
Hash-based signatures
Joost Rijneveld

joost@joostrijneveld.nl

Radboud University, Nijmegen, The Netherlands

Post-quantum cryptography

As it becomes more and more likely that practical, large-scale quantum
computers will be built within the next several years or decades,
cryptographers all over the world are trying to push for a transition to a new
class of schemes and protocols: post-quantum cryptography.

Why?
Currently (or, rather, ‘classically’), nearly all deployed asymmetric
cryptography depends on the hardness of two mathematical problems:
integer factorization and the discrete logarithm problem. This is what
underlies public-key encryption, key exchange protocols and digital signatures
that use RSA or elliptic curves. In 1994, Shor’s algorithm was published.
This algorithm, designed to be executed on a quantum computer, solves the
aforementioned problems much more efficiently than is possible on a
traditional computer, leading to secret key recovery.

Now what?
To counter this, cryptographic primitives are being designed that rely on
different hard problems. Research focuses on several areas: lattices,
error-correcting codes, multivariate quadratics, hash functions and
super-singular isogenies — each with their own strengths and weaknesses.

This poster is aimed to provide an introduction to digital signatures based
solely on the existence of a secure cryptographic hash function.

Singing individual bits – but only once

In 1979, Lamport described what is now known as ‘Lamport one-time
signatures’ (OTS). Each key pair of N · k bits can be used to sign an N-bit
message at a k-bit security level.

Private key: N pairs of random numbers;

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

Public key: hashes of these random numbers;

s0,1h()

s0,0h()

s1,1h()

s1,0h()

s2,1h()

s2,0h()

. . .

. . .

sN−3,1h()

sN−3,0h()

sN−2,1h()

sN−2,0h()

sN−1,1h()

sN−1,0h()

Signature on N-bit value, e.g. 100. . .110:

s0,1 s1,0 s2,0 . . . sN−3,1 sN−2,1 sN−1,0

Singing groups of bits

Also in 1979, Merkle described an improvement (WOTS, attributed to
Winternitz) to sign groups of bits using hash chains, introducing a time/size
trade-off. For example, let’s sign 10 00 11 01 00 with trade-off w = 4. A
checksum is needed to prevent forgeries: Σ`1

i=1(w − 1 −mi) = 7 = 01 11.

s0 s1 s2 s3 s4 s5 s6

pk:

sk:

The most common trade-off parameter w = 16 results in signatures of 2 KiB
when signing a 256-bit value.

Merkle trees & XMSS

pk

p8p7p6p5p4p3p2p1

To be able to sign multiple
messages with a single public
key, many OTS key pairs can be
authenticated together by placing
them on the leaf nodes of a binary
hash tree. A signature must now
also include the authentication
path, so that the verifier can
reconstruct and compare the root node. Note that this makes the scheme
stateful: the signer must remember never to re-use an OTS key pair
attached to a leaf node to sign more than one message. Remembering more
state can be used to speed up signature generation, using tree traversal
algorithms. A concrete signature scheme using this Merkle tree construction
is XMSS, recently described in RFC 8391.

Building a hypertree

pk

m

The number of messages that can
be signed using a single key pair is
directly related to the height of the
tree. Using a large tree (e.g. 260

leaf nodes) results in prohibitively
slow key and signature generation.
This is remedied by creating
certification trees, signing
the root node of one tree using
one of the OTS key pair attached
to a leaf node of a tree on the
layer above it. This ensures one
only has to generate a single tree
per layer at a time, at the cost
of a larger combined signature.
This hypertree construction
underlies the XMSSMT scheme.

Eliminate the state & few-time signatures

Having to maintain a state is a major downside of the above construction.
This is fundamentally incompatible with common signature APIs and makes
practicalities such as key backups and signing across multiple machines much
more involved. SPHINCS solves this by using a sufficiently large hypertree,
such that one can safely pick a random leaf node instead. To reduce the
required height, the SPHINCS framework uses a few-time signature scheme
(e.g. HORST or FORS) that only degrades after signing several messages.

r0 r1 r2

r3 r4 r5

Forest of Random Subsets (FORS) splits the message into chunks, and
reveals and authenticates secrets accordingly. In the above example,
m = 100 010 011 001 110 111. The public key is h(r0, r1, . . . , r5).

