ with
Grover’s algorithm.” In: Security, Privacy, and Advanced Cryptogra-
phy Engineering – SPACE 2016. Ed. by Claude Carlet, Anwar Hasan,
and Vishal Saraswat. Vol. 10076. LNCS. Springer, 2016, pp. 303–322.
url: https://eprint.iacr.org/2019/151 (cit. on p. 157).

[Wun16] Thomas Wunderer. Revisiting the Hybrid Attack: Improved Analysis
and Re�ned Security Estimates. IACR Cryptology ePrint Archive,
Report 2016/733. 2016. url: https://eprint.iacr.org/2016/733
(cit. on p. 171).

[YC04] Bo-Yin Yang and Jiun-Ming Chen. “Theoretical Analysis of XL over
Small Fields.” In: Information Security and Privacy – ACISP 2004.
Ed. by Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan.
Vol. 3108. LNCS. Springer, 2004, pp. 277–288. url: http://www.iis.
sinica.edu.tw/papers/byyang/2386-F.pdf (cit. on pp. 157, 168).

[YC05a] Bo-Yin Yang and Jiun-Ming Chen. “All in the XL Family: Theory and
Practice.” In: Information Security and Cryptology – ICISC 2004. Ed.
by Choon sik Park and Seongtaek Chee. Springer, 2005, pp. 67–86.

https://eprint.iacr.org/2017/398
https://eprint.iacr.org/2013/065
https://eprint.iacr.org/2013/065
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2019/151
https://eprint.iacr.org/2016/733
http://www.iis.sinica.edu.tw/papers/byyang/2386-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2386-F.pdf

Bibliography 249

url: http://by.iis.sinica.edu.tw/by-publ/recent/xxl.pdf
(cit. on pp. 137, 157).

[YC05b] Bo-Yin Yang and Jiun-Ming Chen. “Building Secure Tame-like Mul-
tivariate Public-Key Cryptosystems: The New TTS.” In: Information
Security and Privacy – ACISP 2005. Ed. by Colin Boyd and Juan
Manuel González Nieto. Vol. 3574. LNCS. Springer, 2005, pp. 518–
531. url: http://www.iis.sinica.edu.tw/papers/byyang/2381-
F.pdf (cit. on p. 113).

[YCC04a] Bo-Yin Yang, Jiun-Ming Chen, and Yen-Hung Chen. “TTS: High-
Speed Signatures on a Low-Cost Smart Card.” In: Cryptographic
Hardware and Embedded Systems – CHES 2004. Ed. by Marc Joye and
Jean-Jacques Quisquater. Vol. 3156. LNCS. Springer, 2004, pp. 371–
385. url: https://www.iacr.org/archive/ches2004/31560371/
31560371.pdf (cit. on p. 113).

[YCC04b] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. “On Asymp-
totic Security Estimates in XL and Gröbner Bases-Related Algebraic
Cryptanalysis.” In: Information and Communications Security – ICICS
2004. Ed. by Javier Lopez, Sihan Qing, and Eiji Okamoto. Vol. 3269.
LNCS. Springer, 2004, pp. 401–413. url: http://www.iis.sinica.
edu.tw/papers/byyang/2384-F.pdf (cit. on p. 168).

[YCC+06] Bo-Yin Yang, Chen-Mou Cheng, Bor-Rong Chen, and Jiun-
Ming Chen. “Implementing Minimized Multivariate PKC on
Low-Resource Embedded Systems.” In: Security in Pervasive
Computing – SPC 2006. Ed. by John A. Clark, Richard F. Paige,
Fiona A. C. Polack, and Phillip J. Brooke. Vol. 3934. LNCS. Springer,
2006, pp. 73–88. url: http : / / precision . moscito . org / by -
publ/recent/39340073.pdf (cit. on p. 92).

[YCY13] Jenny Yuan-Chun Yeh, Chen-Mou Cheng, and Bo-Yin Yang. “Op-
erating Degrees for XL vs. F4/F5 for GenericMQ with Number of
Equations Linear in That of Variables.” In: Number Theory and Cryp-
tography: Papers in Honor of Johannes Buchmann on the Occasion
of His 60th Birthday. Ed. by Marc Fischlin and Stefan Katzenbeisser.
Springer, 2013, pp. 19–33. url: http://www.iis.sinica.edu.tw/
papers/byyang/17377-F.pdf (cit. on p. 137).

http://by.iis.sinica.edu.tw/by-publ/recent/xxl.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2381-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2381-F.pdf
https://www.iacr.org/archive/ches2004/31560371/31560371.pdf
https://www.iacr.org/archive/ches2004/31560371/31560371.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf
http://precision.moscito.org/by-publ/recent/39340073.pdf
http://precision.moscito.org/by-publ/recent/39340073.pdf
http://www.iis.sinica.edu.tw/papers/byyang/17377-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/17377-F.pdf

250 Bibliography

[ZCH+17] Zhenfei Zhang, Cong Chen, Je�rey Ho�stein, and William Whyte.
NTRUEncrypt: Algorithm Speci�cation and Supporting Documenta-
tion. Submission to NIST’s Post-Quantum Cryptography Standard-
ization project. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions. 2017 (cit.
on pp. 191, 194).

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Symbols and acronyms

Here, we provide an alphabetized list of symbols, acronyms and other formalisms.
Note that symbols and notation may overlap between chapters (or even within a
chapter) with distinct meaning. When this is the case, it will be clari�ed explicitly.
Names of schemes (such as AES, WOTS and NTRU-HRSS) are not included. An
underscore indicates that the symbol includes a subscript or superscript.

[. . .]q, [. . .]3 Computation inRq and S3, respectively
⍟ Multiplication inRq

A Algorithm representing an adversary
α In Section 3.7, input length of a tweakable hash function; in

Chapter 4, a challenge in Fq
α(_) A challenge in Fq
AVX2 Advanced Vector Extensions 2
BDSk BDS trade-o� parameter
BMI Bit Manipulation Instruction Sets
c Checksum in one-time signature schemes
c_,c

(_)
_ Commitment in identi�cation schemes

c Ciphertext (see De�nition 2.1.10)
C Algorithm representing a challenger
ch, ch(_) Challenge
ChS Challenge space
CLMUL Carry-less Multiplication
Com,Com_ Commitment function
com, com(_) Commitment string
cr(_)

_ Blinded response to a challenge
d Number of layers in a hypertree
DSP Digital Signal Processing extensions
e(_)

0 , e
(_)
1 Challenge-dependent shares of F(r(_)

0)

251

252 Symbols and acronyms

EU-CMA Existential unforgeability under adaptive chosen message at-
tacks (see De�nition 2.1.8)

F_,Fq Finite �eld (of order q)
Fnq Vector of elements of a �nite �eld of order q
F Pseudorandom function to generate bitmasks
F One-way function
F System of multivariate quadratic equations
f Secret key polynomial in Sp ; from Section 5.3 onwards, the

quotient ofRq

f −1
q Inverse of f with respect toRq

f −1
3 Inverse of f with respect to S3

FTS Few-time signature scheme
G Polar form of a system of multivariate quadratic equations
Gs ,Gsk,GSF ,Grte Pseudorandom generators
H Hash function used to combine two tree nodes
H1,H2,H Cryptographic hash functions
Hr ,Hss,Hqrom Cryptographic hash functions
h Public key polynomial inRq

h1,h2 Hash digests of partial identi�cation scheme transcripts
h Height of a binary tree; total height of a hypertree
I_, B_ Indices of blinded responses in Unruh’s transform
IDS Identi�cation scheme
IETF Internet Engineering Task Force
IND-CPA Indistinguishability under adaptive chosen-ciphertext attacks

(see De�nition 2.1.12)
k Security parameter; see Section 2.1.1
κ Number of trees in FORS; soundness error in an identi�cation

scheme
KEM Key-encapsulation mechanism (see De�nition 2.1.10)
`1, `2, ` Length of (part of) a Winternitz signature
` In Section 5.3, the dimension of a modular lattice
m Message; in Chapter 4, number of equations in a system of

equations
m In Chapter 4, a message
md Message digest

Symbols and acronyms 253

N The set of natural numbers
n In Section 3.1, message length; from Section 3.3 onwards,

length of a hash digest; in Chapter 4, number of variables
in a multivariate equation; in Chapter 5, degree of a polyno-
mial

NIST United States National Institute of Standards and Technology
OTS One-time signature scheme
P Public parameter input into a tweakable hash function
P,P_ Algorithm representing a prover
Φd The d th cyclotomic polynomial
p Number of signatures in a many-time signature scheme (see

De�nition 3.2.1); in Chapter 5, integer co-prime to q

p_,p
(_)
_ Public values in a one-time or few-time signature scheme

pk Public key
pk_ Public key in a many-time signature scheme
PKE Public-key encryption scheme (see De�nition 2.1.9)
PRF Pseudorandom function (see De�nition 2.1.6)
PRG Pseudorandom generator (see De�nition 2.1.4)
PRP Pseudorandom permutation (see De�nition 2.1.3)
q In Chapter 4, order of �nite �eld Fq ; in Chapter 5, integer

co-prime to p

QROM Quantum random oracle model
R Index randomization value
Rp,Rq Rings Zp[x]/(f) and Zq[x]/(f), with f = xn − 1 up until

Section 5.3
r(_)

0 , r
(_)
1 Vectors of elements of Fq , combining to s

r In Chapter 4, number of rounds in a transformed identi�cation
scheme; In Chapter 5, random polynomial

r_ Root of a tree in FORS

resp, resp(_)
_ Response to a challenge in an identi�cation scheme

RNG Random number generator
ROM Random oracle model
S Algorithm representing a simulator
Ssk,SF ,Sρ ,Srte Random seeds
Sp,Sq Rings Z[x]/(p,Φn) and Z[x]/(q,Φn), for �xed n

254 Symbols and acronyms

s Secret input vector to a system of multivariate equations
s_, s

(_)
_ Secret values in a one-time or few-time signature scheme

σ , σ_ (Part of) a signature
SIMD Single instruction, multiple data
sk Secret key
sk_ Evolving secret key in a many-time signature scheme
ss Shared secret (see De�nition 2.1.10)
T Tweak input into a tweakable hash function
Θ Average-case complexity
t(_)
0 , t

(_)
1 Challenge-dependent shares of r(_)

0
t Number of revealed values in HORST; height of a tree in FORS;

number of transcripts per round in Unruh’s transform
trans Transcript of an identi�cation scheme
V Algorithm representing a veri�er
v Public output vector of a system of multivariate equations
w Winternitz parameter
x,y Generic vector of elements of Fq
xhiдh, xlow Low and high halves of x
x In Section 3.5.2, HORST layer included in the signature
XOF, XOF_ Extendable output function (see De�nition 2.1.5)
Z The set of integers

Summary

In anticipation of a universal quantum computer that is able to break current-
day cryptography, this thesis describes e�orts towards practical post-quantum
primitives. To this end, we construct e�cient digital signature schemes and key
exchange protocols and provide highly optimized software implementations.

Chapter 1 and 2 introduce the problem and give context, both in terms of cryp-
tographic de�nitions and with regards to engineering. In particular, we introduce
NIST’s Post-Quantum Cryptography Standardization project: an ongoing standard-
ization e�ort for which much of the work in this thesis has direct relevance. The
main body of this work is divided in three chapters, each describing contributions
to a separate sub�eld of post-quantum cryptography.

Chapter 3: Hash-based signatures

This is the �rst of two chapters on digital signatures. With constructions dating
back to the seventies, rigorous security proofs, and very few assumptions with
regard to the security of the underlying building blocks, hash-based signature
schemes are generally considered to be the most robust choice and likely to hold
up for decades to come. This comes at the cost of e�ciency and usability: their
considerably larger signatures, higher computational costs, and non-standard
interfaces may be a costly replacement for current-day signature schemes.

In this chapter, we describe various constructions leading up to XMSS and
SPHINCS+, the state-of-the-art in hash-based signature schemes. We discuss
scheme design and describe implementation aspects, focusing in particular on
embedded platforms. Besides reference implementations, we present an implemen-
tation of XMSSMT on the Java Card smart card platform and adapt the SPHINCS

implementation to run on a board with less memory available than the size of a
single signature. We then present the SPHINCS+ framework as submitted to NIST,
and evaluate several instances optimized for speed and signature size.

255

256 Summary

Chapter 4:MQ-based signatures

The second class of digital signatures addressed in this thesis �nds its basis in
multivariate quadratic equations. While MQ-based signatures are among the
smallest possible, the security of their constructions is not always well-understood.

In this chapter we take a non-standard approach to designing signature schemes
based on theMQ problem, and present MQDSS and SOFIA. Both schemes are
based on a transformed identi�cation scheme and come with (non-tight) security
proofs, using variants of the Fiat-Shamir transform and Unruh’s transform, respec-
tively. We instantiate the schemes and describe highly optimized implementations
of MQDSS-31-64 and SOFIA-4-128, making extensive use of Intel’s AVX2 vector
extensions to evaluate theMQ function for carefully chosen parameters. MQDSS

is a contender in round 2 of NIST’s standardization project.

Chapter 5: La�ice-based KEMs

The �nal chapter considers lattice-based key-encapsulation mechanisms (KEMs).
KEMs that rely on the hardness of lattice problems are among the most e�cient
proposals for a post-quantum key exchange, each with their own unique structures
and choices. As key exchange is arguably the most urgent concern, it is no surprise
that experiments with deployment in this category are well on their way.

In the �rst half of this chapter, we describe a carefully tweaked variant of
the NTRU scheme: NTRU-HRSS. We present a highly optimized AVX2 imple-
mentation, focusing in detail on the optimization of its speci�c multiplication
and inversion operations. NTRU-HRSS is part of the round 2 NTRU submission
to NIST’s standardization project. In the remainder of this chapter we consider
multiplication operations for lattice-based KEMs more generally, and present an
automated design-space exploration that combines various instances of Karat-
suba and Toom-Cook multiplication. This leads to record-setting code-generation
routines for multiplication of polynomials in Z2m [x] on the ARM Cortex-M4.

Samenva�ing

In afwachting van een algemeen toepasbare quantumcomputer die in staat is om
moderne cryptogra�e te breken, draagt dit proefschrift bij aan de ontwikkeling
van praktisch bruikbare post-quantumcryptogra�e. Met dit doel in gedachten
ontwerpen we e�ciënte systemen voor digitale handtekeningen en sleuteluitwis-
selingsprotocollen, en voorzien we in tot in detail geoptimaliseerde software.

Hoofdstuk 1 en 2 introduceren het probleem en schetsen de context, zowel op
het gebied van cryptogra�e als ook qua softwareontwikkeling. In het bijzonder
bespreken we NISTs ‘Post-Quantum Cryptography Standardization project:’ een
lopend standaardisatieproject waarvoor een groot deel van dit proefschrift direct
relevant is. De kern van dit proefschrift is verdeeld in drie hoofdstukken die elk
ingaan op bijdragen aan een deelgebied van de post-quantumcryptogra�e.

Hoofdstuk 3: Handtekeningen op basis van hashfuncties

Dit is het eerste van twee hoofdstukken over digitale handtekeningen. Vanwege
constructies die teruggaan tot de jaren zeventig, zorgvuldige bewijzen en beschei-
den aannames met betrekking tot de veiligheid van de onderliggende bouwstenen
worden handtekeningen op basis van hashfuncties gezien als de meest robuuste
keuze; één die nog vele jaren meegaat. Dit gaat wel ten koste van e�ciëntie en ge-
bruiksgemak: de grote handtekeningen, rekenkosten en ongebruikelijke interfaces
maken het een dure onderneming om huidige handtekeningen te vervangen.

In dit hoofdstuk beschrijven we de diverse constructies die uiteindelijk leiden
tot XMSS en SPHINCS+, de state-of-the-art wat betreft handtekeningen op basis
van hashfuncties. We bespreken implementatieaspecten en het ontwerp, en gaan
in het bijzonder in op geïntegreerde systemen. Naast referentiecode geven we een
implementatie van XMSSMT voor de Java Card, en passen we de code van SPHINCS

aan zodat het draait op een ‘computer’ met minder geheugen dan de grootte van
een enkele handtekening. Verder beschrijven we SPHINCS+ zoals ingediend naar
NIST en bespreken we de vele mogelijke variaties in snelheid en grootte.

257

258 Samenva�ing

Hoofdstuk 4: Handtekeningen op basis vanMQ

De tweede soort handtekeningen die we behandelen, is gebaseerd op meerdimensi-
onale kwadratische vergelijkingen (MQ). Dit type handtekeningen is veruit het
meest compact, maar de betrouwbaarheid wordt niet altijd even goed doorgrond.

In dit hoofdstuk hanteren we een atypische aanpak voor handtekeningen geba-
seerd op hetMQ-probleem, wat leidt tot MQDSS en SOFIA. Beide systemen zijn
gebaseerd op een getransformeerd identi�catieprotocol en worden vergezeld door
een (niet-strikt) bewijs van veiligheid. Hiervoor maken we gebruik van varianten
van respectievelijk de transformatie van Fiat-Shamir en van Unruh. We geven spe-
ci�eke varianten van de constructies en beschrijven zorgvuldig geoptimaliseerde
implementaties van MQDSS-31-64 en SOFIA-4-128, waarbij we uitvoerig gebruik
maken van Intels AVX2 vector-uitbreidingen om deMQ-functie te berekenen.
MQDSS is een kandidaat in de tweede ronde van NISTs standaardisatieproject.

Hoofdstuk 5: Sleutelinkapseling op basis van roosters

Het laatste hoofdstuk gaat in op mechanismes voor sleutelinkapseling (KEMs) op
basis van roosters. KEMs gebaseerd op wiskundige problemen gerelateerd aan
roosters zijn de meest e�ciënte kandidaten voor post-quantum-sleuteluitwisseling,
elk met hun eigen unieke structuren en ontwerpkeuzes. Sleuteluitwisseling lijkt
het meest urgente probleem, dus het is niet verrassend dat praktijkgerichte experi-
menten in deze categorie al in volle gang zijn.

In het eerste deel van dit hoofdstuk beschrijven we een zorgvuldig afgestemde
variant van NTRU: NTRU-HRSS. We geven een nauwlettend geoptimaliseerde
AVX2-implementatie en gaan in detail in op de optimalisatie van de speci�eke
vermenigvuldigingen en inversies. NTRU-HRSS is onderdeel van NTRU, een
kandidaat in de tweede ronde van NISTs standaardisatieproject. In de rest van
dit hoofdstuk gaan we in algemenere zin in op vermenigvuldigingen voor KEMs
gebaseerd op roosters, en beschrijven we een geautomatiseerde zoektocht waarin
we combinaties maken van diverse varianten van Karatsuba- en Toom-Cook-
vermenigvuldiging. Door middel van codegeneratie leidt dit tot recordbrekende
routines voor vermenigvuldiging van polynomen in Z2m [x] op de ARM Cortex-M4.

About the author

Joost was born on December 11, 1992, in Culemborg, The Netherlands, where he
graduated cum laude with a bilingual vwo degree from ORS Lek en Linge in 2010.

Joost completed his bachelor degree in Computing Science cum laude in 2013
with a thesis entitled “How the Dutch broke the Japanese Blue Code in the late
1930s” under the supervision of Bart Jacobs. He then enrolled in the Kerckho�s’
programme, a joint master in computer security o�ered by Radboud University,
Eindhoven University of Technology and University of Twente, graduating cum
laude at Radboud University in 2015. His master thesis, “Implementing SPHINCS
with restricted memory”, was supervised by Peter Schwabe and Andreas Hülsing.

In 2015, Joost started as a Ph.D. student in the Digital Security group at Radboud
University, under the supervision of Peter Schwabe. Working on practical software
implementations of post-quantum cryptography, his position was funded as part
of the Horizon 2020 EU PQCRYPTO project. This thesis is the result of that work.

Over the summer of 2019, Joost was an intern in the cryptographic engineering
group at Apple in Cupertino, California, supervised by Yannick Sierra.

Academic publications

The following is a list of academic publications that Joost coauthored (in reverse-
chronological order). This includes both peer-reviewed work and preprints — the
latter are marked accordingly. Authors are ordered alphabetically.

9. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. “The SPHINCS+ signature framework.” In:
Conference on Computer and Communications Security – CCS ‘19. To appear.
ACM, 2019.

8. Pol Van Aubel, Erik Poll, and Joost Rijneveld. “Non-Repudiation and End-to-
End Security for EV-charging.” In: Innovative Smart Grid Technologies Europe
2019. To appear. IEEE, 2019.

259

260 About the author

7. Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. “Faster mul-
tiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC candidates.” In:
Applied Cryptography and Network Security – ACNS 2019. Vol. 11464. LNCS.
Springer, 2019.

6. Ebo van der Laan, Erik Poll, Joost Rijneveld, Joeri de Ruiter, Peter Schwabe,
and Jan Verschuren. “Is Java Card ready for hash-based signatures?” In:
Advances in Information and Computer Security – IWSEC 2018. Vol. 11049.
LNCS. Springer, 2018.

5. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. “SOFIA: MQ-based signatures in the QROM.” in: Public
Key Cryptography – PKC 2018. Vol. 10770. LNCS. Springer, 2018.

4. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
“High-speed key encapsulation from NTRU.” in: Cryptographic Hardware
and Embedded Systems – CHES 2017. Vol. 10529. LNCS. Springer, 2017.

3. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. “From 5-PassMQ-Based Identi�cation toMQ-Based
Signatures.” In: Advances in Cryptology – ASIACRYPT 2016. Vol. 10032. LNCS.
Springer, 2016.

2. Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. “ARMed SPHINCS –
Computing a 41KB signature in 16KB of RAM.” in: Public Key Cryptography
– PKC 2016. Vol. 9614. LNCS. Springer, 2016.

1. Andreas Hülsing, Joost Rijneveld, and Fang Song. “Mitigating Multi-Target
Attacks in Hash-based Signatures.” In: Public Key Cryptography – PKC 2016.
Vol. 9614. LNCS. Springer, 2016.

Technical publications

The following is a list of technical publications that Joost coauthored (in reverse-
chronological order).

5. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Sto�elen.
pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Second NIST
PQC Standardization Conference. 2019.

About the author 261

4. Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and
Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. Request for Com-
ments 8391. IETF, 2018.

3. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
NTRU-KEM-HRSS: Algorithm Speci�cation and Supporting Documentation.
Submission to the NIST Post-Quantum Cryptography Standardization Project.
2017.

superseded by

Cong Chen, Oussama Danba, Je�rey Ho�stein, Andreas Hülsing, Joost Rijn-
eveld, John M. Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang.
NTRU: Algorithm Speci�cation and Supporting Documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project. 2019.

2. Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe. SPHINCS+. Sub-
mission to the NIST Post-Quantum Cryptography Standardization project.
2017.

1. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. MQDSS. Submission to NIST’s Post-Quantum Cryptog-
raphy Standardization project. 2017.

	Thanks
	Contents
	Introduction
	Post-quantum cryptography
	Organization of this thesis
	Contributions
	Software availability and data management

	Preliminaries
	Definitions and notation
	The security parameter
	Symmetric primitives
	Digital signature schemes
	Key-encapsulation mechanisms
	Algorithms and protocols

	NIST's Post-Quantum Cryptography Standardization project
	Cryptographic engineering
	Programming abstractions
	Side-channel resistance

	Platforms and architectures
	Intel x86, x86-64 and AVX2
	ARMv7 on the Cortex-M series
	Java Card

	Hash-based signatures
	One-time signature schemes
	Lamport's one-time signature scheme
	Winternitz' improvement

	Merkle trees
	Many-time digital signature schemes
	From one to many
	Treehash
	Secret seeds
	Tree traversal

	XMSS and XMSSMT
	Collision resilience
	The hypertree
	Multi-target attacks
	Comparing XMSS and XMSS-T concretely
	RFC 8391

	XMSSMTon the Java Card
	Java Card platform and limitations
	Implementation
	Java Card API recommendations and considerations

	SPHINCS
	Eliminate the state
	HORST
	High-performance hash functions

	ARMed SPHINCS
	The Cortex-M3
	Implementing SPHINCS-256 on the Cortex-M3
	Performance
	Comparing to XMSSMT

	SPHINCSPLUS
	Tweakable hash functions
	FORS
	Instances
	Performance

	MQ-based signatures
	Identification schemes
	The Fiat-Shamir transform

	The MQ problem
	The [SSH11] 5-pass identification scheme
	Fiat-Shamir for 5-pass identification schemes
	The [EDV+12] proof
	A Fiat-Shamir transform for most 2n+1-pass IDS

	MQDSS
	The 5-pass scheme over GF31

	MQDSS-31-64
	Parameter selection
	Implementation details
	Performance
	The NIST submission

	MQ-based signatures in the QROM
	Unruh's transform

	SOFIA
	Tweaks and optimizations

	SOFIA-4-128
	Parameter selection
	Implementation details
	Performance

	Appendices to Chapter 4
	The 3-pass scheme over GF2
	Parameter selection
	Implementation details
	Performance

	Lattice-based KEMs
	NTRU-HRSS
	Parameters
	CPA-secure NTRU encryption
	Fujisaki-Okamoto and an IND-CCA2-secure KEM
	The NIST submission

	High-speed key encapsulation
	Polynomial multiplication
	Inverting polynomials
	Performance and comparison

	Polynomials in z2mx
	Kindi, NTRUEncrypt, RLizard, and Saber
	ARM Cortex-M4

	Multiplication in Z2m[x]
	Revisiting Karatsuba and Toom-Cook
	Small schoolbook multiplications

	Measuring multiplication performance
	Isolated multiplications
	Encapsulation and decapsulation
	Profiling optimized implementations

	Outlook
	Bibliography
	Symbols and acronyms
	Summary
	Samenvatting
	About the author

