Faster polynomial multiplication on Cortex-M4 to speed up NIST candidates

Matthias Kannwischer, Joost Rijneveld and Peter Schwabe

Radboud University, Nijmegen, The Netherlands

2019-02-08 DiS Lunch Talk

A large quantum computer can do..

Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}

A large quantum computer can do..

- Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
- Destructive things: break crypto

A large quantum computer can do..

Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}

Destructive things: break crypto

RSA is broken

A large quantum computer can do..

Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}

Destructive things: break crypto

RSA is broken

ECC is broken

A large quantum computer can do..

- Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
- Destructive things: break crypto
- RSA is broken
- ECC is broken
- Symmetric crypto is 'broken'.. (but easily fixed)

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

• Lattices
$$As + e \Rightarrow s$$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Lattices $As + e \Rightarrow s$

• Error-correcting codes $\mathbf{m}\widehat{\mathbf{G}} + \mathbf{z} \Rightarrow \mathbf{m}$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Multivariate quadratics

$$As + e \Rightarrow s m\widehat{G} + z \Rightarrow m y = \mathcal{MQ}(x)$$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

- Asymmetric crypto is fun!
 - ▶ 99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

▶ 99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might even be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Lattices
Error-correcting codes
Multivariate quadratics
Supersingular isogenies
Hashes
...
post-guantum RSA

$$\begin{aligned} \mathbf{As} + \mathbf{e} &\Rightarrow \mathbf{s} \\ \mathbf{m}\widehat{\mathbf{G}} + \mathbf{z} &\Rightarrow \mathbf{m} \\ \mathbf{y} &= \mathcal{M}\mathcal{Q}(\mathbf{x}) \\ \phi &: E_1 \to E_2 \\ \mathcal{H}(\mathbf{x}) &\Rightarrow \mathbf{x} \end{aligned}$$

'What if we used 1 GiB keys?'

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
 - See also: AES and SHA-3 competitions

National Institute of Standards and Technology

Standardize 'portfolio' of signatures and KEMs

See also: AES and SHA-3 competitions

Nov '17: 82 submissions

8 involving RU

National Institute of Standards and Technology
Standardize 'portfolio' of signatures and KEMs
See also: AES and SHA-3 competitions

Nov '17: 82 submissions 8 involving RU
mid '18: ≈ 58 unbroken in Round 1 8 involving RU

National Institute of Standards and Technology
Standardize 'portfolio' of signatures and KEMs

See also: AES and SHA-3 competitions

Nov '17:	82 submissions	8 involving RU	
▶ mid '18:	pprox 58 unbroken in Round 1	8 involving RU	
► Jan '19:	26 $(17 + 9)$ in Round 2		

National Institute of Standards and Technology
Standardize 'portfolio' of signatures and KEMs
See also: AES and SHA-3 competitions

Nov '17:	82 submissions	8 involving RU	
▶ mid '18:	pprox 58 unbroken in Round 1	8 involving RU	
► Jan '19:	26 (17 $+$ 9) in Round 2	8 involving RU!	

National Institute of Standards and Technology
Standardize 'portfolio' of signatures and KEMs
See also: AES and SHA-3 competitions

► Nov '17:	82 submissions	8 involving RU
▶ mid '18:	pprox 58 unbroken in Round 1	8 involving RU
► Jan '19:	26 (17 $+$ 9) in Round 2	8 involving RU!

Final selection: 2 - 4 years

National Institute of Standards and Technology
Standardize 'portfolio' of signatures and KEMs
See also: AES and SHA-3 competitions

Nov '17:	82 submissions	8 involving RU	
▶ mid '18:	pprox 58 unbroken in Round 1	8 involving RU	
► Jan '19:	26 (17 $+$ 9) in Round 2	8 involving RU!	

- Final selection: 2 4 years
- "Not a competition"
- "Performance will play a larger role in the 2nd round"

"It's big and it's slow"

"It's big and it's slow" – everyone, always

"It's big and it's slow" – everyone, always

"It's big and it's slow" – everyone, always

STM32F4: ARM Cortex-M4
32-bit, ARMv7-M
192 KiB RAM, 168 MHz
used in Crypto Eng. course

 PQM4: test and optimize on the Cortex-M4

github.com/mupq/pqm4

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- ▶ Given "noise distribution" χ
- Given samples $\mathbf{As} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- ▶ Given "noise distribution" χ
- Given samples $\mathbf{As} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

► Find s

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- ▶ Given "noise distribution" χ
- Given samples $\mathbf{As} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

► Find s

Structured lattices: work in $\mathbb{Z}_q[x]/f$

Lattice-based KEMs - the basic idea

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.15cm}} \chi$		$\mathbf{s'}, \mathbf{e'} \xleftarrow{\$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{ \ \ b \ \ }$	$\mathbf{u} \leftarrow \mathbf{a}\mathbf{s}' + \mathbf{e}'$
	←	

Alice has $\mathbf{v} = \mathbf{us} = \mathbf{ass'} + \mathbf{e's}$ Bob has $\mathbf{v'} = \mathbf{bs'} = \mathbf{ass'} + \mathbf{es'}$

- ▶ Secret and noise s, s', e, e' are small
- ▶ **v** and **v**′ are *approximately* the same

22 of Round 1 submissions are lattice-based KEMs
9 progressed to Round 2
Large design space with many trade-offs:

22 of Round 1 submissions are lattice-based KEMs
9 progressed to Round 2

Large design space with many trade-offs:

LWE vs. LWR

LWE vs. Ring-LWE vs. Module-LWE

22 of Round 1 submissions are lattice-based KEMs

9 progressed to Round 2

Large design space with many trade-offs:

- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q

22 of Round 1 submissions are lattice-based KEMs

9 progressed to Round 2

Large design space with many trade-offs:

LWE vs. LWR

LWE vs. Ring-LWE vs. Module-LWE

Prime q vs. power-of-two q

Prime n vs. power-of-two n

22 of Round 1 submissions are lattice-based KEMs

9 progressed to Round 2

Large design space with many trade-offs:

LWE vs. LWR

LWE vs. Ring-LWE vs. Module-LWE

Prime q vs. power-of-two q

Prime n vs. power-of-two n

NTRU vs. LWE/LWR ("quotient" vs. "product")

22 of Round 1 submissions are lattice-based KEMs

9 progressed to Round 2

Large design space with many trade-offs:

LWE vs. LWR

▶ ...

LWE vs. Ring-LWE vs. Module-LWE

Prime q vs. power-of-two q

Prime n vs. power-of-two n

NTRU vs. LWE/LWR ("quotient" vs. "product")

22 of Round 1 submissions are lattice-based KEMs

9 progressed to Round 2

Large design space with many trade-offs:

LWE vs. LWR

▶ ...

- ► LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LWE/LWR ("quotient" vs. "product")
RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

• Arithmetic in $\mathbb{Z}_{2^m}[x]/f$

▶
$$11 \le m \le 14$$

▶
$$256 \le n = \deg(f) \le 1024$$

RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

► Arithmetic in Z_{2^m}[x]/f

▶
$$11 \le m \le 14$$

▶
$$256 \le n = \deg(f) \le 1024$$

- Why these schemes?
 - Co-submitters of NTRU-HRSS
 - NTRU-HRSS could be faster than Round5
 - Only Saber has been optimized on Cortex-M4 (CHES 2018)

RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

• Arithmetic in $\mathbb{Z}_{2^m}[x]/f$

▶
$$11 \le m \le 14$$

▶
$$256 \le n = \deg(f) \le 1024$$

- Why these schemes?
 - Co-submitters of NTRU-HRSS
 - NTRU-HRSS could be faster than Round5
 - Only Saber has been optimized on Cortex-M4 (CHES 2018)
- How to optimize those 5 KEMs?

▶ Multiplication of polynomials with n coefficients over Z₂^m[x]

merged: NTRU

RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

- Arithmetic in $\mathbb{Z}_{2^m}[x]/f$
 - ▶ 11 ≤ m ≤ 14
 - ▶ $256 \le n = \deg(f) \le 1024$
- Why these schemes?
 - Co-submitters of NTRU-HRSS
 - NTRU-HRSS could be faster than Round5
 - Only Saber has been optimized on Cortex-M4 (CHES 2018)
- How to optimize those 5 KEMs?

Multiplication of polynomials with n coefficients over Z_{2m}[x]

Schoolbook multiplication (e.g., n = 6)

$$a = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

$$b = b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$$

					$a_5 b_0$	a_4b_0	a_3b_0	a_2b_0	a_1b_0	$a_0 b_0$
				a_5b_1	a_4b_1	a_3b_1	a_2b_1	a_1b_1	a_0b_1	
			a_5b_2	a4b2	a3b2	a2b2	a_1b_2	a_0b_2		
		a_5b_3	a4b3	a3b3	a2b3	a ₁ b ₃	a_0b_3			
	<i>a</i> ₅ <i>b</i> ₄	<i>a</i> 4 <i>b</i> 4	a3b4	a2b4	a ₁ b ₄	<i>a</i> 0 <i>b</i> 4				
a_5b_5	a4 b5	a3b5	a_2b_5	a_1b_5	<i>a</i> 0 <i>b</i> 5					

36 multiplications, 25 additions

• Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

► Split inputs in half: $a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$ $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$

► Split inputs in half: $a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$ $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$ $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$

► Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

 $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$
 $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$
 $= a_1 b_1 x^n + ((a_1 + a_0)(b_0 + b_1) - a_1 b_1 - a_0 b_0) x^{n/2}$
 $+ a_0 b_0$

► Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

 $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$
 $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$
 $= a_1 b_1 x^n + ((a_1 + a_0)(b_0 + b_1) - a_1 b_1 - a_0 b_0) x^{n/2} + a_0 b_0$

► Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

 $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$
 $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$
 $= a_1 b_1 x^n + ((a_1 + a_0)(b_0 + b_1) - a_1 b_1 - a_0 b_0) x^{n/2} + a_0 b_0$

► Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

 $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$
 $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$
 $= a_1 b_1 x^n + ((a_1 + a_0)(b_0 + b_1) - a_1 b_1 - a_0 b_0) x^{n/2} + a_0 b_0$

Only need 3 half-size multiplications (instead of 4)
 Need some additional additions and subtractions

► Split inputs in half:
$$a = a_1 x^{n/2} + a_0, b = b_1 x^{n/2} + b_0$$

 $a \cdot b = (a_1 x^{n/2} + a_0)(b_1 x^{n/2} + b_0)$
 $= a_1 b_1 x^n + (a_1 b_0 + a_0 b_1) x^{n/2} + a_0 b_0$
 $= a_1 b_1 x^n + ((a_1 + a_0)(b_0 + b_1) - a_1 b_1 - a_0 b_0) x^{n/2} + a_0 b_0$

- Only need 3 half-size multiplications (instead of 4)
 Need some additional additions and subtractions
- Can be applied recursively
 - At some threshold schoolbooks are more efficient

Generalizes Karatsuba

Generalizes Karatsuba

- Toom-3: split in 3 parts
 - ▶ 5 instead of 9 multiplications

Generalizes Karatsuba

- Toom-3: split in 3 parts
 - 5 instead of 9 multiplications
- Toom-4: split in 4 parts

7 instead of 16 multiplications

Generalizes Karatsuba

- Toom-3: split in 3 parts
 - 5 instead of 9 multiplications
- Toom-4: split in 4 parts

7 instead of 16 multiplications

▶ Toom-5: split in 5 parts

Generalizes Karatsuba

- Toom-3: split in 3 parts
 - 5 instead of 9 multiplications
- Toom-4: split in 4 parts
 - 7 instead of 16 multiplications
- ▶ Toom-5: split in 5 parts
 - Loses too much precision!
- Toom-Cook uses divisions in \mathbb{Z} , not in \mathbb{Z}_{16}

Losses add up!

▶ Toom-3 (1 bit) + Toom-4 (3 bits) \Rightarrow multiply in \mathbb{Z}_{12}

What's the best method?

Asymptotic: Toom-4 wins

• ... what about n = 701?

What's the best method?

- Asymptotic: Toom-4 wins
- ... what about n = 701?
- Our approach: Try all

What's the best method?

- Asymptotic: Toom-4 wins
 - ... what about n = 701?
- Our approach: Try all
- We need
 - Fast Karatsuba for all n
 - Fast Toom-4 for all n
 - Fast Toom-3 for all n
 - Fast schoolbook for small n

Fast schoolbook multiplication

- ARMv7E-M supports SMUAD(X) and SMLAD(X)
- All in one clock cycle
- Perfect for polynomial multiplication

instruction	semantics				
smuad Ra, Rb, Rc	$\mathtt{Ra} \gets \mathtt{Rb}_\mathtt{L} \cdot \mathtt{Rc}_\mathtt{L} + \mathtt{Rb}_\mathtt{H} \cdot \mathtt{Rc}_\mathtt{H}$				
smuadx Ra, Rb, Rc	$\mathtt{Ra} \gets \mathtt{Rb}_\mathtt{L} \cdot \mathtt{Rc}_\mathtt{H} + \mathtt{Rb}_\mathtt{H} \cdot \mathtt{Rc}_\mathtt{L}$				
smlad Ra, Rb, Rc, Rd	$\mathtt{Ra} \gets \mathtt{Rb}_\mathtt{L} \cdot \mathtt{Rc}_\mathtt{L} + \mathtt{Rb}_\mathtt{H} \cdot \mathtt{Rc}_\mathtt{H} + \mathtt{Rd}$				
smladx Ra, Rb, Rc, Rd	$\mathtt{Ra} \gets \mathtt{Rb}_\mathtt{L} \cdot \mathtt{Rc}_\mathtt{H} + \mathtt{Rb}_\mathtt{H} \cdot \mathtt{Rc}_\mathtt{L} + \mathtt{Rd}$				

Fast schoolbook multiplication, n = 6

					a ₅ b ₀	a4 b0	<i>a</i> ₃ <i>b</i> ₀	<i>a</i> ₂ <i>b</i> ₀	a_1b_0	$a_0 b_0$
				a_5b_1	a4b1	a ₃ b ₁	a ₂ b ₁	a_1b_1	a_0b_1	
			a5 b2	a4 b2	a3b2	a ₂ b ₂	a ₁ b ₂	a ₀ b ₂		
		<i>a</i> 5 <i>b</i> 3	a4 b3	a3b3	a ₂ b ₃	a ₁ b ₃	a ₀ b ₃			
	<i>a</i> ₅ <i>b</i> ₄	<i>a</i> 4 <i>b</i> 4	a3b4	a ₂ b ₄	a ₁ b ₄	a ₀ b ₄				
a5 b5	a4 b5	a3 b5	a2b5	a_1b_5	a ₀ b ₅					

Fast schoolbook multiplication, n = 6

Fast schoolbook multiplication: less repacking

					$a_5 b_0$	a4 b0	a ₃ b ₀	a_2b_0	a_1b_0	$a_0 b_0$
				a_5b_1	a_4b_1	a ₃ b ₁	a_2b_1	a_1b_1	a_0b_1	
			a5 b2	a4b2	a3b2	a2b2	a ₁ b ₂	a_0b_2		
		a ₅ b ₃	a4b3	a3b3	a2b3	a ₁ b ₃	a ₀ b ₃			
	<i>a</i> 5 <i>b</i> 4	a4 b4	a3b4	a ₂ b ₄	a ₁ b ₄	<i>a</i> ₀ <i>b</i> ₄				
a5 b5	a4 b5	a3b5	a2b5	a1b5	a ₀ b ₅					

Fast schoolbook multiplication: less repacking

					$a_5 b_0$	a4 b0	a ₃ b ₀	a_2b_0	a ₁ b ₀	$a_0 b_0$
				$a_5 b_1$	a4 b1	a_3b_1	a2b1	a_1b_1	a_0b_1	
			a ₅ b ₂	a4 b2	a3b2	a_2b_2	a_1b_2	$a_0 b_2$		
		$a_5 b_3$	a4b3	a3 b3	a2b3	a_1b_3	a ₀ b3			
	<i>a</i> 5 <i>b</i> 4	a4 b4	a3b4	a2 b4	a ₁ b ₄	a ₀ b ₄				
$a_5 b_5$	a4 b5	a3 b5	a2b5	a_1b_5	a0 b5					

Fast schoolbook multiplication: less repacking

					$a_5 b_0$	a4 b0	a_3b_0	a ₂ b ₀	a_1b_0	$a_0 b_0$
				a_5b_1	a_4b_1	a_3b_1	a_2b_1	a_1b_1	$a_0 b_1$	
			$a_5 b_2$	a4b2	a3 b2	a2b2	a_1b_2	a_0b_2		
		a ₅ b3	a4 b3	a3b3	a_2b_3	a_1b_3	a0 b3			
	a ₅ b ₄	<i>a</i> 4 <i>b</i> 4	a3 b4	a2b4	a_1b_4	<i>a</i> 0 <i>b</i> 4				
a5 b5	a4 b5	a3b5	a_2b_5	a ₁ b ₅	$a_0 b_5$					

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 Naming things

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions
 - (Un)rolling loops

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions
 - (Un)rolling loops
 - Poor man's register allocation

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions
 - (Un)rolling loops
 - Poor man's register allocation
 - Post-processing asm

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions
 - (Un)rolling loops
 - Poor man's register allocation
 - Post-processing asm
 - .. Naming things

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
 - Naming things
 - Calling functions
 - (Un)rolling loops
 - Poor man's register allocation
 - Post-processing asm
 - .. Naming things

Automated compiling + benchmarking

Schoolbook vs. Karatsuba

• Schoolbook is faster for $n \leq 16$

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for n > 36

- Schoolbook is faster for $n \leq 16$
- ▶ Karatsuba is faster for *n* > 36
- We are mainly interested in $n = \{10, 11, 12, 16\}$

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for n > 36
- We are mainly interested in $n = \{10, 11, 12, 16\}$

or multiples {20, 22, 24, 32}

- Schoolbook is faster for $n \leq 16$
- ▶ Karatsuba is faster for *n* > 36
- We are mainly interested in $n = \{10, 11, 12, 16\}$

or multiples {20, 22, 24, 32}

▶ For {20, 22, 24, 32} Karatsuba is faster

Karatsuba vs. Toom-4 vs. Toom-3

- Toom, multiple layers of Karatsuba
- Should be monotonic
 - Some schoolbooks are just not that optimized

Karatsuba vs. Toom-4 vs. Toom-3

Speed records

scheme	params	impl	key gen	encaps	decaps
KINDI	<i>n</i> = 256	ref	21 794k	28 176k	37 129k
	$q = 2^{14}$	ours	1010k	1 365k	1 563k
NTRU-HRSS	<i>n</i> = 701	ref	205 156k	5 166k	15 067k
	$q = 2^{13}$	ours	161 790k	432k	863k
NTRU-KEM	<i>n</i> = 743	ref	59815k	7 540k	14 229k
	$q = 2^{11}$	ours	5 663k	1 655k	1 904k
SABER	n = 256 $q = 2^{13}$	ref	6 530k	8 684k	10 581k
		[1]	1 147k	1 444k	1 543k
		ours	949k	1 232k	1 260k
RLizard	<i>n</i> = 1024	ref	26 423k	32 156k	53 181k
	$q = 2^{11}$	ours	537k	1 358k	1740k

[1] Karmakar, A., Mera, J. M. B., Roy, S. S., & Verbauwhede, I. (2018). Saber on ARM. IACR Transactions on Cryptographic Hardware and Embedded Systems, 243-266.

Results & Conclusions

Runtime dominated by polynomial multiplication

- After optimizing: SHA2/SHA3/SHAKE is significant (\approx 50%)
- Optimized implementations exist

Results & Conclusions

Runtime dominated by polynomial multiplication

- After optimizing: SHA2/SHA3/SHAKE is significant (\approx 50%)
- Optimized implementations exist

▶ Fastest PQC implementations on the Cortex-M4

- More than 2x outperform R5ND_1PKEb and R5ND_3PKEb
- Scripts easily apply to parameter changes in Round 2

Paper: https://eprint.iacr.org/2018/1018 (in submission)
Software: https://github.com/mupq/polymul-z2mx-m4
PQM4: https://github.com/mupq/pqm4

All code available as public domain where possible