Faster polynomial multiplication on Cortex-M4 to speed up NIST candidates

Matthias Kannwischer, Joost Rijneveld and Peter Schwabe

Radboud University, Nijmegen, The Netherlands

2019-02-08
DiS Lunch Talk

The quantum threat

- A large quantum computer can do..
- Useful things: complex simulations that solve \{global warming, world hunger, diseases, ..\}

The quantum threat

- A large quantum computer can do..
- Useful things: complex simulations that solve \{global warming, world hunger, diseases, ..\}
- Destructive things: break crypto

The quantum threat

- A large quantum computer can do..
- Useful things: complex simulations that solve \{global warming, world hunger, diseases, ..\}
- Destructive things: break crypto
- RSA is broken

The quantum threat

- A large quantum computer can do..
- Useful things: complex simulations that solve \{global warming, world hunger, diseases, ..\}
- Destructive things: break crypto
- RSA is broken
- ECC is broken

The quantum threat

- A large quantum computer can do..
- Useful things: complex simulations that solve \{global warming, world hunger, diseases, ..\}
- Destructive things: break crypto
- RSA is broken
- ECC is broken
- Symmetric crypto is 'broken'.. (but easily fixed)

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices

$$
\mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s}
$$

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices
- Error-correcting codes

$$
\begin{aligned}
& \mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s} \\
& \mathbf{m} \widehat{\mathbf{G}}+\mathbf{z} \nRightarrow \mathbf{m}
\end{aligned}
$$

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices
- Error-correcting codes
- Multivariate quadratics

$$
\begin{aligned}
& \mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s} \\
& \mathbf{m} \mathbf{G}+\mathbf{z} \nRightarrow \mathbf{m} \\
& \mathbf{y}=\mathcal{M} \mathcal{Q}(\mathbf{x})
\end{aligned}
$$

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices
- Error-correcting codes
- Multivariate quadratics
- Supersingular isogenies

$$
\begin{aligned}
& \mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s} \\
& \mathbf{m} \widehat{\mathbf{G}}+\mathbf{z} \nRightarrow \mathbf{m} \\
& \mathbf{y}=\mathcal{M} \mathcal{Q}(\mathbf{x}) \\
& \phi: E_{1} \rightarrow E_{2}
\end{aligned}
$$

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices
- Error-correcting codes
- Multivariate quadratics
- Supersingular isogenies
- Hashes
- ...

$$
\begin{aligned}
& \mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s} \\
& \mathbf{m} \mathbf{G}+\mathbf{z} \nRightarrow \mathbf{m} \\
& \mathbf{y}=\mathcal{M} \mathcal{Q}(\mathbf{x}) \\
& \phi: E_{1} \rightarrow E_{2} \\
& \mathcal{H}(x) \nRightarrow x
\end{aligned}
$$

So all is lost?

- Symmetric crypto is fine!
- Grover queries are expensive: AES-128 might even be 'ok'
- Asymmetric crypto is fun!
- 99 problems, but the DLP ain't one
- Lattices
- Error-correcting codes
- Multivariate quadratics
- Supersingular isogenies
- Hashes
- post-quantum RSA

$$
\begin{aligned}
& \mathbf{A s}+\mathbf{e} \nRightarrow \mathbf{s} \\
& \mathbf{m} \mathbf{G}+\mathbf{z} \nRightarrow \mathbf{m} \\
& \mathbf{y}=\mathcal{M} \mathcal{Q}(\mathbf{x}) \\
& \phi: E_{1} \rightarrow E_{2} \\
& \mathcal{H}(x) \nRightarrow x \\
& \\
& \text { 'What if we used } 1 \text { GiB keys?' }
\end{aligned}
$$

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

- mid '18: ≈ 58 unbroken in Round 18 involving RU

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

- mid '18: ≈ 58 unbroken in Round $1 \quad 8$ involving RU
- Jan '19: $26(17+9)$ in Round 2

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

- mid '18: ≈ 58 unbroken in Round 1

8 involving RU

- Jan '19: $26(17+9)$ in Round 2

8 involving RU!

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

- mid '18: ≈ 58 unbroken in Round 1

8 involving RU

- Jan '19: $26(17+9)$ in Round 2

8 involving RU!

- Final selection: 2-4 years

NIST Post-Quantum not-a-competition

- National Institute of Standards and Technology
- Standardize 'portfolio' of signatures and KEMs
- See also: AES and SHA-3 competitions
- Nov '17: 82 submissions

8 involving RU

- mid '18: ≈ 58 unbroken in Round $1 \quad 8$ involving RU
- Jan '19: $26(17+9)$ in Round 2

8 involving RU!

- Final selection: 2-4 years
- "Not a competition"
- "Performance will play a larger role in the $2^{\text {nd }}$ round"

Post-quantum on small devices

"It's big and it's slow"

Post-quantum on small devices

"It's big and it's slow"

- everyone, always

Post-quantum on small devices

"It's big and it's slow"

- everyone, always
- STM32F4: ARM Cortex-M4
- 32-bit, ARMv7-M
- 192 KiB RAM, 168 MHz

Post-quantum on small devices

"It's big and it's slow"

- everyone, always
- STM32F4: ARM Cortex-M4
- 32-bit, ARMv7-M
- 192 KiB RAM, 168 MHz
- used in Crypto Eng. course
- PQM4: test and optimize on the Cortex-M4
- github.com/mupq/pqm4

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Find \mathbf{s}

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Find \mathbf{s}
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Lattice-based KEMs - the basic idea

Alice (server)		Bob (client)
$\begin{aligned} & \mathbf{s}, \mathbf{e} \stackrel{s}{\leftarrow}_{\leftarrow} \\ & \mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e} \end{aligned}$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \stackrel{\$}{\leftarrow} \chi$
	b	$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
	u	

Alice has $\mathbf{v}=\mathbf{u s}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\mathbf{v}^{\prime}=\mathbf{b s}^{\prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}$

- Secret and noise $\mathbf{s}, \mathbf{s}^{\prime}, \mathbf{e}, \mathbf{e}^{\prime}$ are small
- \mathbf{v} and \mathbf{v}^{\prime} are approximately the same

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LWE/LWR ("quotient" vs. "product")

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LWE/LWR ("quotient" vs. "product")

Lattice-based KEMs submitted to NIST

- 22 of Round 1 submissions are lattice-based KEMs
- 9 progressed to Round 2
- Large design space with many trade-offs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LWE/LWR ("quotient" vs. "product")

5 lattice-based KEMs

- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- Arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$

5 lattice-based KEMs

- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- Arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- Why these schemes?
- Co-submitters of NTRU-HRSS
- NTRU-HRSS could be faster than Round5
- Only Saber has been optimized on Cortex-M4 (CHES 2018)

5 lattice-based KEMs

- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- Arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- Why these schemes?
- Co-submitters of NTRU-HRSS
- NTRU-HRSS could be faster than Round5
- Only Saber has been optimized on Cortex-M4 (CHES 2018)
- How to optimize those 5 KEMs ?
- Multiplication of polynomials with n coefficients over $\mathbb{Z}_{2^{m}}[x]$

5 lattice-based KEMs

Merged: NTRU

- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, andindi
- Arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- Why these schemes?
- Co-submitters of NTRU-HRSS
- NTRU-HRSS could be faster than Round5
- Only Saber has been optimized on Cortex-M4 (CHES 2018)
- How to optimize those 5 KEMs ?
- Multiplication of polynomials with n coefficients over $\mathbb{Z}_{2^{m}}[x]$

Schoolbook multiplication (e.g., $n=6$)

$$
\begin{aligned}
& a=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
& b=b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

36 multiplications, 25 additions

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
a \cdot b=\left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right)
$$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b & =\left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
& =a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0}
\end{aligned}
$$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b= & \left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
= & a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0} \\
= & a_{1} b_{1} x^{n}+ \\
& \left(\left(a_{1}+a_{0}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) x^{n / 2} \\
& \quad+a_{0} b_{0}
\end{aligned}
$$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b= & \left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
= & a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0} \\
= & a_{1} b_{1} x^{n}+ \\
& \left(\left(a_{1}+a_{0}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) x^{n / 2} \\
& \quad+a_{0} b_{0}
\end{aligned}
$$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b= & \left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
= & a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0} \\
= & a_{1} b_{1} x^{n}+ \\
& \left(\left(a_{1}+a_{0}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) x^{n / 2} \\
& \quad+a_{0} b_{0}
\end{aligned}
$$

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b= & \left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
= & a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0} \\
= & a_{1} b_{1} x^{n}+ \\
& \left(\left(a_{1}+a_{0}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) x^{n / 2} \\
& \quad+a_{0} b_{0}
\end{aligned}
$$

- Only need 3 half-size multiplications (instead of 4)
- Need some additional additions and subtractions

Karatsuba's method

- Split inputs in half: $a=a_{1} x^{n / 2}+a_{0}, b=b_{1} x^{n / 2}+b_{0}$

$$
\begin{aligned}
a \cdot b= & \left(a_{1} x^{n / 2}+a_{0}\right)\left(b_{1} x^{n / 2}+b_{0}\right) \\
= & a_{1} b_{1} x^{n}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{n / 2}+a_{0} b_{0} \\
= & a_{1} b_{1} x^{n}+ \\
& \left(\left(a_{1}+a_{0}\right)\left(b_{0}+b_{1}\right)-a_{1} b_{1}-a_{0} b_{0}\right) x^{n / 2} \\
& \quad+a_{0} b_{0}
\end{aligned}
$$

- Only need 3 half-size multiplications (instead of 4)
- Need some additional additions and subtractions
- Can be applied recursively
- At some threshold schoolbooks are more efficient

Toom-Cook's method

- Generalizes Karatsuba

Toom-Cook's method

- Generalizes Karatsuba
- Toom-3: split in 3 parts
- 5 instead of 9 multiplications

Toom-Cook's method

- Generalizes Karatsuba
- Toom-3: split in 3 parts
- 5 instead of 9 multiplications
- Toom-4: split in 4 parts
- 7 instead of 16 multiplications

Toom-Cook's method

- Generalizes Karatsuba
- Toom-3: split in 3 parts
- 5 instead of 9 multiplications
- Toom-4: split in 4 parts
- 7 instead of 16 multiplications
- Toom-5: split in 5 parts

Toom-Cook's method

- Generalizes Karatsuba
- Toom-3: split in 3 parts
- 5 instead of 9 multiplications
- Toom-4: split in 4 parts
- 7 instead of 16 multiplications
- Toom-5: split in 5 parts
- Loses too much precision!
- Toom-Cook uses divisions in \mathbb{Z}, not in \mathbb{Z}_{16}
- Losses add up!
- Toom-3 (1 bit) + Toom-4 (3 bits) \Rightarrow multiply in \mathbb{Z}_{12}

What's the best method?

- Asymptotic: Toom-4 wins
- ... what about $n=701$?

What's the best method?

- Asymptotic: Toom-4 wins
- ... what about $n=701$?
- Our approach: Try all

What's the best method?

- Asymptotic: Toom-4 wins
- ... what about $n=701$?
- Our approach: Try all
- We need
- Fast Karatsuba for all n
- Fast Toom-4 for all n
- Fast Toom-3 for all n
- Fast schoolbook for small n

Fast schoolbook multiplication

- ARMv7E-M supports SMUAD (X) and SMLAD (X)
- All in one clock cycle
- Perfect for polynomial multiplication

instruction	semantics
smuad Ra, Rb, Rc	$R a \leftarrow R b_{L} \cdot R c_{L}+R b_{H} \cdot R c_{H}$
smuadx Ra, Rb, Rc	$R a \leftarrow R b_{L} \cdot R c_{H}+R b_{H} \cdot R c_{L}$
smlad Ra, Rb, Rc, Rd	$R a \leftarrow R b_{L} \cdot R c_{L}+R b_{H} \cdot R c_{H}+R d$
smladx Ra, Rb, Rc, Rd	$R a \leftarrow R b_{L} \cdot R c_{H}+R b_{H} \cdot R c_{L}+R d$

Fast schoolbook multiplication, $n=6$

Fast schoolbook multiplication, $n=6$

Fast schoolbook multiplication: less repacking

Fast schoolbook multiplication: less repacking

Fast schoolbook multiplication: less repacking

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions
- (Un)rolling loops

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions
- (Un)rolling loops
- Poor man's register allocation

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions
- (Un)rolling loops
- Poor man's register allocation
- Post-processing asm

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions
- (Un)rolling loops
- Poor man's register allocation
- Post-processing asm
- .. Naming things

Exploring the design space

- Hand-optimize small schoolbooks
- Compose larger schoolbooks
- Recursive Toom / Karatsuba
- Python that writes asm
- Naming things

- Calling functions
- (Un)rolling loops
- Poor man's register allocation
- Post-processing asm
- .. Naming things
- Automated compiling + benchmarking

Schoolbook vs. Karatsuba

- Schoolbook is faster for $n \leq 16$

Schoolbook vs. Karatsuba

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for $n>36$

Schoolbook vs. Karatsuba

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for $n>36$
- We are mainly interested in $n=\{10,11,12,16\}$

Schoolbook vs. Karatsuba

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for $n>36$
- We are mainly interested in $n=\{10,11,12,16\}$
- or multiples $\{20,22,24,32\}$

Schoolbook vs. Karatsuba

- Schoolbook is faster for $n \leq 16$
- Karatsuba is faster for $n>36$
- We are mainly interested in $n=\{10,11,12,16\}$
- or multiples $\{20,22,24,32\}$
- For $\{20,22,24,32\}$ Karatsuba is faster

Karatsuba vs. Toom-4 vs. Toom-3

- Toom, multiple layers of Karatsuba
- Should be monotonic
- Some schoolbooks are just not that optimized

Karatsuba vs. Toom-4 vs. Toom-3

- We are mainly interested in $n=\{256,701,743,1024\}$
- Ensure those 'make sense'

Speed records

scheme	params	impl	key gen	encaps	decaps
KINDI	$n=256$	ref	21794 k	28176 k	37129 k
	$q=2^{14}$	ours	$\mathbf{1 0 1 0 k}$	$\mathbf{1 3 6 5 k}$	$\mathbf{1 5 6 3 k}$
NTRU-HRSS	$n=701$	ref	205156 k	5166 k	15067 k
	$q=2^{13}$	ours	$\mathbf{1 6 1 7 9 0 k}$	$\mathbf{4 3 2 k}$	$\mathbf{8 6 3 k}$
NTRU-KEM	$n=743$	ref	59815 k	7540 k	14229 k
	$q=2^{11}$	ours	$\mathbf{5 6 6 3 k}$	$\mathbf{1 6 5 5 k}$	$\mathbf{1 9 0 4 k}$
SABER	$n=256$	ref	6530 k	8684 k	10581 k
		[1]	1147 k	1444 k	1543 k
	ours	$\mathbf{9 4 9 k}$	$\mathbf{1 2 3 2 k}$	$\mathbf{1 2 6 0 k}$	
RLizard	$n=1024$	ref	26423 k	32156 k	53181 k
	$q=2^{11}$	ours	$\mathbf{5 3 7 k}$	$\mathbf{1 3 5 8 k}$	$\mathbf{1 7 4 0 k}$

[1] Karmakar, A., Mera, J. M. B., Roy, S. S., \& Verbauwhede, I. (2018). Saber on ARM. IACR Transactions on Cryptographic Hardware and Embedded Systems, 243-266.

Results \& Conclusions

- Runtime dominated by polynomial multiplication
- After optimizing: SHA2/SHA3/SHAKE is significant ($\approx 50 \%$)
- Optimized implementations exist

Results \& Conclusions

- Runtime dominated by polynomial multiplication
- After optimizing: SHA2/SHA3/SHAKE is significant ($\approx 50 \%$)
- Optimized implementations exist
- Fastest PQC implementations on the Cortex-M4
- More than $2 x$ outperform R5ND_1PKEb and R5ND_3PKEb
- Scripts easily apply to parameter changes in Round 2

Paper: https://eprint.iacr.org/2018/1018 (in submission)
Software: https://github.com/mupq/polymul-z2mx-m4
PQM4: https://github.com/mupq/pqm4

All code available as public domain where possible

