
Implementing SPHINCS
with restricted memory

by Joost Rijneveld

Master Thesis in Computer Science

Supervised by dr. Peter Schwabe

Second supervisor: dr. Andreas Hülsing

Second reader: dr. Lejla Batina

Radboud University Nijmegen

joost@joostrijneveld.nl

May 2015

Abstract

�ere is an ever-growing chance that quantum computers will become a reality within
the near future. As much of today’s cryptography relies on the hardness of problems
that can be solved orders of magnitudes faster using quantum algorithms, there is a
need for new schemes. One of the candidate replacement digital signature schemes is
SPHINCS: a stateless hash-based signature scheme with a practical key and signature
size (1KB per key and 41KB for the signature), as well as fast performance. In this
thesis, SPHINCS-256 is implemented on a Cortex M3-based system with only 16KB
of RAM available, running at 32MHz. At 52 seconds, producing a signature takes a
signi�cant amount of time but is not entirely impractical. Moreover, these results are
in line with what is to be expected of the given platform when comparing it to the
se�ings and results described in the SPHINCS design paper. �is thesis describes the
relevant cryptographic context, provides an overview of the workings of SPHINCS
and details the key implementation changes necessary to make the scheme run on
the chosen platform.

ii

Acknowledgements

First and foremost, I would like to thank Peter Schwabe for his continuous support
and guidance as my supervisor throughout this project. I greatly appreciate his enthu-
siasm and dedication, and derived much motivation from this. �anks go to Andreas
Hülsing, who provided helpful background information on hash-based schemes, as
well as valuable answers to questions that came up while pu�ing it in practice. �anks
also go to Lejla Batina, who was willing to take the time to act as a second reader for
this thesis, and to Harm Berntsen, with whom I had an illuminating discussion on
clock con�guration. Finally, I would like to thank my friends and family for reading
various fragments and dra�s of this thesis, and for supporting me during the entire
process. �ank you all.

iii

Contents

Introduction 1

Cryptographic context 2
1.1 Symmetric- and asymmetric key encryption 2
1.2 Public-key signatures . 3
1.3 One-way functions . 4

1.3.1 Cryptographic hash functions 5
1.4 Lamport signatures . 5

1.4.1 �e Winternitz OTS improvement 7
1.5 Merkle trees . 7
1.6 Post-quantum cryptography . 9

1.6.1 What breaks . 10
1.6.2 What does not break . 11
1.6.3 �e PQCRYPTO project . 13

SPHINCS 15
2.1 Eliminate the state . 15
2.2 Overview . 16

2.2.1 Key generation . 17
2.2.2 Signing . 18
2.2.3 Signature veri�cation . 19
2.2.4 Hash trees . 19

2.3 �e FTS: HORST . 19
2.4 �e OTS: WOTS+ . 20
2.5 SPHINCS-256 and ChaCha . 22

SPHINCS on the Cortex M3 24
3.1 �e platform . 24
3.2 Trees, treehash and HORST . 25
3.3 Signature and key data . 29

3.3.1 Streaming the signature output 29
3.3.2 Streaming the expanded key material 30

3.4 Performance . 30

Conclusions 32
4.1 Related work . 32
4.2 Future work . 32

Bibliography 34

iv

Introduction

In the highly digitized world of today, cryptography is much more present than many
people would suspect. We, as a society, have become highly dependent on it for our
everyday business, as much of what we do is being in�uenced by some form of digital
communication. We use cryptography to keep things hidden from prying eyes, but
ever so o�en to protect the integrity or authenticity of data as well. �is does not only
concern the things we do online, but also many of the computerised systems around
us: what to think of public transport or ATM cards, or access control systems? For
many applications, knowing the origin and being certain of the integrity of some piece
of information is at least as important as concealing it.

�ese systems typically rely on mathematical ‘signatures’ that cannot be forged by
any computer in existence, or even computers that are to be expected in a few decades.
However, it is becoming ever more likely that an entirely new class of computers may
be built in the near future: quantum computers. �e (envisioned) working of these fu-
turistic machines is not relevant to this thesis, but the crux lies in their computational
power. �antum computers turn out to be excellent at solving a very speci�c set of
previously unsolvable mathematical problems, and the fact that we cannot solve these
problems is what a large part of much of modern cryptography relies on. If the quan-
tum computer would become realistic and practical1, it would all break down.

While research in the area of post-quantum cryptography (i.e., algorithms that can
survive quantum computers) has been ongoing, it is still far from practical to use.
More work is required in order to �nd out which algorithms are the best suitable
replacements for our current-day crypto. In this thesis, one such algorithm is studied
by making it run on a small device: the SPHINCS signature scheme.

�is thesis consists of three clearly distinct parts. In the �rst chapter, an introduction
to the relevant cryptography will be given, laying out the basic constructions that
will form the building blocks for the rest of the thesis. �is background context will
be a useful aid in the understanding of the other chapters, and aims to assume no
prior knowledge on the subject. Chapter two will use these principles to outline the
structure and inner workings of the SPHINCS signature scheme. �is will be done in
a top-down fashion, starting with a global framework and then progressively �lling
in the missing pieces. �e third chapter discusses the main contribution of this work:
making SPHINCS work on a constrained platform. In this chapter, the core concepts
that make this implementation possible are addressed.

1Note that ‘realistic and practical’ does not imply for consumers or even academia to have a quantum
computer at their disposal. Rather, these machines would �rst become a�ordable to the large governmental
organisations we have all grown a bit more familiar with over the past few years.

1

Cryptographic context

In this chapter, some background knowledge on cryptography will be introduced,
focussing on the context required to be able to be�er understand the rest of this work.
Readers familiar with the material may wish to skip over it.

1.1 Symmetric- and asymmetric key encryption

Historically, cryptography concerned the encryption and decryption of secret mes-
sages, typically between two parties. To encipher and decipher a message, all in-
volved parties would have to use some secret method or system that only they knew
or were able to use. Some of these systems date back to as early as ancient Greece, but
similar systems were created all throughout history ever since. Whenever there was
a need for hidden messages and secrecy, people have been devising ways to protect
themselves from prying eyes. Such a system would typically be built around some
substitution (i.e., replacing le�ers with other le�ers) or transposition (i.e., moving let-
ters around) of which the details were kept secret.

Not only the method was to be kept secret; by introducing some secret parameter to
the scheme, the encryption would be more di�cult to break. �is could be a variation
in the le�ers that were used for replacement, or a change in some starting position.
�e essence of adding a secret parameter, or key, would be that to read a message,
someone would need to know both the method and this secret information. Crucially,
this meant that the same system could be used between multiple parties without them
being able to read each others’ messages just as easily, as long as each pair of users
used a di�erent key.

�rough time, it has become clear that it is unwise to rely on keeping the working
of a cryptographic system secret. As early as the late nineteenth century, Auguste
Kerckho�s formulated a set of principles on the design of such systems, one of which
has come to be known as Kerckho�s’ principle: a cryptographic system should not re-
quire secrecy, and should not be compromised when the system itself falls into enemy
hands [1].

�e system that remains is a symmetric-key system. To encrypt a message, one can
use a certain secret key, making the message unreadable for anyone but others who
hold the same key. �is key is then also used for decryption.

�is is a very useful scheme for many applications. However, having to share a key
with another user before being able to securely exchange messages can be highly

2

impractical. Additionally, in a symmetric system each pair (or group) of users needs
to share a di�erent key, of which each of the users needs to keep track. It is not hard
to imagine that this can become quite a burden. In 1976, Di�e and Hellman suggested
a way to solve this: asymmetric cryptography [2].

Di�e and Hellman describe a system that allows users to share secret information
without requiring a shared key, through means of public keys. Such a system (coined
a public-key cryptosystem) is described to consist of pairs of functions to encrypt and
decrypt information (Ek and Dk), derived from a secret key (k) only known to one
user. �e crucial di�erence with the symmetric system lies in the fact that it should
not be possible to derive Dk from Ek without knowing k (Di�e and Hellman say:
“for almost every k, Dk is computationally infeasible to derive fromEk”). �is would
make it possible to publicly share Ek while keeping Dk a secret, enabling others to
encrypt information that only the holder of k (and thus Dk) can decrypt. In order to
communicate secretly, two users would thus only need to have access to each other’s
public encryption functions Ek . In practice, this is usually achieved by publishing a
public key, also derived from the secret k, from which Ek can be constructed.

In the paper where Di�e and Hellman proposed the above framework [2], they also
discuss potential pairs of functions that satisfy the required property. It turns out to
be non-trivial to �nd su�ciently practical candidates, but the authors do provide a
concrete example of such a public key system. �is system has come to be known as
the ‘Di�e-Hellman key exchange’, and can be used to establish a shared key without
prior arrangements. In the following years, several others have also published feasible
implementations that �ll the gaps in the public key framework, basing their functions
on a variety of mathematical problems. Notable examples are RSA [3], ElGamal [4]
and DSA [5], later followed by elliptic-curve cryptography [6, 7].

1.2 Public-key signatures

It is important to note that, while the above illustrations have focussed on applications
that provide con�dentiality of messages, public-key cryptography can also be used
to provide authentication of messages. One could consider �rst applying a secret
function to some message m, to generate output commonly referred to as a digital
signature, σ. A�erwards, others can use the matching public function to validate that
the secret function was applied correctly, and σ is actually a valid signature for m.
As only the holder of the secret function would be able to correctly apply the secret
function to generate the signature, this can be used to prove the authenticity of a
message. �is, too, is proposed in Di�e and Hellman’s paper [2].

Similar to the way described above, these functions (typically referred to as the signing
function and the validation function) are parametrised by a private and a public key.
Most traditional systems, such as RSA and ECC, can be used for both encryption
and signing, using the same keys and functions. �is is typically done by using the
private decryption function to produce a signature, and the encryption function as a
validation function. �is symmetry does not always work, however – in particular, the
scheme that will be described in Chapter 2 is a scheme that can only be used to create
and verify signatures, and not for encryption and decryption. Similarly, encryption
schemes cannot always be used to create veri�able signatures.

3

Digital signatures have become a very important primitive in the modern-day digital
infrastructure. Besides providing a�ribution (i.e., being able to prove authorship of
a signed message), they are also used extensively to guarantee message (or data) in-
tegrity. �is enables trusted distribution of so�ware, for example. For an adversary, it
is impossible to tamper with signed messages without being detected, as a change in
the message would invalidate the signature. In order to create a valid signature with-
out possession of the secret key, an a�acker would have to forge it. �e strength of a
signature scheme is strongly related to the e�ort it costs for an a�acker to forge a valid
signature. �is can be further narrowed down by de�ning the type of forgery more
precisely: is anyone able to create a signature for any message (universal forgery),
does that require a prior signature on some chosen message (selective forgery), or
can a signature only be forged for some unknown, random message that cannot be
chosen (existential forgery)?

While con�dentiality is typically not relevant when signing data, it is important that
the signatures, besides being unforgeable and fast to create, add only minimal over-
head to the message. Especially when transmi�ing small amounts of data, a large
signature can be a serious problem. �is will be a recurring theme throughout the
rest of this thesis.

1.3 One-way functions

Essentially, one-way functions are functions that are e�cient (also: easy, cheap) to
compute, but infeasible to invert. �is means that computing f(x) for a large number
of values of x should be easy to do, but given any resulting value y, solving y =
f(x) should not be feasible. Note that this property is di�erent from non-invertible
functions (i.e., non-bijective functions) in mathematics; at least one1 inverse (or “pre-
image”) should exist, but it should be di�cult to �nd. Additionally, it should not be
feasible to �nd an alternative pre-image x′ such that x 6= x′, but f(x) = f(x′). For
applications in cryptography, one-way functions become stronger and more useful as
the ratio between the computation e�ort in each direction grows.

Whether or not true one-way functions actually exist is an open problem, but there are
functions that seem to exhibit the desired behaviour (until the contrary is proven). An
example of such a one-way function is prime factorisation; given a composite number
n (e.g. n = 91), it is relatively di�cult to e�ciently �nd its prime factors p1 . . . pk
such that their product is n (in this case, p1 = 7 and p2 = 13), but multiplying prime
factors to compute some composite n is comparatively easy (7 · 13 = 91).

An important contribution of [2] lies in the idea to use these one-way functions as
the building blocks for asymmetric cryptography. All of the asymmetric-key sys-
tems mentioned in the previous section share this design. �eir robustness is fun-
damentally coupled with the di�culty to invert the one-way function(s) they build
upon.

1Depending on the nature of f , there could be in�nitely many hard-to-�nd inverses for any given y.

4

1.3.1 Cryptographic hash functions

Cryptographic hash functions are a special subset of one-way functions. �ey com-
bine the aforementioned properties of one-way functions with general-purpose hash
functions.

Hash functions are one of the building blocks of a wide range of data structures in
computer science. �ey are popularly assumed to be functions that take arbitrary in-
put (notably: of arbitrary size) and map it to a limited domain of values, but the term
can be used in a more general way to describe functions that map data to some table
key. �is is especially useful for looking up or indexing unsorted data objects [8], and
data structures based on these functions are natively available in most modern pro-
gramming languages. For now, we assume hash functions to be functions that project
arbitrary data onto a �nite (but signi�cantly large) set of keys. A�er this section, ‘hash
function’ and ‘cryptographic hash function’ will be used interchangeably to refer to
the la�er.

Cryptographic hash functions are one of the fundamental primitives in modern cryp-
tography. �ey map arbitrary chunks of data to �xed-sized values (digests), while also
adhering to the following properties (depending on the application, though, not all of
these are used). Assume H to be a cryptographic hash function.

Pre-image resistance (sometimes known as one-wayness2) Solving y = H(x) for
x should be infeasible, for a given y.

Second pre-image resistance Given x1, it should be infeasible to �nd x2 such that
H(x1) = H(x2), for x1 6= x2.

Collision resistance It should be infeasible to �nd any x1 and x2 such thatH(x1) =
H(x2) with x1 6= x2.

As we have seen above, the �rst two properties stem directly from one-way functions.
�e la�er property is strictly stronger than second pre-image resistance, and o�en
(but not always: see Section 2.2.4) a crucial extension.

1.4 Lamport signatures

In [9], Lamport proposes a signature scheme using one-way functions in a very gen-
eral way; in contrast to the abovementioned schemes (RSA, DSA, ElGamal, elliptic
curves), which rely on speci�c one-way functions such as prime factorisation or mod-
ular exponentiation, this scheme can be build upon any function from a broad set of
one-way functions. �is makes it especially interesting to examine in the context
of this thesis and in the light of so-called post-quantum cryptography, where not all
one-way functions hold their ground (see Section 1.6).

Lamport introduces his signature scheme as an improvement on Rabin’s “Digital-
ized Signatures” [10], providing improvements that counter some of the fundamental
drawbacks in Rabin’s scheme (which largely come down to no longer requiring ad-
ditional private information for signature veri�cation). In addition to the fact that

2Note that this can lead to confusion, as one-way functions are typically de�ned to also satisfy second
pre-image resistance and not just one-wayness.

5

the Lamport scheme can be con�gured using various one-way functions, it is also in-
teresting because of another property: the Lamport scheme is a one-time signature
(OTS) scheme. �is means that each pair of public and private ‘keys’ can only be used
to produce a single signature – using them twice would compromise unforgeability.
�is concept (and the reason why re-use would break the scheme) should become
more clear when examining how the Lamport signature scheme works in some de-
tail. Note that the description below is not intended to be as complete and general as
in Lamport’s paper, but it should su�ce as an illustration of the basic principle.

Assume some one-way function f : K → V where K and V are (su�ciently large)
sets of random elements. �en select n pairs of random values (ki0 , ki1) ∈ K for
i ∈ {1, . . . , n}, and compute f(kij) = vij for all these values, in order to produce
the sequence (v10 , v11 , . . . , vn−10 , vn−11 , vn0 , vn1). Lamport refers to this sequence
as α, so we shall do the same. �is sequence is the de facto ‘public key’, and should be
made widely available, while the original values kij need to be kept secret until they
are used to produce a signature.

Now assume a binary messageM of �xed length3 n. Note that such a ‘message’ could
be the output of a cryptographic hash function, as explained in Section 1.3.1. Let us
refer to the individual bits of M as mi for i ∈ {1, . . . , n}. Now, in order to produce
a signature for this message, we go back to the values kij . For each bit mi of M , we
include kimi

in the signature; that is, we include ki0 if mi is 0 and ki1 if mi is 1. �e
resulting signature is a list of values that, when put through the one-way function f ,
match half the values in sequence α. Observe that, as the values kij were secret and
cannot be derived from vij , only the original creator of α would be able to reveal the
correct values. In order to prevent forgery, however, he or she would need to destroy
the remaining unused values kij .

How to verify the signature follows quite plainly from the above description. Anyone
in possession of α (which is public information, spread as widely as possible) can
apply the one-way function f to each of the revealed values kij in order to derive the
values vij , and then con�rm that they match the values vimi

listed in α.

�e system described above comes with signi�cant drawbacks, however, limiting its
practical use. Next to the prominent usability issue that is inherent to a one-time sig-
nature scheme (i.e., only being able to use a certain public α to sign one message),
Lamport signatures are o�en impractical because of their size. In order to prevent
others from iterating over all possible values of k ∈ K and solve f(k) = vij for any
one of the values vij , it is necessary to choose these values k su�ciently large. As
each bit of the message requires the publishing of a value k, however, the signature
becomes as large as n times the length of k. In its turn, the allowed input length,
n, should also be su�ciently large to make it possible to sign a wide range of mes-
sages (or, when signing the output of a hash, to prevent collisions). Additionally, each
α is of signi�cant size as well, and a new α needs to be stored publicly and inde�-
nitely for each signed message. �is causes the scheme to also have a large storage
footprint.

3In Rabin’s paper [10], binary sequences of �xed length are used as input a�er processing an arbitrary
message with an ‘encoding function’, and Lamport abstracts away from this even further by introducing
an additional function that maps messages to a set containing �xed-sized elements. While this works in
the general case, in practice �xed-sized binary data is o�en the relevant instance. More importantly, such
values su�ce for the purpose of this illustration.

6

1.4.1 �e Winternitz OTS improvement

To reduce the size of the signature, as well as the required storage size for the pub-
lic value α, Winternitz improved upon the Lamport scheme. Merkle introduces this
improvement in a section of [11] – the same example values will be used here.

Instead of signing just a single bit, we can sign a number of bits at a time by applying
the function f repeatedly. In order to sign four bits, one �rst publishes v = f16(k)
for some random secret k (where f16 indicates for f to be applied sixteen times in
succession, using the output of the previous iteration as input for the next). �en,
when signing the bits, f is applied repeatedly according to the value of the bits: if
we were to sign 1001, we would include v′ = f9(k) in the signature. �is results in
only having to include one value for each group of four bits, drastically reducing the
signature size. Veri�cation is then done by applying another 16− 9 = 7 iterations to
this value and comparing the resulting f7(f9(k)) to v = f16(k).

Note that while this method incurs extra computational costs, f is especially designed
to be easy to compute. We now have a useful trade-o� that allows us to exchange com-
putation time for memory usage, con�gured by varying the number of bits signed per
chain of function applications. �is se�ing is typically referred to as the Winternitz
parameter w ∈ N [12]. Casual observation quickly reveals that, as w increases lin-
early, the time required to generate keys, produce a signature or verify an existing
signature increases exponentially.

In [11], Merkle makes note of a problem with the above scheme: anyone can easily
compute f10(k) using f9(k). �is allows a�ackers to forge a signature for 1010. He
alludes to a solution by including a checksum, however, and this is one of the aspects
that is �xed in practical applications of Winternitz chains [12]. Notably, using such a
checksum also allows for one less application of f to compute the public key: there
is no need to be one step ahead of the highest possible exponent, as the checksum
ensures that an adversary would still be unable to forge a signature, even with this
extra knowledge. �is is used in the application of WOTS+ in SPHINCS in Section 2.4,
where the chain only continues for w − 1 iterations.

1.5 Merkle trees

In his 1979 patent [13] and in a chapter of ‘Advances in Cryptology ‘89’ [11] (note
that the la�er was wri�en in 1979 as well, but only published a decade later), Merkle
introduces an authentication structure which he refers to as an ‘authentication tree’.
Since then, these structures have come to be known as ‘Merkle trees’, or simply ‘hash
trees’. �e idea is similar in spirit to the Winternitz improvement described above,
but further reduces the large storage requirement of public keys.

Consider a one-time signature scheme, such as the Lamport scheme described above.
As was also mentioned above, a major downside of such a scheme is the fact that for
each signature, a new pair of ‘keys’ needs to be generated, the public part of which
needs to be stored somewhere accessible. �is requires large public-facing resources.
Merkle trees resolve this by grouping multiple public keys together in a tree structure,
as follows.

7

Begin by generating N = 2n (for some n ∈ N) pairs of OTS keys. Let f be some
one-way hashing function, and let αi be the public key belonging to OTS key pair i.
Now, rather than immediately publishing the public keys, we compute one common
digest by constructing a binary tree.

For each αi, we compute hj = f(αi) with j = 2(n−1) + i and place each hj on a leaf
node. �e value of a parent node is then computed by applying f to the concatenation
of the values of its child nodes. We can recursively repeat this until reaching the root
of the tree at level n, at which point we will have performed 2n− 1 applications of f .
See Figure 1.1 for an example where n = 4. In this �gure, ‖ signi�es concatenation
and we use hx for the hash digests a�ached to the nodes. A�er computing the entire
tree, only h1 needs to be made publicly accessible up front.

h1 = f(h2‖h3)

h3 = f(h6‖h7)

h7 = f(h14‖h15)

h15h14

h6 = f(h12‖h13)

h13h12

h2 = f(h4‖h5)

h5 = f(h10‖h11)

h11h10

h4 = f(h8‖h9)

h9h8

Figure 1.1: A hash-tree of depth 4

Having generated a number of keys and published the root node to authenticate them,
one can now sign a message using one of keys from the leaf nodes. As these are still
one-time signature keys, care should be taken to only use each leaf node once. �is in-
troduces a balance between generating a large tree up front, or creating new trees over
time as keys run out. Smaller trees can be easier and lighter to work with through-
out the scheme, but frequent renewal can be a serious usability hassle. In general,
such a scheme is said to be stateful: a state needs to be maintained that describes
which keys have already been used. �e e�ect of this is discussed in more detail in
Section 2.1.

A�er producing an OTS signature using one of the leaf node keys, the signer needs to
provide su�cient information for the veri�er to recreate the relevant parts of the tree.
�is is done by tracing the authentication path from a leaf node to the root node. For all
siblings of nodes on this path, we include the node values in the signature. Let us take
α5 as an example. �is public key results in digest h12, of which the authentication
path is shaded in Figure 1.2 – the greyed out nodes are the relevant siblings.

Note that, in addition to the ‘regular’ signature of the OTS scheme (which we will
refer to as σi) and the authentication path, the public key that was used also needs
to be included in the signature, as well as the position of the relevant leaf node in
the tree. Normally, the public key would be available in publicly accessible storage,
but this is precisely what the use of authentication trees has remedied. All in all, the
signer in the above example would need to transmit (σ5, α5, 5, h13, h7, h2).

8

h1 = f(h2‖h3)

h3 = f(h6‖h7)

h7 = f(h14‖h15)

h15h14

h6 = f(h12‖h13)

h13h12

h2 = f(h4‖h5)

h5 = f(h10‖h11)

h11h10

h4 = f(h8‖h9)

h9h8

Figure 1.2: Nodes relevant to the authentication path of h12

As mentioned above, another party can verify the signature by recreating the authen-
tication path. First one computes the one-way digest of the OTS public key included
in the signature. For the above example, that would be f(α5) = h12. Now, using the
sibling nodes included in the signature, all values along the authentication path can
be reconstructed: h6 = f(h12‖h13), h3 = f(h6‖h7) and �nally h1 = f(h2‖h3). If
this matches the h1 that is publicly accessible, the public key α5 was successfully au-
thenticated. Now the signature of the OTS scheme can be veri�ed in the usual manner
(as both α5 and σ5 are available).

A�er proposing the authentication-tree algorithm, Merkle mentions that the current
method of authenticating a public key is quite expensive in terms of the required
computation, as the entire tree needs to be computed in order to produce the nodes
along the authentication path [11]. Especially when large trees are used in order to
prevent having to renew the public root node frequently, this can become costly. He
goes on to suggest that, when performing multiple signatures sequentially, it can be
advantageous to store parts of the authentication path – especially when authenticat-
ing multiple public keys with consecutive indices, many of these values can be re-used.
Additionally, in order to reduce storage for the signing party, Merkle notes that the
private keys of the OTS scheme from which the leaf nodes are generated only need
to appear random, and can be generated using a pseudorandom number generator.
�ese improvements will resurface in later chapters.

1.6 Post-quantum cryptography

In the previous sections, we have been examining cryptographic primitives �rst de-
�ned several decades ago. In this section, we will see why they may become much
more relevant in the time to come. Note that while post-quantum cryptography (and
cryptography in general) is much broader, the main focus of this section will again be
on public-key cryptography.

9

1.6.1 What breaks

Over the past years, signi�cant progress has been made in realising a quantum com-
puter, up to the point where it has become not entirely unrealistic to expect a practical
implementation within the near future [14]. With quantum computers, a number of
algorithms that provide much more e�cient solutions to long-standing mathematical
problems can suddenly be implemented. However, as we have brie�y seen in Sec-
tions 1.1 and 1.3, public-key cryptography relies on the fact that some mathematical
problems are in fact di�cult to solve. As it turns out, especially number-theoretical
problems lend themselves to e�cient solutions on quantum computers – precisely the
type of problems that many of the popular cryptographic algorithms use.

Many of the algorithms currently in use (such as the Di�e-Hellman key exchange and
elliptic curve cryptography) rely on the hardness of the discrete logarithm problem
(i.e., it is hard to solve y = gx for an integer x where y and g are elements in a
�nite group, as long as the values are su�ciently large). Where this problem requires
non-polynomial time on a traditional computer, a quantum computer can solve it in
polynomial time using Shor’s algorithm [15]. �e same applies to the problem of
prime factorisation (relied upon by RSA, among others), which also serves as a ‘hard
problem’. In fact, Da�ani and Bryans show that 56153 has been factored using a
currently available quantum computer [16] (unknowingly, by Xi et al [17], using a
di�erent algorithm). While this is still an extremely small prime compared to the
ones used in practice, it foreshadows further progress in this direction.

Furthermore, Grover’s algorithm [18] signi�cantly reduces the e�ort required to break
a much wider ranger of systems by e�ectively speeding up searching through a key
space. �is includes breaking symmetric-key systems and �nding pre-images to hash
functions. �e result of this speed-up is not as dramatic as the ones described above,
however. �e main principle behind this algorithm is still essentially a brute-force
approach, but a quantum computer can reduce the computation needed to �nd an
item of n bits long to only 2

1
2n operations (instead of the expected 2n). Essentially,

the e�ort to search a random search space with N items now grows sub-linearly as
N increases: instead, it grows only as fast as

√
N . �is can be compensated for by

doubling the length of the keys used [19], though, as a key of length 2n would again
require 2n computations.

As of today, nothing appears to have really been broken because of quantum com-
puters in practice yet. As far as the scienti�c community is aware, no keys have
been cracked and no data has been compromised. In the �rst chapter of [20], though,
Bernstein warns that now is the time to start developing systems that will be able to
remain secure in a post-quantum era. While there are schemes available that seem
to hold their ground against the quantum computer, he illustrates that it takes time
for these to be transformed to actual systems that can be used in practice. Addition-
ally, we need to consider the fact that when the current schemes do break, that will
put already-encrypted information at risk. As long as the ciphertext is stored some-
where, information that we currently deem well-protected could be compromised.
�e transition to post-quantum cryptography cannot be instantaneous, but needs to
be prepared long before a�acks using quantum computers become feasible.

10

1.6.2 What does not break

Fortunately, not all is lost. In [20], various authors describe a number of (classes of)
public-key cryptosystems that do not succumb to Shor’s and Grover’s algorithms. �e
�rst chapter introduces some of these systems – the rest of the book discusses these
in more detail. Although the focus of this thesis is on hash-based schemes, the others
will be brie�y considered here as well. It is important to realise that, even though
these schemes are presented as ‘post-quantum’, all of them do in fact date back to
before the turn of the century, and research has been ongoing.

While each of the systems discussed below has potential to become one of the post-
quantum standards for public-key cryptography, none of them is �awless. �is is a
further con�rmation of the need for research in this �eld. By continuing to develop
each of these alternative solutions, a suite4 of practical systems may be available on
time.

Hash-based signature schemes

Hash-based signature schemes, such as the Lamport signature scheme described in
Section 1.4 and SPHINCS, discussed in Chapter 2, typically rely solely on (the security
properties of) the underlying cryptographic hash function. �eir construction makes
it possible to base the scheme on any arbitrary hash function. �is is a result from the
fact that the schemes do not rely on some number-theoretical property. �is �exibility
leads to an important e�ciency consideration: if a given platform is more suitable
for certain (classes of) hash functions, for example because of hardware support, it
is trivial to change the scheme such that it uses precisely the hash function that is
practical to use.

Hash-based schemes can de�nitely be considered to be one of the more conservative
choices when it comes to post-quantum cryptography. Hash functions have been ex-
tensively studied and a�acked in the context of current-day cryptography, and have
seen numerous improvements – they have become one of the fundamental building
blocks of cryptography. While this does not guarantee the security of any particu-
lar scheme built around them, the simplicity instils con�dence. More importantly,
Rompel showed that the existence of hash functions is a necessary precondition for
the existence of any secure signature scheme [21]. While individual hash functions
may degrade or break altogether under speci�c a�acks, this result guarantees that
hash-based signature schemes in general must be among the most solid construc-
tions.

�e downside of these kind of schemes, however, is the fact that they tend to produce
rather large signatures. Even though the size is still well within reason (consider that
SPHINCS produces 41KB signatures) for many applications, this can form a de�nite
problem when space is limited.

4All of the systems listed here are either best suitable for encryption or as a signature scheme. Unlike
with pre-quantum systems like RSA or ECC, it is unlikely that there will be one system that can �t both
uses.

11

Error-correcting codes

�e second class of schemes to discuss here is based on error-correcting codes. In
general, these schemes rely on introducing errors dependent on some public key into
a codeword, which only someone in possession of the matching private key is able
to remove. Using such a private key, the receiver can remove a prede�ned number
of t errors in an e�cient manner. An implementation of this idea was introduced by
McEliece [22] around the same time as Lamport’s scheme, but is also currently not
being used in practice. �e main reason for this appears to be its large key size.

�e security of the system appears to be solid, however, as it has only required a few
minor tweaks since its original design in 1978. In a post-quantum world, the McEliece
system is a good candidate for public-key encryption. While its relatively large key
size makes it a hard sell for some applications, the authors of the relevant chapter
in [20] argue for it based on its well-understood and strong security properties, as
well as the fact that it is very e�cient to compute. Moreover, the McEliece system
allows for a conveniently con�gurable trade-o� between security and computational
speed.

Lattice-based cryptography

�e use of la�ice-based constructions in cryptography is a more recent development,
dating back to the late nineties. In general terms, these schemes are based on prob-
lems relating to vectors in n-dimensional spaces. A common example is a problem
where, given a la�ice (i.e., a set of points in a vector space with a certain periodic
property), one must �nd the shortest possible vector in that space. Even approximat-
ing a solution has not been done in polynomial time.

When used for cryptography, some la�ice-based constructions are fairly e�cient and
practical to use. �e more practical kind, however, lacks �rm security reductions, and
constructions based on problems with very strong security reductions tend to have
usability problems (again, most notably large key sizes). From the �rst category, the
NTRU system is able to beat RSA and ECC in terms of speed [23], while the ‘learning
with errors’ problem that typically forms the basis for schemes in the second category
has been proven to have strict hardness properties.

Multivariate quadratic equations

�e last class to discuss here is multivariate cryptography. �e core problem that lies
at the basis of these schemes is related to solving quadratic polynomials over a �nite
�eld; computing the value of a polynomial for a given input is easy, but there is no
known way to invert this e�ciently. While some instances bene�t from very short
signatures and even shorter public keys (especially compared to some of the other
systems listed here), several of these have been broken over the past few years. One
reason for that is the fact that the problem is so broad that there are many very distinct
possible instances, some of which exhibit unforeseen weaknesses.

�e short signatures and public keys are a critical advantage over hash-based signa-
ture schemes, however, forming the main competition in the �eld of post-quantum
signature schemes. Similar to the situation described above for la�ice-based schemes,

12

the seemingly more robust systems (such as UOV schemes [24]) tend to have much
larger key sizes, countering their practical use.

1.6.3 �e PQCRYPTO project

As the quantum computer is becoming more of a certainty and less of a vague futuris-
tic concept with each passing month, the interest in cryptographic schemes that will
be able to survive is quickly picking up speed. Although not everybody is convinced,
more and more research groups around the world are including post-quantum cryp-
tography in their focus. If anything, the fact that the European Union and other large
governmental institutions are investing in research projects concerning the develop-
ment of quantum computers should legitimise pu�ing post-quantum cryptography
on the agenda as well.

In March of this year the PQCRYPTO project [25] has kicked o�, starting extensive
research into practical post-quantum cryptography. As the cryptology group from the
Technische Universiteit Eindhoven is spearheading the project, it was covered widely
in various Dutch national media in late April and early May of this year. Other par-
ticipating partners (from Belgium, Denmark, Germany, the Netherlands, Israel and
Taiwan) are the Bundesdruckerei, Danmarks Tekniske Universiteit, the Institut Na-
tional de Recherche en Informatique et en Automatique, the Katholieke Universiteit
Leuven, NXP Semiconductors, the Ruhr-Universität Bochum, the Radboud Univer-
siteit Nijmegen, the Technische Universität Darmstadt, the University of Haifa, and
Academia Sinica. �e PQCRYPTO project, set to last for the coming three years, is
funded by the European Union as part of Horizon 2020, the “Framework Programme
for Research and Innovation”. �rough Horizon 2020, the EU aims to stimulate novel
research and create a competitive atmosphere.

�e purpose of this project is to provide e�cient implementations of post-quantum
cryptographic algorithms that are ready to be used in practice. In order to achieve
this, the project aims to come to a consensus on a small set of public-key schemes that
are secure in a post-quantum era and provide high usability. To maximise practical
applicability and the likelihood of actual use, one of the goals of the project is to
actually standardise this set of algorithms.

As we have seen in the previous section, post-quantum cryptography comes in vari-
ous �avours, each with their own advantages and disadvantages. We saw that it will
be unlikely that there will be a one-size-�ts-all for both encryption and signing. How-
ever, even this split may not be su�ciently �ne-grained. Cryptography is used in a
colourful variety of di�erent contexts, and each of these has their own requirements
when it comes to properties like size and speed, but also side-channel resistance and
defences against widely di�erent a�acker models. In order to provide optimal so-
lutions for each of these di�erent platforms, it may very well be necessary to use a
number of di�erent schemes in di�erent se�ings. �e PQCRYPTO project addresses
these scenarios in three distinct work packages: WP1, aimed at cryptography for small
devices; WP2, providing solutions for the use of cryptography on the internet at large;
and WP3, for ‘the cloud’.

�e concerns of WP1 are perhaps the most intuitive to grasp. Small devices are very
limited in both memory and CPU capabilities. �e registers are typically small, and
there is o�en li�le hardware support for intricate instructions or instruction sets (such

13

as vectorisation) from which cryptography can o�en bene�t. Especially memory con-
straints tend to result in absolute constraints – while time consumption is o�en a grad-
ual scale, memory can be a real deal-breaker that is hard to recover from. �ese devices
are an important platform to consider, now that the electronics industry has started
including microprocessors in all sorts of consumer and enterprise products.

With WP2’s focus on cryptography on the internet, it is dealing with data in tran-
sit, potentially across many di�erent machines. �is introduces concerns when it
comes to the size of signatures, ciphertext and keys. �e low latency requirements
and the frequently high number of parallel connections make computational speed
an important metric as well. As the servers are generally powerful machines, the sit-
uation can become highly asymmetrical when considering a broad spectrum of client
devices.

WP3 deals with ‘the cloud’. In the context of PQCRYPTO, this refers to ‘data at rest’ at
a third party storage provider. �is scenario brings up considerations in terms of the
security of the data as well as the users’ privacy, but these constraints are less clear-
cut. Cloud storage is typically used to quickly synchronise or search through data –
maintaining these features while still being able to rely on future-proof cryptography
is a di�cult open problem. Time and memory constraints, however, are of lesser
importance here.

It will be no surprise that the work presented in this thesis �ts snugly into the �rst
category. �e implementation of SPHINCS on the Cortex M3, discussed in Chapter 3,
provides a proof of concept that the algorithm is feasible and e�ective on small de-
vices. Suitability for a platform from the �rst work package is signi�cant, as some
of the practical constraints in terms of time and memory consumption are especially
tight. �ese properties carry over to the other work packages. �is is not generally
applicable for all constraints, though, as the a�acker model and required security level
vary wildly.

14

SPHINCS

�is chapter will serve to explain the SPHINCS signature scheme proposed in [26].
�e chapter is structured in a top-down fashion: a�er explaining SPHINCS’ raison
d’être, an overview of the entire scheme is provided and the individual components
are discussed. Note that the precise mathematical details are abstracted from where
this serves readability and is not required for general understanding. Refer to [26] for
the strict de�nitions.

2.1 Eliminate the state

When using Merkle trees on top of an OTS (as described in Section 1.5), the user
should be very careful not to use a certain key twice. �is is a fundamental problem,
as this implies that, in addition to storing the secret key (i.e., the seed that produces
all OTS keys on the leaf nodes) and any cached authentication path nodes, one would
have to store some indicator to keep track of the used leaf nodes1: the state. While
this is not a problem in some applications, key management can quickly become an
issue. Consider using the same key on multiple machines (for example on redundant
servers) or creating backups – the state of the keys would need to be constantly kept
in sync. �is makes such a signature scheme highly impractical and incompatible
with many of today’s systems.

Already in 1986, Goldreich establishes this problem and proposes a solution [27]: cre-
ate a tree of such depth that, when randomly choosing an OTS key pair for each signa-
ture, the chance of accidentally reusing a certain OTS key pair becomes insigni�cantly
small. �is way there is no need to keep track of the already used OTS keys. �e ob-
vious problem here is actually creating such a tree, but Goldreich is able to avoid this.
By not simply hashing nodes together (as we saw in the Merkle tree structure) but
instead a�aching an OTS key pair to each node and using that to sign the child nodes,
it is never necessary to compute the entire tree. �is requires that the OTS keys of the
nodes along the path from a random leaf to the root can be deterministically gener-
ated out of order, but that can easily be done using a random seed and the node index
(typically by concatenating the two and applying a hash function).

While Goldreich’s system solves the issue of having to maintain a state, it introduces a
new problem. As it replaces hashing with signing throughout the tree, it also replaces
hash digests with OTS signatures in the authentication path nodes included in each

1In practice, this could be just the number of messages signed so far, as Merkle showed that using the
keys sequentially is preferable [11]

15

signature. �is creates a new hurdle for widespread use, as it makes for tremendously
large signatures. In particular, it would be impractical to require signatures signi�-
cantly larger than the actual data being signed. Consider web pages served to many
clients over HTTPS, where adding a signature of several megabytes would drastically
hinder performance. Even when taking into account the Winternitz improvement
(see Section 1.4.1) using a large w, the signatures remain prohibitively large.

2.2 Overview

As discussed above, two main problems with hash-based signature schemes are the
need to maintain a state and the size of the signatures. �is has prevented hash-
based solutions from being a drop-in replacement for the signature schemes that are
currently in use. SPHINCS solves this by combining the approach of Goldreich with
traditional Merkle trees in a nested construction. �is results in a stateless scheme
with signatures of 41KB and private and public keys of 1KB each [26]. At “hundreds
of messages per second on a modern 4-core 3.5GHz Intel CPU”, it is su�ciently fast
for many practical applications.

�is nested trees construction forms the base of SPHINCS. �e complete structure
consists of a total of h layers, divided over d layers of sub-trees. �is can be viewed as
a hypertree of two levels of abstractions, where each node in the global tree represents
a sub-tree. Each of these sub-trees then consists of h/d layers of nodes themselves.
Let us refer to the sub-trees as τi, where i ∈ {1, . . . , d} represents their layer in the
global tree, and the nodes in the sub-tree as νi,j , where j ∈ {1, . . . , h/d} is their level
in the sub-tree. �ere is no need to diversify between nodes or trees in the same layer
at this point, as they each serve an identical purpose.

�e trees τi are binary hash trees, only slightly varying from the original Merkle
tree concept. �ese are elaborated upon in Section 2.2.4. Each of their nodes νi,j
for j ∈ {1, . . . , h/d − 1} contains a digest of its child nodes, while the leaf nodes
on layer h/d each contain the key of an OTS. For now, let us assume that we have
some hash function H that generates these digests. As with Merkle trees, the digest
at the root of the tree can be used to authenticate the entire structure by constructing
authentication paths.

All these sub-trees are then chained together as in Goldreich’s system. Using the OTS
keys in the leaf nodes νi,h/d of the trees τi, the root nodes of the trees τi+1 are signed;
a new sub-tree is chained to each of the leaf nodes. See Figure 2.1 for a close-up of this
construction. Notes labelled H contain a hash of their child nodes, while OTS nodes
include a key pair to authenticate their child node.

�e OTS key pairs in the leafs of the trees on the bo�om layer are not used to authen-
ticate more of the same sub-trees. Instead, they are used to authenticate the public
key of a few-time signature scheme (FTS). An FTS behaves similarly to an OTS, but
can be used several times before revealing too much of the secret key. By using an FTS
rather than an OTS, SPHINCS does not require as many leaf nodes to maintain the
same security level; the required maximal probability of selecting the same node re-
peatedly can be much higher without breaking the system. All the way at the bo�om
of the tree, these FTS keys are used to sign messages.

16

H

H

OTSOTS

H

H

OTS

H

OTS

H

HH

Figure 2.1: Linking sub-trees together

�e above describes the basic outline of SPHINCS. �is still far from a working algo-
rithm, though, as we have assumed a number of black boxes: some hash function H
to use in the sub-trees, an OTS to use between sub-trees and an FTS to sign the actual
message at the bo�om of the hypertree. In the following sections, we will gradually
collect the missing pieces.

2.2.1 Key generation

Because of the Goldreich structure, key generation for SPHINCS is a fairly cheap oper-
ation. We start by selecting some random values SK1 ∈ {0, 1}n and SK2 ∈ {0, 1}n.
�e �rst of these is used for key generation, but in the next section we will see why it
is convenient to have a long-term random number available for signing as well. Ad-
ditionally, we generate a set Q of random bitmasks, also from {0, 1}n,to be used in
various places. �ese masks are used in all the hash trees (in Section 2.2.4), as well
as in the OTS and FTS – for now, let us merely acknowledge their existence. �us
SK = (SK1, SK2, Q).

In order to generate the public key, we must at least generate the one tree in τ1:
the tree at the top of the structure. �is requires generating the OTS keys along the
bo�om of this tree. Note that these keys need to be generated deterministically; using
the address and SK1 as input to some one-way function we can derive a seed for

17

this key. �en, a binary hash tree can be built on the public keys of the OTS key
pairs, and the root node of this tree is part of the SPHINCS public key: PK1. As the
bitmasks are also needed for veri�cation, they must also be included with the public
key: PK = (PK1, Q).

It is worth noting that, while SK1, SK2 and PK1 are all only n bits in size, Q is
signi�cantly larger. �e bitmasks thus account for the largest part of the keys. In the
SPHINCS-256 con�guration discussed in Section 2.5, for instance, PK1 accounts for
only 32 bytes while Q is responsible for 2 · 32 · 16 = 1024 bytes. In general, the
number of bitmasks is determined by the part of the scheme that requires the largest
number of them – the FTS, the OTS or the hash trees.

2.2.2 Signing

Typically, public-key signature schemes �rst compute a hash of the message that is
to be signed, and then sign that hash. �is ensures that the input is of a constant,
relatively small length. In a stateless scheme like Goldreich’s, a random key pair at
the bo�om of the tree would then be selected to sign the hash. In SPHINCS, however,
the key pair is selected based on the message hash itself. In order to prevent a�ackers
from speci�cally targeting certain key pairs, some random or unknown factor still
needs to be included – this is what SK2 is for. We �rst compute a value R using
a pseudorandom function that takes SK2 and the message as input, and then use a
part of this message-speci�c random value R to select an FTS key pair. Additionally,
another part of R is used to compute a random digest D of the message. �is digest
is what we will be signing. As a practical result of all this, the selection of an FTS
key pair is completely deterministic with respect to a secret key SK2 and a message
M .

A�er selecting a particular FTS key pair, it needs to be generated (based on a seed de-
rived from its location and SK1) and then used to signD to produce signature σFTS .
Together with the message-speci�c randomness generated above and the index idx
of the selected key pair, this signature forms the �rst part of the SPHINCS signature.
We will refer to the SPHINCS signature as Σ. As SPHINCS uses an OTS and an FTS
for which the public keys can be derived from their respective signatures (as we will
in Section 2.3 and 2.4), there is no need to include it.

We then generate the OTS key pair for its parent node in νd,h/d in the relevant sub-
tree in τd (again using its position and SK1), and use it to sign the FTS public key.
Let us refer to the produced signature as σOTS,d. �is signature is also added to Σ.
�e public key of this OTS needs to be authenticated, so we compute all nodes along
its authentication path throughout the tree in τd and include those in Σ as well. We
refer to the nodes along the authentication path in the selected tree on layer d as
Authd. Upon reaching the root of the tree in this fashion, we generate the OTS key
pair that belongs to its parent node in νd−1,h/d and use that to sign it. �is procedure
continues all the way up to the root of the one tree in τ1, which is included in PK .
Along the way, all OTS signatures and nodes alongside the authentication paths need
to be added to Σ.

Altogether, the SPHINCS signature Σ now contains the message-speci�c randomness
R, the index of the selected FTS key pair, the FTS signature σFTS and d pairs of

18

OTS signatures and nodes along the authentication path (σOTS,i,Authi). Everything
combined, Σ = (idx,R, σFTS , (σOTS,1, Auth1), . . . , (σOTS,d, Authd))

2.2.3 Signature veri�cation

�e procedure for verifying a signature on M is very similar to signing. As we have
seen above, the signature Σ contains the message-speci�c randomness R, the FTS
signature and the OTS signatures and authentication paths. A�er computingD (using
R andM), the FTS signature is veri�ed. As mentioned above, the veri�cation function
of the OTS and FTS used in SPHINCS output the public key. �e OTS signature on
this public key can now be veri�ed, resulting in the respective OTS public key. As
the authentication path is also given in Σ, the root node of the tree in τd can now be
computed. Similar to the way the signature was generated, we now continue up the
tree along the authentication paths while verifying the signatures on the root nodes
of each sub-tree.

In the end, the veri�cation proceeds to the root node of the single tree in τ1. �is root
node should be equal to PK1, included in PK . If this is the case, the signature is
valid.

2.2.4 Hash trees

At its core, SPHINCS heavily relies on hash trees. �e construction of these trees
is slightly di�erent from the classical binary Merkle trees. A�er concatenating the
values of the two child nodes, they are not immediately fed to a hash function to
produce the parent node. Instead, a bitmask is applied �rst; let Qi be such a bitmask
and h2, h3 child nodes, then h1 = H((h2‖h3)⊕Qi).

In [28], XORing with bitmasks is introduced as part of a linear hashing scheme, and it
is employed in [29] in order to construct binary hash trees that do not require the un-
derlying hash function to be collision resistant. Instead, second-preimage resistance
is su�cient to a�ain unforgeability. �is hash-tree construction is the one described
above, and is used in SPHINCS.

2.3 �e FTS: HORST

At the bo�om of the hypertree, SPHINCS relies on an few-time signature scheme.
For this, a variation of an OTS called HORS [30] is used. �e con�guration of HORS,
called HORST, consists of two parameters that a�ect the security level, signature size
and key sizes: t and k, where t = 2τ .

As mentioned in the overview of SPHINCS, the key gets seeded based on SK1 and
the location of a particular HORST instance in the hypertree. �is seed is expanded to
t secret keys ski for i ∈ {1, . . . , t}, which are then hashed to create the HORS public
keys pki. �e HORST variation then proceeds to build a hash tree on top, of which
the root node is the actual public key pk. For this tree, SPHINCS also makes use of
bitmasks as described in Section 2.2.1.

19

Signing a message M is done by spli�ing the message into k pieces of length τ .
Each of these pieces Mi is then used as an index to address a piece of the secret
key, skMi

, which is subsequently revealed. For HORST, the nodes along the authen-
tication path from these hashes to the root of the tree are also required as part of the
signature.

Veri�cation is quite similar: �rst, the revealed pieces of sk are hashed, and the message
is split into k parts. �ese parts are then interpreted as integers and used to place the
pieces of sk on the appropriate leafs. Using the nodes supplied in the signature, the
path to the root node can then be computed. �e veri�cation algorithm then outputs
this root as the public key – comparing it to the actual public key will reveal if the
signature was valid.

In the original se�ing, HORS is proposed as a one-time signature scheme. However,
by choosing τ such that t = 2τ becomes su�ciently large in relation to k, only a small
part of the secret key is revealed for each signature, and the chance of a successful
forgery a�er obtaining just a few signatures diminishes. Note that this does require
that an adversary cannot control the message hash for which a signature is obtained.
In the original HORS scheme the public key would increase linearly with t, but the
HORST variation only incurs logarithmic growth in the length of the authentication
path, and thus the number of required bitmasks. �is makes it feasible to con�gure
HORST as an FTS in SPHINCS.

2.4 �e OTS: WOTS+

For the OTS that links the sub-trees together, SPHINCS uses WOTS+. �is variation
of the Winternitz OTS is proposed in [31], designed to reduce the signature size even
further than other WOTS-based schemes. As in WOTS, the Winternitz parameterw ∈
N is used to con�gure the e�ciency trade-o�. Likewise, one then derives ` (consisting
of `1 and `2) from this parameter and the security se�ing n as follows.

`1 =
⌈ n

logw

⌉
, `2 =

⌊ log (`1(w − 1))

logw

⌋
+ 1, ` = `1 + `2

In the plain WOTS scheme, a function F is simply applied to the secret key a number
of times to produce a digest. In WOTS+, however, we take into account the now-
familiar bitmasks. In each iteration, before applying F , the input is XORed with a
round-speci�c bitmask ri. �e chaining function then looks as follows (where the
base case is c0(x) = x):

ci(x) = F (ci−1(x)⊕ ri)

In order to guarantee deterministic signatures here as well, WOTS+ key pairs are also
seeded using SK1 and their location in the tree. �is seed is then expanded to a secret
key of ` pieces, sk = (sk1, . . . , sk`). Generating the key is very similar to traditional
WOTS; we simply apply the chaining function c for a total of w−1 times to each part

20

5

5

54321

Figure 2.2: An L-Tree with �ve leaf nodes

of sk to obtain (pk1, . . . , pk`). As the reader might be expecting by now, we proceed
by building a hash tree on top of these public key parts. �ese trees make up the third
level of trees in the hypertree. However, ` is not necessarily a power of two – in fact,
asw and n (and thus `1) typically are a power of two, ` is not. �is requires the use of a
slightly di�erent tree construction: the L-Tree [29]. �e structure is entirely identical
to binary hash trees, except for the rightmost nodes. Whenever the number of nodes
on the current layer is odd, the rightmost node is li�ed up to the next layer instead.
See Figure 2.2 for an example with �ve nodes. �e root of this tree is the public key
pk.

In order to sign a message M , we �rst interpret it as an integer in binary, and then
express it in base w. �is e�ectively distributes M into a sequence of values that can
be at most w− 1. Note how there will be at most `1 values, as per the construction of
`1. We writeM = (M1, . . . ,M`1). Furthermore, a checksum needs to be computed to
address the problem mentioned in the last paragraph of Section 1.4.1: C = Σ`1i=1(w−
1−Mi), which is also expressed in basew: C = (C1, . . . , C`2). �e listsM andC are
then chained together to form B = (b1, . . . , b`) = M‖C . �ese values in B are then
used as lengths for the Winternitz chains, producing the signature (σ1, . . . , σ`) =
(cb1(sk1), . . . , cb`(sk`)).

Verifying a WOTS+ signature is very similar to the regular WOTS scheme, except
that one needs to take special care to use the correct bitmasks when applying the
chaining function2. Let us de�ne the function v to account for this. Like for the
original chaining function, the base case is v0(x) = x.

vi(x) = F (vi−1(x)⊕ rw−i)

We then compute B in the same way as in the signing procedure, and then compute
the public key parts (pk1, . . . , pk`) = (vw−1−b1(σ1), . . . , vw−1−b`(σ`)). As we did
during the key generation step, the last step that remains is computing an L-Tree over
these pieces. �e root of this tree is then outpu�ed as the result of the veri�cation

2Note that this approach di�ers slightly from the one presented in [31]. In the original de�nition this
is solved by supplying the appropriate set of bitmasks as an argument to the chaining function.

21

. . .

32x
12x

. . .

WOTS+ /
HORST

. . .

Figure 2.3: �e complete hypertree structure

algorithm. Like in HORST, this can then be compared to the actual public key to verify
that the signature was valid.

2.5 SPHINCS-256 and ChaCha

�e above sections illustrate the general outline of SPHINCS. However, in order to
actually use the scheme in practice, there are a numerous parameters and functions
that still need to be �lled in. In [26], the authors propose a speci�c con�guration:
SPHINCS-256. �is is the scheme that will be used in Chapter 3. In this section, it will
brie�y be discussed.

�e name of SPHINCS-256 already reveals the value chosen for n: 256. �is is the
length of the hashes used in the numerous trees, as well as the length of SK1 and
SK2. �e length of the message hashm is 512 bits, however, dictating the product of
k and log(t). �e number of leaf nodes on a HORST tree is set to t = 216, requiring
k = 32 nodes to be revealed for each signature. �e Winternitz parameter w is 16,
resulting in ` = 67. Finally, the dimensions of the hypertree are set at h = 60 and
d = 12; the complete tree is made up of 60 layers, spread out over 12 layers of sub-
trees containing 5 hash-layers each. See Figure 2.3 for an overview of the combined
tree construction.

Two key elements of SPHINCS have not yet been discussed. Practically the entire
scheme consists of computing hashes. In WOTS, some hash function F : {0, 1}n →
{0, 1}n is used to construct the chaining function, and throughout the entire hyper-
tree, H : {0, 1}2n → {0, 1}n is used to construct binary hash trees. �e function
F is also used to compute the HORST leaf nodes based on the secret key. For the
performance of the scheme, it is crucial that these functions are su�ciently fast. An
important characteristic of both of these functions is that they do not need to be able
to take arbitrarily long input. �is makes it unnecessary (and wasteful) to select a hash
function that can. As it turns out, being able to accept arbitrarily long input is one
of the properties that typically slows down hash functions. Instead, SPHINCS uses

22

a permutation-based construction using the permutation from the ChaCha stream
cipher family [32].

ChaCha operates on 512-bit input, so in order to use it for F , we need to pad the
input with some constant. In SPHINCS, the authors chose the 32-byte ASCII string
C =“expand 32-byte to 64-byte state!”. As the output of ChaCha is also 512 bits, half
of the output is truncated to construct F . H is constructed similarly. Let Chop(M, i)
be a function that truncates M to i bits, Mi strings of 256 bits and O a string of 256
zero-bits, then:

F (M1) = Chop(πChaCha(M1‖C), 256)

H(M1‖M2) = Chop(πChaCha(πChaCha(M1‖C)⊕ (M2‖O)), 256)

Now only a few minor pieces of the puzzle remain. Creating the message-speci�c
random value R is done by calling BLAKE-512(SK2‖M), and BLAKE-512 is used
once more to create the digest D. In order to derive the secret keys for the HORST
and WOTS key pairs based on their location andSK1, the BLAKE-256 function is used
as a pseudo-random function. It is worth noting that the BLAKE hash functions [33]
also rely on the ChaCha permutation, and in order to expand the seed to a HORST
or WOTS key, ChaCha12 is used as well. �is way, the SPHINCS-256 construction
largely depends on this one permutation (and the way it is used, e.g. in BLAKE)
rather than on a number of di�erent hash functions, any of which may prove to be
insecure somewhere down the road.

23

SPHINCS on the Cortex M3

In this chapter, an implementation of the SPHINCS algorithm on a limited platform
will be discussed. �is forms the main contribution of this thesis. �is implemen-
tation conforms to the parameter choices made in SPHINCS-256. �e focus of this
chapter will be on conveying the higher-level design choices, but for some aspects
more detailed descriptions of the implementation will be provided. �e initial goal of
this work was to get the algorithm working on the limited platform, although speed
optimisations have been a consideration and in�uence throughout. �e signing times
are still somewhat impractical for most applications, and improving this is considered
relevant future work (see Section 4.2).

�e implementation used here is based on the implementation of SPHINCS-256 pre-
sented in [26]. As this implementation targets a much more powerful processor (specif-
ically, an Intel Haswell) than the one used for this work, several components had to
be replaced. For one, the Haswell implementation relies on vector instructions pro-
vided through the AVX2 instruction set. One can imagine that this is unavailable
on a platform as small as the one discussed in the next section. To �ll these gaps,
implementations of BLAKE-256 and BLAKE-512 [33] by Aumasson as well as an im-
plementation of the ChaCha permutation [32] by Bernstein were retrieved through
SUPERCOP [34].

3.1 �e platform

�e platform of choice for this implementation is the Cortex M3, and development
was carried out using the STM32L100C discovery board. �e Cortex M3 is a 32-bit
microprocessor with sixteen 32-bit registers, thirteen of which are available for gen-
eral purpose computation (leaving three for the stack pointer, link register and pro-
gram counter). �is processor is commonly found in microcontrollers used in the
automotive industry, small industrial systems and (wireless) sensors. As opposed to
ARMv6-M found among other Cortex M-series processors, this processor supports
the ARMv7-M architecture.

�e STM32L100C is part of the STM32 ulta-low-power series. �e processor is clocked
at 32MHz, and the board o�ers 16KB of RAM. �is makes it a highly constrained plat-
form for the implementation of SPHINCS, given that the stack usage of the Haswell
implementation runs into several megabytes. Notably, this means that the available
RAM is insu�cient to store the signature, which weighs in at 41KB. We will see how

24

it is still possible to produce SPHINCS signatures within these limits in the next sec-
tions.

3.2 Trees, treehash and HORST

As we have discussed in Chapter 2, SPHINCS consists of a number of distinct parts,
with the HORST trees and WOTS/hash trees as the two most prominent subdivisions.
While the memory usage is typically large at the base of a tree, it fans in again as we
work our way towards the root. As each tree is stacked onto the one below, it is not
necessary to ever store more than one tree in memory at a time before proceeding on
to the next.

For the WOTS/hash trees, this is not an immediate problem. Each tree contains only
h/d = 5 layers of hashing, resulting in a total of 26−1 = 63 nodes. Producing a single
WOTS signature impacts the available memory for only 67 bytes, which do not need
to be maintained a�erwards. �e WOTS public key is slightly larger at 32 ·67 = 2144
bytes, but can be quickly reduced to a 32 byte root node by applying the L-trees we
have seen in Figure 2.2. �e order of performing these steps was not important in
the reference implementation, as memory was not a concern, but is crucial for this
memory-constrained version; it is important to digest a public key immediately a�er
producing it rather than �rst computing the public key for each leaf node and then
digesting all of them sequentially. �is is an easy change without any other impact.
�is results in 32 leaf nodes of 32 bytes each, which can then be hashed up to compute
the root node of the tree. Once the tree has been built, it is trivial to walk from a
speci�c leaf node to the root to collect the nodes along the authentication path. In the
end, the constant memory consumption throughout this step of the algorithm comes
down to at most one public key of 2144 bytes, and the entire tree at 63 · 32 = 2016
bytes. Together with some storage space for the seed of the secret key, this makes
4192 bytes, spaciously ��ing in the available 16KB. As only the root node needs to be
carried on into the next computation, all of this can be freed again before proceeding
to the next level.

HORST, on the other hand, is an entirely di�erent beast. With t = 216 and k = 32,
the trees contain 131071 nodes spread over 16 layers of hashing, making these trees
much higher than the hash trees on top of the WOTS signatures. �is means that the
method of �rst building the entire tree and then extracting the authentication path, as
described above, is not feasible. At 32 bytes per node, the nodes alone would require
4MB of storage.

�ere is no need to store the entire tree, though, as only a very speci�c set of nodes
is relevant for the signature: the nodes along the authentication path, as well as the
root node. As we do require the root node in order to authenticate the tree, there is
de�nitely no escaping having to compute the entire tree.

In [26], the authors mention that RAM usage and code size was not one of the concerns
– the implementation was optimized for speed on a platform where memory was
available in abundance. �ey remark that, if saving memory is a concern, the treehash
algorithm can be used while storing the nodes along the authentication path ‘on the
�y’.

25

Treehash is yet another contribution from Merkle’s “A Certi�ed Digital Signature”
paper [11]. It has since been used in various forms as the basis of tree traversal al-
gorithms. A common approach is expressed by the pseudo-code (based on [35]) in
Algorithm 1, and discussed below.

Algorithm 1 One round of the treehash algorithm
Require: Stack, leaf node N
Ensure: Stack is updated

1: while Stack.peek() is on same level as N do
2: neighbour← Stack.pop()
3: N← H(neighbour ‖ N)
4: end while
5: Stack.push(N)

�e core idea is to maintain a collection of the currently relevant nodes: the ‘heads’ of
the di�erent branches. As new nodes are added, these branches are gradually grown
to completion, and merged when needed. Any nodes that sit deeper in the tree can
safely be forgo�en (for the purpose of �nding the root node), as each node is only
required once to generate its parent. Each round of treehash consists of introducing
the next leaf node and updating the heads of the branches until no more new nodes
can be computed. For half the leaves (i.e., the ‘le� neighbours’), their introduction
does not allow for the computation of any new parent nodes, while a quarter of the
leaves allow us to compute one parent node, etcetera. See Figure 3.1 for an elaborate
example.

When examining how the set of relevant nodes evolves, there appears to be a strict
ordering in when these nodes become relevant again, based on their level in the tree.
It can be easily observed that nodes are always consumed in a last-in-�rst-out manner
– the set is really a stack. A�er introducing all leaf nodes, the root node will be the
only node le� on the stack. Another important observation here is the fact that there
are never two nodes of the same tree level on the stack at the same time. �e nodes
on the stack are inherently ordered by their tree level (nodes higher in the tree are
deeper in the stack), and two nodes of the same level would have to be neighbouring
nodes that could immediately be used to produce their parent node. �is allows us to
conclude that using treehash for HORST would require a stack that can hold at most
log(t) = 16 nodes. At 32 bytes per node, this easily �ts in memory.

Besides computing the root node of a HORST tree, however, we are also interested in
the nodes along the authentication paths from the leafs used to produce the signature
to the top of the tree. �is was the main reason for storing the entire tree in memory
in the �rst place.

Intuitively, a way to resolve this is by somehow recognising the nodes that need to
be included with the signature while performing the treehash rounds. Going through
the tree without actually computing the node values is much easier, so we can simply
trace the authentication paths from leaf to root and compile a list of the ‘interesting’
nodes (as well as their required position in the signature1). A�erwards, whenever
we compute a node while performing treehash, we would then only need to check

1As nodes of the various authentication paths will be generated interleaved, it is necessary to rearrange
them accordingly.

26

Figure 3.1: Treehash: the ‘relevant nodes’ are marked grey. Each round introduces a
leaf node, computes possible parents and updates the set.

27

to see if it was in the list. If so, it would be stored at the appropriate location in the
signature.

While it works in theory, this approach is fairly ine�cient in practice. �e reason
for this is the fact that the computation of every node requires checking the list of
interesting nodes. �is adds considerable overhead, and only yields a result in a very
small number of cases: consider that the tree consists of 131071 nodes, but only 320
nodes2 need to be found this way, not even accounting for the inevitable duplicates.
Going through the list for all nodes only to �nd out that most of them are not included
seems like a waste of cycles.

Instead, when preprocessing the tree to �nd the interesting nodes, we can immedi-
ately compute in which round of treehash they will be produced. �is will allow us
to recognise rounds that produce interesting nodes, and only evaluate the signature
position of this limited set of nodes. When computing the indices of the interesting
nodes, their treehash round numbers can be found using the iterative procedure de-
scribed in pseudo-code in Algorithm 2, below. Here, the input idx is the index of a
leaf node at the base of an authentication path.

Algorithm 2 Computing treehash round numbers
Require: idx
Output: treehash round numbers of interesting nodes

1: roundno← idx+ t
2: for i ∈ {1, . . . , log(t)} do
3: . Find the neighbour node’s round number..
4: if idx mod 2 = 1 then . (idx is a ‘right-node’)
5: roundno← roundno− 2i−1

6: idx← idx− 1
7: else . (idx is a ‘le�-node’)
8: roundno← roundno+ 2i−1

9: idx← idx+ 1
10: end if
11: output(roundno)
12: . ..and move up to the parent node.
13: if idx mod 2 = 0 then
14: roundno← roundno+ 2i−1

15: end if
16: idx← idx/2
17: end for

A�er marking certain rounds as interesting, it is only a small addition to also keep
track of which speci�c nodes within each round are relevant. To achieve this, a se-
quence of bits is stored for each round, where each bit indicates whether the node
should be included in the signature. �ese bits are passed along to the treehash rounds,
allowing for fast boolean checks.

2One would expect to require 32 · 16 = 512 nodes, as each of the 32 authentication paths results
in 16 neighbouring nodes. However, for e�ciency reasons, the HORST signature always includes layer
6 in its entirety (so as to prevent including all the duplicate nodes in the top layers) and truncates the
authentication paths a�er 10 nodes. For generality and easier understanding, this optimisation is ignored
when not dealing with exact node counts or the precise construction of the HORST signature.

28

�e above approach improves on naive lookups in a list of nodes: the list of rounds is
somewhat more limited than the list of nodes, and the number of lookups is smaller.
�is improvement is small, however, and the process is still quite costly. Moreover,
this su�ers the same symptom as the per-node lookup: only a very limited number
of these rounds will actually be in the list, rendering the majority of these checks
unnecessary. �is suggests that there is room for further optimisation.

In contrast to the node indices, it is important to realise that the treehash rounds are
processed sequentially. We can bene�t from this by sorting the list of round numbers
and maintaining an iteration pointer that starts at the smallest element in the list.
Now, whenever we process a round, we simply check if the round number is equal to
the value pointed to by the iterator. If this is not the case, we know that the round
is not in the list at all, and we can safely dismiss any nodes computed during this
round as uninteresting. If the round number is equal, the indicator bits (discussed
above) are retrieved and the respective nodes are stored. Additionally, we increment
the indicator to point at the next round number in the list. �is way, the leaf nodes
and the list of interesting round numbers are iterated over synchronously, greatly
diminishing containment checking overhead.

3.3 Signature and key data

�e careful reader might have noticed that something is missing from the description
above. While computing the SPHINCS signature, we appear not to be actually storing
the signature. �is is correct: as observed before, it is impossible to store the 41KB
signature in the mere 16KB that is available. Furthermore, the expanded private keys
used in HORST would require t · n = 216 · 32 = 2097152 bytes (roughly 2MB) of
storage throughout the computation. In this section, we will see how these limits can
be overcome by streaming the required data instead.

3.3.1 Streaming the signature output

Instead of trying to squeeze the signature into too li�le memory, it is streamed out
of the board over serial output throughout the computation. For many applications,
this is not much di�erent from receiving the entire signature all at once a�er the
entire computation has �nished, so this does not immediately pose any usability con-
cerns.

As we have seen in Section 2.2.2, the SPHINCS signature consists of a number of dif-
ferent components. Recall that Σ = (idx,R, σH , (σW,1,Auth1), . . . , (σW,d,Authd)).
By now, we can safely use the subscript H for the HORST FTS signature and W for
the WOTS OTS signatures for brevity.

�e values idx and R are generated right at the start of the signing procedure, and
can be wri�en to the output stream immediately. �e WOTS signatures σW,i and
sequences of nodes Authi are generated in the same order as the order in which they
are supposed to be arranged in Σ, so this does not lead to any di�culty, either –
instead of storing them in memory, we simply write these values to the output stream
as they are computed.

29

�e HORST signature σH is a bit more complicated. It consists of k pairs of secret
keys belonging to leaf nodes, and sequences of nodes along the path from each of
these leaf nodes towards the top of the tree. As remarked in footnote 2 on page 28,
all nodes on layer 6 are always included, so the last 6 nodes of these sequences are
truncated. �e issue here is the fact that the node sequences are not produced one
at a time, but are each grown in an interleaved fashion as more and more of the tree
is computed. When storing the hash values in a signature in memory, this does not
pose a problem – each node value can be inserted in the right place. When we are
streaming the output, however, we cannot go back and insert a node value. Instead,
the node values will have to be tagged with what should have been their location
in the signature, and rearranged accordingly on the receiving end. For each 32-byte
node value, this adds an overhead of two bytes. While this may seem signi�cant, in
the end it results in an increase of 832 bytes (640 for the authentication path nodes,
128 for layer 6 and 64 bytes for the secret keys), which is acceptable considering that
the entire SPHINCS signature is 41KB.

3.3.2 Streaming the expanded key material

Another aspect of the SPHINCS signing procedure that requires signi�cant memory
is the set of secret keys used in HORST. As discussed in Section 2.3, the seed SK1

and the location in the hypertree are combined to produce t secret keys, one for each
leaf node. As mentioned above, the 2MB that this would produce cannot possible be
stored in memory. Instead, we can (once again) rely on the fact that treehash rounds
consume the leaf nodes sequentially, and only generate the leaf node values when
they are required.

It is possible to store the intermediate state of the ChaCha12 stream cipher (initially
seeding it in the regular fashion for HORST), and make it perform another iteration
based on this stored state whenever more key data is required. �is allows the gen-
eration of leaf node values on the �y. As ChaCha12 produces an output of 512 bits,
every other leaf node requires a new chunk of output to be generated.

3.4 Performance

�e previous sections show some of the adjustments required to be able to produce
SPHINCS signatures on a platform with only 16KB of RAM. Besides memory usage,
however, time is also a relevant metric to consider. While it is not always essential
to be able to produce or verify a signature in the absolute minimum possible time,
for nearly all applications it is the case that consuming less time is strictly be�er. In
fact, for most applications, the time consumption very much determines the usability.
Consider producing or verifying signatures on smart cards, for example when pay-
ing for public transport or when using an ATM. When the required cryptographic
operations would take more than a few seconds, the system would quickly become
frustrating to use.

�e implementation presented in this work was optimised for memory consumption,
and time consumption was not given priority. Still, it is relevant to brie�y discuss

30

the performance in terms of both time and cycle count. Recall (Section 3.1) that the
processor is clocked at 32MHz.

Producing one signature on the Cortex M3 currently takes just over 52 seconds, or
1 681 333 801 cycles, while generating a key pair can be done in 73 986 826 cycles. �is
is in line with expected performance. For comparison, the speed-optimised implemen-
tation for Intel Haswell presented in [26] is able to process “hundreds of messages per
second”. �is benchmark was performed on a quad-core processor at 3.5GHz, paral-
lelising the operations inside ChaCha and making extensive use of vectorisation to
compute multiple instances of the functions F and H in parallel as well. �e authors
report a cycle count of 47 466 005 for one signature and 3 051 562 for key generation.
�e factor of 35 can be realistically accounted for by a combination of the vector-based
8-way parallelism and more powerful instructions per cycle.

In SPHINCS, practically every part of the signing computation comes down to apply-
ing the ChaCha permutation. It is the fundamental building block for both WOTS+
and HORST, and is also used to construct the hypertree around these schemes. On
the Cortex M3, the used implementation of ChaCha requires 1615 cycles to perform
one permutation. Let us brie�y examine the di�erent parts of the algorithm where
ChaCha is used, in order to come to an understanding of the scale.

Recall that t = 216. In order to generate a HORST key and produce a signature,
ChaCha is used 1

2 · t = 32768 times to expand the seed and generate the secret keys,
as the permutation outputs 512 bits and the keys are 256 bits each. �ese secret keys
are then hashed using F to construct the leaf nodes at the cost of another t = 65536
permutations. Subsequently, treehash is used to hash together t leaf nodes, at a cost
of two ChaCha permutations per parent node (see the function H in Section 2.5),
resulting in another 2 · (t − 1) = 131070 permutations. All in all, this results in
229374 calls for one HORST signature.

WOTS+ is much cheaper. Recall that ` = 67 and w = 16. Generating a WOTS+
key pair requires ` secret keys, which costs

⌈
1
2 · `

⌉
= 34 permutations to expand the

seed, ` · (w − 1) = 1005 invocations of F at one permutation each for the chaining
function and 66 invocations ofH to build the L-tree, totalling 34+1006+2·66 = 1171
permutations. Each of the trees in the hypertree has 32 WOTS+ leaf nodes, costing a
total of 32 · 1171 = 37472 permutations.

Constructing a tree with the WOTS+ key pairs on the leaf nodes costs an additional 31
invocations ofH . One of the WOTS+ nodes is used to produce a signature on the sub-
tree below, at the average cost of

⌈
1
2 ·`·(w−1)

⌉
= 503 more invocations ofF . As there

are trees 12 in the hypertree, this leads to a grand total of 12 ·(37472+2 ·31+503) =
456444.

Combining the cost of HORST the WOTS+ trees above it, we come to a grand total of
229374 + 456444 = 685818 permutations. At 1615 cycles each, this would account
for 685818 · 1615 = 1 107 596 070 cycles of the complete signing operation, or roughly
66%.

31

Conclusions

In this thesis we have seen how hash functions can be used to create signature schemes
that do not succumb to a�acks using a quantum computer. We have examined an
example of such a scheme, SPHINCS, and discussed the practical implications of its
use. Because of the way it is able to provide stateless signing, it has the potential to
serve as a drop-in replacement for the signature schemes in use today.

We have seen that it is feasible to implement this scheme on limited platforms where
memory is a scarce resource. �e resulting time consumption is not yet ideal, but is
in line with expectations given the limitations of the platform. Moreover, this shows
that the SPHINCS-256 scheme is usable on a wide range of platforms without any
insurmountable limitations. While time consumption is something that can be opti-
mised gradually, memory consumption typically has a hard lower bound. �is thesis
shows that this lower bound is su�ciently low, making SPHINCS a very promising
candidate as a future-proof signing scheme.

4.1 Related work

When it comes to hash-based signature schemes, the work of Buchmann, Dahmen
and Hülsing on XMSS should be noted [36]. �eir (albeit stateful) scheme produces
smaller signatures and is provably secure. It was further improved and implemented
on a 16-bit smart card in [37], making it the �rst hash-based signature scheme to be
practical to use on such a small device.

In [38], a fast implementation of the Merkle signature scheme on an AVR XMEGA is
presented, as well an extensive side-channel analysis. By introducing a new algorithm
for the computation of authentication paths in a Merkle tree, side-channel leakage
during treehash is signi�cantly reduced. �e potential for e�cient implementations
of the Merkle signature scheme on small devices was demonstrated in [39].

4.2 Future work

As we have seen in Section 3.4, it still takes a signi�cant amount of time to produce
a SPHINCS signature. �e reason for this appears to be twofold, and improvements
can be sought in the same two directions. First and foremost, the implementation of
the ChaCha permutation used in this project was not speci�cally optimised for this

32

platform. By carefully implementing the permutation in the supported ARMv7-M
assembly, it should be possible to decrease the cycle count signi�cantly. As this per-
mutation is the very essence of SPHINCS in terms of cycle consumption, the e�ect
of a reduction of only a limited number of cycles could already be quite signi�cant.
�is brings us to the second potential for improvement. Currently, ChaCha accounts
for 66% of the consumed cycles. While this is already the majority, it may be possible
to push this percentage even higher, given that the rest of the algorithm is largely
concerned with administration around these permutations. Initial tests reveal that
these cycles are distributed fairly evenly, however, suggesting improving this might
be easier said than done.

One aspect of SPHINCS that was breezed over perhaps too lightly in Section 3.3 is the
fact that SPHINCS should be able to operate on messages M of arbitrary size. �e
current implementation is constrained by memory, however, as it does not support
streaming the message to the device. Notably, the message is used twice: once to
generate the message-dependent randomness R, and once to produce the digest D,
where the digest also requires part of R as input. �is makes it impossible to stream
the message only once and derive both values, considering that R is used early on
in the computation of D. Potential solutions include streaming the message twice,
relying on a di�erent source of randomness or signing a hash of the message, although
the la�er has implications for the security reduction.

�e current implementation supports key generation and signing of messages, but
does not yet do veri�cation. Adding this should not prove to present much di�-
culty, as this operation (as is usually the case with hash-based schemes) makes use
of the familiar constructions that are also needed when generating keys and produc-
ing a signature. Still, this is a required step towards building an implementation of
SPHINCS-256 that is useful in practice. One consideration for development here is
that it requires a bidirectional data connection with the board in order to test. When
producing a signature, testing can be done unidirectionally by including a �xed mes-
sage in the �ashed code. �is is not the case for veri�cation, though, as the signature
that needs to be veri�ed is too large to �t in memory all at once.

An additional optimisation was alluded to in Section 1.5, for scenarios where multiple
signatures are required sequentially: storing parts of the authentication paths in order
to reduce recomputation. �e exact feasibility and bene�t of the trade-o� of memory
versus time consumption is not exactly clear, however, as the large hypertree as well
as the random leaf node selection may seriously limit the chance of overlap, but it
may prove worthwhile to look into.

33

Bibliography

[1] Auguste Kerckho�s. La cryptographie militaire. Journal des Sciences Militaires, 9:
5–38, 1883. http://www.petitcolas.net/fabien/kerckhoffs/crypto militai

re 1.pdf. 2

[2] Whit�eld Di�e and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information �eory, IT-22(6):644–654, 1976. www-ee.stanford.e
du/∼hellman/publications/24.pdf. 3, 4

[3] Ronald L. Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):
120–126, 1978. https://people.csail.mit.edu/rivest/Rsapaper.pdf. 3

[4] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information �eory, 31(4):469–472, 1985.
3

[5] David W. Kravitz. Digital signature algorithm, July 27 1993. US Patent 5,231,668
https://www.google.com/patents/US5231668. 3

[6] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987. http://www.ams.org/journals/mcom/1987-48-177/
S0025-5718-1987-0866109-5/. 3

[7] Victor Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor,
Advances in Cryptology – CRYPTO’85 Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 417–426. Springer, 1986. 3

[8] Donald E. Knuth. �e art of computer programming: sorting and searching, vol-
ume 3. Addison Wesley, 2nd edition, 1998. 5

[9] Leslie Lamport. Constructing digital signatures from a one-way function. Tech-
nical Report CSL-98, SRI International, Palo Alto, 1979. 5

[10] Michael O. Rabin. Digitalized signatures. In Richard A. DeMillo, Richard J. Lip-
ton, David P. Dobkin, and Anita K. Jones, editors, Foundations of secure compu-
tation, volume 78, pages 155–166. Academic Press, 1978. 5, 6

[11] Ralph Merkle. A certi�ed digital signature. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89 Proceedings, volume 435 of Lecture Notes in Com-
puter Science, pages 218–238. Springer, 1990. www.merkle.com/papers/Certifie
d1979.pdf. 7, 9, 15, 26

34

http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf
http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf
www-ee.stanford.edu/~hellman/publications/24.pdf
www-ee.stanford.edu/~hellman/publications/24.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://www.google.com/patents/US5231668
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/
www.merkle.com/papers/Certified1979.pdf
www.merkle.com/papers/Certified1979.pdf

[12] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus
Rückert. On the security of the Winternitz one-time signature scheme. In
Abderrahmane Nitaj and David Pointcheval, editors, Progress in Cryptology –
AFRICACRYPT 2011, volume 6737 of Lecture Notes in Computer Science, pages
363–378. Springer, 2011. https://huelsing.files.wordpress.com/2013/05/wi
nterleak.pdf. 7

[13] Ralph Merkle. Method of providing digital signatures, January 5 1982. US Patent
4,309,569 https://www.google.com/patents/US4309569. 7

[14] IBM. IBM scientists achieve critical steps to building �rst practical quantum
computer. Press release, 2015. ibm.com/press/us/en/pressrelease/46725.wss,
retrieved 2015-05-14. 10

[15] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997. http://www.arxiv.org/abs/quant-ph/9508027. 10

[16] Nikesh S. Da�ani and Nathaniel Bryans. �antum factorization of 56153 with
only 4 qubits. arXiv 1411.6758v3, 2014. http://arxiv.org/pdf/1411.6758v3. 10

[17] Nanyang Xu, Jing Zhu, Dawei Lu, Xianyi Zhou, Xinhua Peng, and Jiangfeng Du.
�antum factorization of 143 on a dipolar-coupling nuclear magnetic resonance
system. Physical review le�ers, 108(13):130501, 2012. 10

[18] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on�eory of computing,
pages 212–219. ACM, 1996. 10

[19] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-
�antum Cryptography, volume 6061 of Lecture Notes in Computer Science,
pages 73–80. Springer, 2010. Document ID: e2bbcdd82c3e967c7e3487dc945f3e87
cr.yp.to/papers.html#grovercode. 10

[20] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-�antumCryp-
tography. Springer, 2009. 10, 11, 12

[21] John Rompel. One-way functions are necessary and su�cient for secure signa-
tures. In Proceedings of the twenty-second annual ACM symposium on �eory of
computing, pages 387–394. ACM, 1990. http://www.cs.princeton.edu/courses
/archive/spr08/cos598D/Rompel.pdf. 11

[22] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN progress report, 42(44):114–116, 1978. http://tmo.jpl.nasa.gov/progress r

eport2/42-44/44N.PDF. 12

[23] Jens Hermans, Frederik Vercauteren, and Bart Preneel. Speed records for NTRU.
In Josef Pieprzyk, editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of
Lecture Notes in Computer Science, pages 73–88. Springer, 2010. http://www.sec
urityinnovation.com/uploads/ntru speed benchmark research.pdf. 12

[24] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 206–222.
Springer, 1999. http://www.goubin.fr/papers/OILLONG.pdf. 13

35

https://huelsing.files.wordpress.com/2013/05/winterleak.pdf
https://huelsing.files.wordpress.com/2013/05/winterleak.pdf
https://www.google.com/patents/US4309569
ibm.com/press/us/en/pressrelease/46725.wss
http://www.arxiv.org/abs/quant-ph/9508027
http://arxiv.org/pdf/1411.6758v3
cr.yp.to/papers.html#grovercode
http://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
http://tmo.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://tmo.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://www.securityinnovation.com/uploads/ntru_speed_benchmark_research.pdf
http://www.securityinnovation.com/uploads/ntru_speed_benchmark_research.pdf
http://www.goubin.fr/papers/OILLONG.pdf

[25] PQCRYPTO. EU Horizon 2020, ICT-645622, 2015. Project partners: Technis-
che Universiteit Eindhoven, Bundesdruckerei, Danmarks Tekniske Universiteit,
Institut National de Recherche en Informatique et en Automatique, Katholieke
Universiteit Leuven, NXP Semiconductors, Ruhr-Universität Bochum, Radboud
Universiteit Nijmegen, Technische Universität Darmstadt, University of Haifa,
Academia Sinica. http://pqcrypto.eu.org. 13

[26] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: practical stateless hash-based signatures. In Marc Fischlin
and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2015, vol-
ume 9056 of Lecture Notes in Computer Science, pages 368–397. Springer, 2015.
Document ID: 5c2820cfddf4e259cc7ea1eda384c9f9, http://cryptojedi.org/pap
ers/#sphincs. 15, 16, 22, 24, 25, 31

[27] Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest sig-
nature scheme. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 104–110.
Springer, 1987. http://theory.csail.mit.edu/ftp-data/pub/people/oded/gm
r.ps. 15

[28] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making
UOWHFs practical. In Burton S. Kaliski Jr., editor, Advances in Cryptology –
CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 470–484.
Springer, 1997. https://cseweb.ucsd.edu/∼mihir/papers/tcr-hash.pdf. 19

[29] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Dig-
ital signatures out of second-preimage resistant hash functions. In Johannes
Buchmann and Jintai Ding, editors, Post-�antum Cryptography, volume 5299
of Lecture Notes in Computer Science, pages 109–123. Springer, 2008. https:

//www.cdc.informatik.tu-darmstadt.de/∼dahmen/papers/DOTV08.pdf. 19, 21

[30] Leonid Reyzin and Natan Reyzin. Be�er than biba: Short one-time signatures
with fast signing and verifying. In Lynn Ba�en and Jennifer Seberry, editors,
Information Security and Privacy, volume 5299 of Lecture Notes in Computer Sci-
ence, pages 144–153. Springer, 2002. http://www.cs.bu.edu/∼reyzin/papers/o
ne-time-sigs.pdf. 19

[31] Andreas Hülsing. W-OTS+-shorter signatures for hash-based signature schemes.
In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, Progress
in Cryptology – AFRICACRYPT 2013, volume 7918 of Lecture Notes in Computer
Science, pages 173–188. Springer, 2013. https://huelsing.files.wordpress.c
om/2013/05/wotsspr.pdf. 20, 21

[32] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop Record
of SASC 2008: �e State of the Art of Stream Ciphers, 2008. Document
ID: 4027b5256e17b9796842e6d0f68b0b5e, http://cr.yp.to/papers.html#chach
a. 23, 24

[33] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan.
SHA-3 proposal BLAKE. Submission to NIST, 2008. https://131002.net/bla
ke/blake.pdf. 23, 24

[34] Daniel J. Bernstein and Tanja Lange, editors. SUPERCOP. In eBACS: ECRYPT

36

http://pqcrypto.eu.org
http://cryptojedi.org/papers/#sphincs
http://cryptojedi.org/papers/#sphincs
http://theory.csail.mit.edu/ftp-data/pub/people/oded/gmr.ps
http://theory.csail.mit.edu/ftp-data/pub/people/oded/gmr.ps
https://cseweb.ucsd.edu/~mihir/papers/tcr-hash.pdf
https://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/DOTV08.pdf
https://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/DOTV08.pdf
http://www.cs.bu.edu/~reyzin/papers/one-time-sigs.pdf
http://www.cs.bu.edu/~reyzin/papers/one-time-sigs.pdf
https://huelsing.files.wordpress.com/2013/05/wotsspr.pdf
https://huelsing.files.wordpress.com/2013/05/wotsspr.pdf
http://cr.yp.to/papers.html#chacha
http://cr.yp.to/papers.html#chacha
https://131002.net/blake/blake.pdf
https://131002.net/blake/blake.pdf

benchmarking of cryptographic systems. http://bench.cr.yp.to/supercop.html,
accessed 2015-02-08. 24

[35] Andreas Hülsing. Practical Forward Secure Signatures using Minimal Security
Assumptions. PhD thesis, Technische Universität Darmstadt, 2013. http://tupr
ints.ulb.tu-darmstadt.de/3651/. 26

[36] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a practical
forward secure signature scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-�antum Cryptography, volume 7071 of Lecture Notes
in Computer Science, pages 117–129. Springer, 2011. https://huelsing.files.w
ordpress.com/2013/05/mssgesamt.pdf. 32

[37] Andreas Hülsing, Christoph Busold, and Johannes Buchmann. Forward secure
signatures on smart cards. In Lars R. Knudsen and Huapeng Wu, editors, Selected
Areas in Cryptography – SAC 2012, volume 7707 of Lecture Notes in Computer
Science, pages 66–80. Springer, 2013. https://huelsing.files.wordpress.com
/2013/05/xmss-smart.pdf. 32

[38] �omas Eisenbarth, Ingo Von Maurich, and Xin Ye. Faster hash-based signatures
with bounded leakage. In Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors,
Selected Areas in Cryptography – SAC 2013, volume 8282 of Lecture Notes in Com-
puter Science, pages 223–243. Springer, 2014. http://users.wpi.edu/∼teisenb
arth/pdf/SignatureswithBoundedLeakageSAC.pdf. 32

[39] Sebastian Rohde, �omas Eisenbarth, Erik Dahmen, Johannes Buchmann, and
Christof Paar. Fast hash-based signatures on constrained devices. In Gilles Gri-
maud and François-Xavier Standaert, editors, Smart Card Research and Advanced
Applications, volume 5189 of Lecture Notes in Computer Science, pages 104–117.
Springer, 2008. https://www-old.cdc.informatik.tu-darmstadt.de/reports/
reports/REDBP08.pdf. 32

37

http://bench.cr.yp.to/supercop.html
http://tuprints.ulb.tu-darmstadt.de/3651/
http://tuprints.ulb.tu-darmstadt.de/3651/
https://huelsing.files.wordpress.com/2013/05/mssgesamt.pdf
https://huelsing.files.wordpress.com/2013/05/mssgesamt.pdf
https://huelsing.files.wordpress.com/2013/05/xmss-smart.pdf
https://huelsing.files.wordpress.com/2013/05/xmss-smart.pdf
http://users.wpi.edu/~teisenbarth/pdf/SignatureswithBoundedLeakageSAC.pdf
http://users.wpi.edu/~teisenbarth/pdf/SignatureswithBoundedLeakageSAC.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf

	Abstract
	Acknowledgements
	Contents
	Introduction
	Cryptographic context
	Symmetric- and asymmetric key encryption
	Public-key signatures
	One-way functions
	Cryptographic hash functions

	Lamport signatures
	The Winternitz OTS improvement

	Merkle trees
	Post-quantum cryptography
	What breaks
	What does not break
	The PQCRYPTO project

	SPHINCS
	Eliminate the state
	Overview
	Key generation
	Signing
	Signature verification
	Hash trees

	The FTS: HORST
	The OTS: WOTS+
	SPHINCS-256 and ChaCha

	SPHINCS on the Cortex M3
	The platform
	Trees, treehash and HORST
	Signature and key data
	Streaming the signature output
	Streaming the expanded key material

	Performance

	Conclusions
	Related work
	Future work

	Bibliography

