Post-quantum cryptography

Joost Rijneveld

Digital Security,
Radboud University

2018-05-14
Colloquium Thalia

1/30



y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

2/ 30



y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

» We have public-key cryptography
> RSA, DH, ECC, ECDH, ...

2/ 30



y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

\wod
> We s public-key cryptography
>

Quantyf compyters!

2/ 30



y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

\wod
> We s public-key cryptography
>

Quantyf compyters’

s mque

2/ 30



whoami

» PhD student at Digital Security

» EU PQCRYPTO Project

» Supervisor: Peter Schwabe

» ‘Cryptographic engineering’
P Reference C, optimized assembly
> Big Intels, small ARMs

> 2015 — 2019 (June?)

> 2013 — 2015 Kerckhoffs' Master (now TRU/e)
> 2010 — 2013 Computing Science Bachelor
» Minor in Mathematics
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What is a quantum computer?
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What is a quantum computer?

> .. | don't really know
» But there's models

> .. so |l don't really care

9/ 30



What can it do?

» Useful things: complex simulations
> Solve {global warming, world hunger, diseases, ...}

P Destructive things: break crypto
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When though?

“In the past, people have said, maybe it's 50 years away, it's a
dream, maybe it'll happen sometime. | used to think it was 50.
Now I'm thinking like it’s 15 or a little more. It's within reach.
It's within our lifetime. It's going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30



When though?

have said, maybe it's 50 years away, it's a
pen sometime. | used to think it was 50.
it’s 15 or a little more. It's within reach.
It's going to happen.”

“In the p>~

— Mark Ketchen (IBM), Feb. 2012

14 / 30



When though?
Intelligent. Machines

] R way, it's a
IBM Raises the B4y e
with a 50-Qubjt s o,

. It’s wi ’
Quantum Computer

uln the Do~

en (IBM), Feb. 2012

Researchers have bt the most Sophisticateq Quantum
Computer yet, signah’ng

Progress towarqg apowerful ney
_\g\ed Way of processing information,
\!

by Will Knight November10,2m7

14 / 30



When though?

“In the p>= 'B_M Raises the Bar sars away, it's a
) with g SO'QUbit think it was 50.

Quantum C(-m,..put er - It’s within reach.

-
- oves toward quan W), Feb. 2012
o G:grg;reng\cy with 72-qubit

comp, S

way of computel"

14 / 30



When though?

'B.M Raises the Bar 2ars away, it's a
with a 50-Qupj think it was 50.
's within reach.

“In the p>~

angle moves
3 oy supremacy
ta“g\e way of computer

193, No.6, March 31, 2018913

14 / 30



Attacker model

> Eve?

YES, IT’5 TRUE. | BROKE BOB'S

PRIVATE. KEY AND EXTRACTED THE

TEXT OF HER MESSAGES. BUT DOES

ANYONE. REALIZE HOW MUCH T HURT?
/

xked.com /177

» Or a Nation State Adversary?

See also: ‘The Moral Character of Cryptographic Work’ by Phillip Rogaway
15 /30






So all is lost?
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» Grover queries are expensive: AES-128 might be ‘ok’
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So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
99 problems, but the DLP ain't one

>

VVYyVVYYVYYVYY

Lattices
Error-correcting codes
Multivariate quadratics
Supersingular isogenies
Hashes

post-quantum RSA

As;kei)s
mG+z+m
y = MQ(x)
¢ZE1—)E2
H(x) = x

‘What if we used 1 GiB keys?’
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NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

» Deadline: November 30, 2017
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National Institute of Standards and Technology
> See also: AES and SHA-3 competitions

Deadline: November 30, 2017

82 submissions

69 ‘complete and proper’
~ 58 still unbroken

8 with Radboud involved

PQC Standardization conference: April 11-13, 2018

Final ‘portfolio:" in 3 - 5 years

‘Not a competition’
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Hash-based signatures
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In a nutshell..

> Relies only on secure hash function
> Pre-image resistance: H(x) # x
» No other assumptions
» The conservative choice
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Authenticating a single bit

» Preparation step:

> Generate and (large random values)
> Publish h((5ves) and h((w))

time passes

P Authentication step:

» Publish or to authenticate ‘YES' or ‘NO’

» Anyone can check and compare to hashes

» Can never re-use!

21/ 30
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» Signature on N-bit value, e.g. 100...110

OINNCEDICEDICED

» Verification: hash, compare to public key

» Can still only do this once!
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» Can still only do this once!
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Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

» Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i
» Parent = h(LeftChild || RightChild)
> New public key: root node
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Merkle trees

> Signature must now include:
» OTS signature
> OTS public key
» Index in the Merkle tree, e.g. 5
» Nodes along the authentication path

> Verification
1. Implicitly verify OTS signature
(reconstruct OTS public key)
2. Reconstruct root node
(using authentication path)
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> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path
> Keys are small
» Public key is one hash value
> Private key is biliens-of randem—values a seed
» Signatures are small:
» OTS signature (2KiB) + authentication path (1 KiB)

» Can only use each leaf node once

»> We must store and update the index
> We must keep a state!
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SPHINCS

> Seriously big tree (= 2%* leafs)
= Allows random leaf selection
= Stateless!

» Cannot generate entire tree!

> ‘Tree of trees’'
» Only generate needed subtrees
> Link trees with OTS

> Signatures larger and slower
> 8KiB - 40KiB, ~ 100ms

Note: omitting bottom layer of ‘Few-Time Signatures' for simplicity
28 /30
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Forest of Random Subsets

> ‘Few-time’ signature scheme to sign m = shorter hypertree
> Ex.. d =6, log(t) =3, sign 100 010 011 001 110 111

N A

» Public key: h(ro, r1, ..., 15)
> Signature: 6x sk (), 6x authentication path (O, O, O)

29 / 30
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More of this?

Year 1: Security v

TRU/e: Cryptology

>

» Year 2: Introduction to Cryptography (elective)
>

» TRU/e: Cryptographic Engineering (elective)

» (Maths BSc: Rings & Fields)

» Implement your own crypto!
» ... but maaaybe don’t use it in production

> Ask questions!
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