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The quantum threat

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}

I Destructive things: break crypto

I RSA is broken
I ECC is broken
I Symmetric crypto is ‘broken’.. (but easily fixed)

2 / 22



The quantum threat

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken
I ECC is broken
I Symmetric crypto is ‘broken’.. (but easily fixed)

2 / 22



The quantum threat

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken

I ECC is broken
I Symmetric crypto is ‘broken’.. (but easily fixed)

2 / 22



The quantum threat

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken
I ECC is broken

I Symmetric crypto is ‘broken’.. (but easily fixed)

2 / 22



The quantum threat

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken
I ECC is broken
I Symmetric crypto is ‘broken’.. (but easily fixed)

2 / 22



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might even be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’
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NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I Standardize ‘portfolio’ of signatures and KEMs

I See also: AES and SHA-3 competitions

I Nov ‘17: 82 submissions 8 involving RU
I mid ‘18: ≈ 58 unbroken in Round 1 8 involving RU
I Jan ‘19: 26 (17 + 9) in Round 2 8 involving RU!

I Final selection: 2 - 4 years

I “Not a competition”
I “Performance will play a larger role in the 2nd round”
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Post-quantum on small devices

“It’s big and it’s slow”

– everyone, always

I STM32F4: ARM Cortex-M4
I 32-bit, ARMv7-M
I 192KiB RAM, 168MHz
I used in Crypto Eng. course

I PQM4: test and optimize
on the Cortex-M4
I github.com/mupq/pqm4
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Learning with errors (LWE)

I Given uniform A ∈ Zk×`
q

I Given “noise distribution” χ
I Given samples As + e, with e← χ

I Find s

I Structured lattices: work in Zq[x ]/f

6 / 22



Learning with errors (LWE)

I Given uniform A ∈ Zk×`
q

I Given “noise distribution” χ
I Given samples As + e, with e← χ

I Find s

I Structured lattices: work in Zq[x ]/f

6 / 22



Learning with errors (LWE)

I Given uniform A ∈ Zk×`
q

I Given “noise distribution” χ
I Given samples As + e, with e← χ

I Find s

I Structured lattices: work in Zq[x ]/f

6 / 22



Lattice-based KEMs – the basic idea

Alice (server) Bob (client)

s, e $← χ s′, e′ $← χ

b← as + e b−−−−→ u← as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

I Secret and noise s, s′, e, e′ are small
I v and v′ are approximately the same
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Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:

I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q
I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE

I Prime q vs. power-of-two q
I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q

I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q
I Prime n vs. power-of-two n

I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q
I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)

I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q
I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



Lattice-based KEMs submitted to NIST

I 22 of Round 1 submissions are lattice-based KEMs
I 9 progressed to Round 2

I Large design space with many trade-offs:
I LWE vs. LWR
I LWE vs. Ring-LWE vs. Module-LWE
I Prime q vs. power-of-two q
I Prime n vs. power-of-two n
I NTRU vs. LWE/LWR (“quotient” vs. “product”)
I . . .

8 / 22



5 lattice-based KEMs

I RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
I Arithmetic in Z2m [x ]/f

I 11 ≤ m ≤ 14
I 256 ≤ n = deg(f ) ≤ 1024

I Why these schemes?
I Co-submitters of NTRU-HRSS
I NTRU-HRSS could be faster than Round5
I Only Saber has been optimized on Cortex-M4 (CHES 2018)

I How to optimize those 5 KEMs?
I Multiplication of polynomials with n coefficients over Z2m [x ]

/ // merged: NTRU

9 / 22



5 lattice-based KEMs

I RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
I Arithmetic in Z2m [x ]/f

I 11 ≤ m ≤ 14
I 256 ≤ n = deg(f ) ≤ 1024

I Why these schemes?
I Co-submitters of NTRU-HRSS
I NTRU-HRSS could be faster than Round5
I Only Saber has been optimized on Cortex-M4 (CHES 2018)

I How to optimize those 5 KEMs?
I Multiplication of polynomials with n coefficients over Z2m [x ]

/ // merged: NTRU

9 / 22



5 lattice-based KEMs

I RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
I Arithmetic in Z2m [x ]/f

I 11 ≤ m ≤ 14
I 256 ≤ n = deg(f ) ≤ 1024

I Why these schemes?
I Co-submitters of NTRU-HRSS
I NTRU-HRSS could be faster than Round5
I Only Saber has been optimized on Cortex-M4 (CHES 2018)

I How to optimize those 5 KEMs?
I Multiplication of polynomials with n coefficients over Z2m [x ]

/ // merged: NTRU

9 / 22



5 lattice-based KEMs

I RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
I Arithmetic in Z2m [x ]/f

I 11 ≤ m ≤ 14
I 256 ≤ n = deg(f ) ≤ 1024

I Why these schemes?
I Co-submitters of NTRU-HRSS
I NTRU-HRSS could be faster than Round5
I Only Saber has been optimized on Cortex-M4 (CHES 2018)

I How to optimize those 5 KEMs?
I Multiplication of polynomials with n coefficients over Z2m [x ]

/ // merged: NTRU

9 / 22



Schoolbook multiplication (e.g., n = 6)

a = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0
b = b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

36 multiplications, 25 additions

10 / 22



Karatsuba’s method

I Split inputs in half: a = a1xn/2 + a0, b = b1xn/2 + b0

a · b = (a1xn/2 + a0)(b1xn/2 + b0)

= a1b1xn + (a1b0 + a0b1)xn/2 + a0b0

= a1b1xn+
((a1 + a0)(b0 + b1)− a1b1 − a0b0)xn/2

+ a0b0

I Only need 3 half-size multiplications (instead of 4)
I Need some additional additions and subtractions
I Can be applied recursively

I At some threshold schoolbooks are more efficient
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Toom-Cook’s method

I Generalizes Karatsuba

I Toom-3: split in 3 parts
I 5 instead of 9 multiplications

I Toom-4: split in 4 parts
I 7 instead of 16 multiplications

I Toom-5: split in 5 parts
I Loses too much precision!

I Toom-Cook uses divisions in Z, not in Z16
I Losses add up!

I Toom-3 (1 bit) + Toom-4 (3 bits) ⇒ multiply in Z12
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What’s the best method?

I Asymptotic: Toom-4 wins
I . . . what about n = 701?

I Our approach: Try all
I We need

I Fast Karatsuba for all n
I Fast Toom-4 for all n
I Fast Toom-3 for all n
I Fast schoolbook for small n

704701

351350

175 176

87 88

43 44

21 22

10 11

702

234

117

58 59

29 30

14 15

7 8

T4

K K

K K K

K K K

K K K

K K K

K? K? K?

T3

K

K K

K K K

K K K

K? K? K?
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Fast schoolbook multiplication

I ARMv7E-M supports SMUAD(X) and SMLAD(X)
I All in one clock cycle
I Perfect for polynomial multiplication

instruction semantics
smuad Ra, Rb, Rc Ra← RbL · RcL + RbH · RcH
smuadx Ra, Rb, Rc Ra← RbL · RcH + RbH · RcL
smlad Ra, Rb, Rc, Rd Ra← RbL · RcL + RbH · RcH + Rd
smladx Ra, Rb, Rc, Rd Ra← RbL · RcH + RbH · RcL + Rd
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Fast schoolbook multiplication, n = 6

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5
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Fast schoolbook multiplication: less repacking

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5
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Exploring the design space

1
2

34
5

67
8

9

I Hand-optimize small schoolbooks
I Compose larger schoolbooks
I Recursive Toom / Karatsuba

I Python that writes asm
I Naming things
I Calling functions
I (Un)rolling loops
I Poor man’s register allocation
I Post-processing asm
I .. Naming things

I Automated compiling + benchmarking
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Schoolbook vs. Karatsuba
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I Schoolbook is faster for n ≤ 16

I Karatsuba is faster for n > 36
I We are mainly interested in n = {10, 11, 12, 16}

I or multiples {20, 22, 24, 32}
I For {20, 22, 24, 32} Karatsuba is faster
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Karatsuba vs. Toom-4 vs. Toom-3
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I Toom, multiple layers of Karatsuba
I Should be monotonic

I Some schoolbooks are just not that optimized
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Karatsuba vs. Toom-4 vs. Toom-3
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I We are mainly interested in n = {256, 701, 743, 1024}
I Ensure those ’make sense’
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Speed records

scheme params impl key gen encaps decaps

KINDI n = 256
q = 214

ref 21 794k 28 176k 37 129k
ours 1 010k 1 365k 1 563k

NTRU-HRSS n = 701
q = 213

ref 205 156k 5 166k 15 067k
ours 161 790k 432k 863k

NTRU-KEM n = 743
q = 211

ref 59 815k 7 540k 14 229k
ours 5 663k 1 655k 1 904k

SABER n = 256
q = 213

ref 6 530k 8 684k 10 581k
[1] 1 147k 1 444k 1 543k

ours 949k 1 232k 1 260k

RLizard n = 1024
q = 211

ref 26 423k 32 156k 53 181k
ours 537k 1 358k 1 740k

[1] Karmakar, A., Mera, J. M. B., Roy, S. S., & Verbauwhede, I. (2018). Saber on ARM. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 243-266.
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Results & Conclusions

I Runtime dominated by polynomial multiplication
I After optimizing: SHA2/SHA3/SHAKE is significant (≈ 50%)
I Optimized implementations exist

I Fastest PQC implementations on the Cortex-M4
I More than 2x outperform R5ND_1PKEb and R5ND_3PKEb

I Scripts easily apply to parameter changes in Round 2
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Paper: https://eprint.iacr.org/2018/1018 (in submission)

Software: https://github.com/mupq/polymul-z2mx-m4

PQM4: https://github.com/mupq/pqm4

All code available as public domain where possible
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