Post-quantum cryptography

Joost Rijneveld

Digital Security,
Radboud University

2018-05-14
Colloquium Thalia

1/30

y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

2/ 30

y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

» We have public-key cryptography
> RSA, DH, ECC, ECDH, ...

2/ 30

y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

\wod
> We s public-key cryptography
>

Quantyf compyters!

2/ 30

y tho

> Axiom: we want public-key cryptography
» To exchange keys, to sign, ...and do other things

\wod
> We s public-key cryptography
>

Quantyf compyters’

s mque

2/ 30

whoami

» PhD student at Digital Security

» EU PQCRYPTO Project

» Supervisor: Peter Schwabe

» ‘Cryptographic engineering’
P Reference C, optimized assembly
> Big Intels, small ARMs

> 2015 — 2019 (June?)

> 2013 — 2015 Kerckhoffs' Master (now TRU/e)
> 2010 — 2013 Computing Science Bachelor
» Minor in Mathematics

3/30

What is a quantum computer?

4/ 30

Z I w
iﬁﬂﬂnﬂl

D \JaaAUC2

| - Emcm

=200C

What is a quantum computer?

> .. | don't really know

9/ 30

What is a quantum computer?

> .. | don't really know
» But there's models

9/ 30

What is a quantum computer?

> .. | don't really know
» But there's models

> .. so |l don't really care

9/ 30

What can it do?

» Useful things: complex simulations
> Solve {global warming, world hunger, diseases, ...}

P Destructive things: break crypto

10 / 30

What can it do?

Grover: Search in O(+/n) Shor: Factorize in poly(n)

11/30

What can it do?

Grover: Search in O(+/n) Shor: Factorize in poly(n)
~ s0lve QOL?P

11/30

What can it do?

» Searching in O(v/n)

» Factoring & solving DLP in poly(n)

13 /30

What can it do?

» Searching in O(v/n)
> Brute force AES keys
> Pre-image / collision search for hashes

» Factoring & solving DLP in poly(n)

13 /30

What can it do?

» Searching in O(y/n)
> Brute force AES keys
> Pre-image / collision search for hashes
» Fix: double the lengths!

» Factoring & solving DLP in poly(n)

13 /30

What can it do?

» Searching in O(y/n)
> Brute force AES keys
> Pre-image / collision search for hashes
» Fix: double the lengths!

» Factoring & solving DLP in poly(n)

» Given n=p-q, find p and g
» Given g2 mod p, find a

13 /30

What can it do?

» Searching in O(y/n)
> Brute force AES keys
> Pre-image / collision search for hashes
» Fix: double the lengths!

» Factoring & solving DLP in poly(n)
» Given n=p-q, find p and g
» Given g2 mod p, find a
» poly(n) in asymptotics?

13 /30

What can it do?

» Searching in O(y/n)
> Brute force AES keys
> Pre-image / collision search for hashes
» Fix: double the lengths!

» Factoring & solving DLP in poly(n)
» Given n=p-q, find p and g
» Given g2 mod p, find a
» poly(n) in asymptotics? Actually fast!

13 /30

What can it do?

» Searching in O(y/n)
> Brute force AES keys
> Pre-image / collision search for hashes
» Fix: double the lengths!

» Factoring & solving DLP in poly(n)
» Given n=p-q, find p and g
» Given g2 mod p, find a
» poly(n) in asymptotics? Actually fast!
> Fix: ..7

13 /30

When though?

“In the past, people have said, maybe it's 50 years away, it's a
dream, maybe it'll happen sometime. | used to think it was 50.
Now I'm thinking like it’s 15 or a little more. It's within reach.
It's within our lifetime. It's going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?

have said, maybe it's 50 years away, it's a
pen sometime. | used to think it was 50.
it’s 15 or a little more. It's within reach.
It's going to happen.”

“In the p>~

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?
Intelligent. Machines

] R way, it's a
IBM Raises the B4y e
with a 50-Qubjt s o,

. It’s wi ’
Quantum Computer

uln the Do~

en (IBM), Feb. 2012

Researchers have bt the most Sophisticateq Quantum
Computer yet, signah’ng

Progress towarqg apowerful ney
_\g\ed Way of processing information,
\!

by Will Knight November10,2m7

14 / 30

When though?

“In the p>= 'B_M Raises the Bar sars away, it's a
) with g SO'QUbit think it was 50.

Quantum C(-m,..put er - It’s within reach.

-
- oves toward quan W), Feb. 2012
o G:grg;reng\cy with 72-qubit

comp, S

way of computel"

14 / 30

When though?

'B.M Raises the Bar 2ars away, it's a
with a 50-Qupj think it was 50.
's within reach.

“In the p>~

angle moves
3 oy supremacy
ta“g\e way of computer

193, No.6, March 31, 2018913

14 / 30

Attacker model

> Eve?

YES, IT’5 TRUE. | BROKE BOB'S

PRIVATE. KEY AND EXTRACTED THE

TEXT OF HER MESSAGES. BUT DOES

ANYONE. REALIZE HOW MUCH T HURT?
/

xked.com /177

» Or a Nation State Adversary?

See also: ‘The Moral Character of Cryptographic Work’ by Phillip Rogaway
15 /30

So all is lost?

» Symmetric crypto is fine!
» Grover queries are expensive: AES-128 might be ‘ok’

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
» 99 problems, but the DLP ain't one

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
» 99 problems, but the DLP ain't one

> Lattices As+e=#s

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
» 99 problems, but the DLP ain't one

> Lattices As+e+-s
» Error-correcting codes mG+z+m

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
» 99 problems, but the DLP ain't one

> Lattices As+e+-s
» Error-correcting codes mG+z+m
» Multivariate quadratics y = MQ(x)

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
» 99 problems, but the DLP ain't one

> Lattices Aste=+s
» Error-correcting codes mG+z+m
» Multivariate quadratics y = MQ(x)
> Supersingular isogenies ¢:E1— E

17 / 30

So all is lost?

» Symmetric crypto is fine!

> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
99 problems, but the DLP ain't one

>

VyVVvyVyVYYVYY

Lattices
Error-correcting codes
Multivariate quadratics
Supersingular isogenies
Hashes

As;kei)s
mG+z+m
y = MQ(x)
¢ZE1—)E2
H(x) = x

17 / 30

So all is lost?

» Symmetric crypto is fine!
> Grover queries are expensive: AES-128 might be ‘ok’

» Asymmetric crypto is fun!
99 problems, but the DLP ain't one

>

VVYyVVYYVYYVYY

Lattices
Error-correcting codes
Multivariate quadratics
Supersingular isogenies
Hashes

post-quantum RSA

As;kei)s
mG+z+m
y = MQ(x)
¢ZE1—)E2
H(x) = x

‘What if we used 1 GiB keys?’

17 / 30

NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

» Deadline: November 30, 2017

18 / 30

NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

» Deadline: November 30, 2017

» 82 submissions

18 / 30

NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

» Deadline: November 30, 2017

» 82 submissions

> 69 ‘complete and proper’

18 / 30

NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

» Deadline: November 30, 2017

» 82 submissions
> 69 ‘complete and proper’
» =~ 58 still unbroken

18 / 30

NIST Post-Quantum not-a-competition

» National Institute of Standards and Technology
» See also: AES and SHA-3 competitions

Deadline: November 30, 2017

v

82 submissions

69 ‘complete and proper’
~ 58 still unbroken

8 with Radboud involved

vvvyyypy

18 / 30

NIST Post-Quantum not-a-competition

>

vVvyyYyyv v

vy

National Institute of Standards and Technology
> See also: AES and SHA-3 competitions

Deadline: November 30, 2017

82 submissions

69 ‘complete and proper’
~ 58 still unbroken

8 with Radboud involved

PQC Standardization conference: April 11-13, 2018

Final ‘portfolio:" in 3 - 5 years

18 / 30

NIST Post-Quantum not-a-competition

>

vVvyyYyyv v

vy

National Institute of Standards and Technology
> See also: AES and SHA-3 competitions

Deadline: November 30, 2017

82 submissions

69 ‘complete and proper’
~ 58 still unbroken

8 with Radboud involved

PQC Standardization conference: April 11-13, 2018

Final ‘portfolio:" in 3 - 5 years

‘Not a competition’

18 / 30

Hash-based signatures

19 /30

In a nutshell..

> Relies only on secure hash function
> Pre-image resistance: H(x) # x
» No other assumptions
» The conservative choice

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

> Relies only on secure hash function
> Pre-image resistance: H(x) # x
» No other assumptions
» The conservative choice

» Signatures are somewhat large (~ 8 KiB)

» Signing is either slow or ‘complicated’

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

> Relies only on secure hash function
> Pre-image resistance: H(x) # x
» No other assumptions
» The conservative choice

» Signatures are somewhat large (~ 8 KiB)

» Signing is either slow or ‘complicated’

» Serious candidates for standardization

» draft-irtf-cfrg-xmss-hash-based-signatures
» SPHINCS™ NIST submission
» (Full disclosure: I'm involved in XMSS and SPHINCS™)

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

> Relies only on secure hash function
> Pre-image resistance: H(x) # x
» No other assumptions
» The conservative choice

» Signatures are somewhat large (~ 8 KiB)

» Signing is either slow or ‘complicated’

» Serious candidates for standardization RFC 23U
> ;

» SPHINCS™ NIST submission
» (Full disclosure: I'm involved in XMSS and SPHINCS™)

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

Authenticating a single bit

» Preparation step:

> Generate and (large random values)

21/ 30

Authenticating a single bit

» Preparation step:

> Generate and (large random values)
> Publish h(Gves) and h((sw0))

21/ 30

Authenticating a single bit

» Preparation step:

> Generate and (large random values)
> Publish h(Gves) and h((sw0))

time passes

21/ 30

Authenticating a single bit

» Preparation step:

> Generate and (large random values)
> Publish h(Gves) and h((sw0))

time passes

P Authentication step:

» Publish or to authenticate ‘YES' or ‘NO’

21/ 30

Authenticating a single bit

» Preparation step:

> Generate and (large random values)
> Publish h((5ves) and h((w))

time passes

P Authentication step:

» Publish or to authenticate ‘YES' or ‘NO’

» Anyone can check and compare to hashes

» Can never re-use!

21/ 30

Lamport signatures

» ‘Classic example' of hash-based signatures

22 /30

Lamport signatures

» ‘Classic example' of hash-based signatures

» Private key: N pairs of random numbers

OINCEDICEDICED
@) () (o)

22 /30

Lamport signatures

» ‘Classic example' of hash-based signatures

» Private key: N pairs of random numbers

OINCEDICEDICED
@) () (o)

» Public key: hashes of these random numbers

h(0.0)) h(s10)) h(%20)) -+ h(n=30)) h(Sv—20)) h((Sv-10))
h() h() h() h(<5N73,1)) h((SNfz,Q) h((Sme))

22 /30

Lamport signatures

» ‘Classic example' of hash-based signatures

» Private key: N pairs of random numbers

-)) D)
- G @ (o

» Public key: hashes of these random numbers

h(o0) hED) h(&D) -+ h(E39) h(E=20) h(Ezio)
h() h() h() h(CSNA3,1)) h((SNAz,D) h((Sme))

» Signature on N-bit value, e.g. 100...110

OINNCEDICEDICED

22 /30

Lamport signatures

» ‘Classic example' of hash-based signatures

» Private key: N pairs of random numbers

-)) D)
- G @ (o

» Public key: hashes of these random numbers

h(o0) hED) h(&D) -+ h(E39) h(E=20) h(Ezio)
h() h() h() h(CSNA3,1)) h((SNAz,D) h((Sme))

» Signature on N-bit value, e.g. 100...110

OINNCEDICEDICED

» Verification: hash, compare to public key

22 /30

Lamport signatures

» ‘Classic example' of hash-based signatures

» Private key: N pairs of random numbers

-)) D)
- G @ (o

» Public key: hashes of these random numbers

h(%0.0)) h((s10)) h($20) -+ h(n=30)) h(Sv—20)) h((n-10)
h() h() h() h(CSNA3,1>) h((SNAz,D) h((SNfl,ID)

» Signature on N-bit value, e.g. 100...110

OINNCEDICEDICED

» Verification: hash, compare to public key

» Can still only do this once!

22 /30

The Winternitz improvement

» Idea: sign groups of log(w) bits (let w =2")

» Trade time for signature and key size

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

» Idea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement
> |dea: sign groups of log(w) bits (let w =2")

» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

private key: @ @ @

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement
> |dea: sign groups of log(w) bits (let w =2")

» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

private key: @ @

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

> |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

Note: ‘checksum chains’ to prevent forgery omitted for simplicity

23 /30

The Winternitz improvement

> |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

private key:

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

» ldea: sign groups of log(w) bits (let w=2")

» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

private key: @ a @ g

Note: ‘checksum chains’ to prevent forgery omitted for simplicity

23 /30

The Winternitz improvement

» |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

AR
OO 0O O

Sr

I
o RCRONONO

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

» |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

//\ /\ //\
O OO OO
O S0 0 0
\ 1
\/
r
|
T ONONONONO

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

» |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

. /‘\ 7N /\
public key: ‘ ro s T
~_7 ~_7 ~_7
r r r
//\ 7N //\
O O
O 0O 0O O
\ I
<~ _7
.
|
ate ke (8) () () () ()

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

The Winternitz improvement

» |dea: sign groups of log(w) bits (let w =2")
» Trade time for signature and key size
> Example: w =4, let's sign 10 00 11 01 01

_ .- poy ey
public key: ‘ ro Q T
~_7 ~_7 ~_7
r r r
/’\ RN /"\
O O
O 0O 0O O
\ I
<~ _7
.
|
T EONONONONO

» Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 /30

Merkle trees

» One public key, multiple signatures?
» OTS, so multiple signatures — multiple private keys

24 / 30

Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

> Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i

24 / 30

Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

> Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i
» Parent = h(LeftChild || RightChild)

24 / 30

Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

> Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i
» Parent = h(LeftChild || RightChild)

24 / 30

Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

» Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i
» Parent = h(LeftChild || RightChild)

24 / 30

Merkle trees

» One public key, multiple signatures?
> OTS, so multiple signatures — multiple private keys

» Merkle: build ‘authentication tree’ on top

» Leaf p; = OTS public key i
» Parent = h(LeftChild || RightChild)
> New public key: root node

24 / 30

Merkle trees

> Signature must now include:
» OTS signature

25 / 30

Merkle trees

> Signature must now include:
» OTS signature
» OTS public key

25 / 30

Merkle trees

> Signature must now include:
» OTS signature
» OTS public key
» Index in the Merkle tree, e.g. 5

25 / 30

Merkle trees

> Signature must now include:
» OTS signature
» OTS public key
» Index in the Merkle tree, e.g. 5
» Nodes along the authentication path

25 / 30

Merkle trees

> Signature must now include:
» OTS signature
> OTS public key
» Index in the Merkle tree, e.g. 5
» Nodes along the authentication path

> Verification
1. Implicitly verify OTS signature
(reconstruct OTS public key)
2. Reconstruct root node
(using authentication path)

25 / 30

Analysis

» Say we do 232 signatures (= 4 - 10°)

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

» Key generation is slow: compute tree of 233 — 1 nodes

26 / 30

Analysis

» Say we do 232 signatures (= 4 - 10°)

» Key generation is slow: compute tree of 233 — 1 nodes

» Signing is fast

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

» Key generation is slow: compute tree of 233 — 1 nodes
» Signing is fast

» OTS signature on (hash of) message
» Small update to authentication path

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path

> Keys are small
» Public key is one hash value

26 / 30

Analysis

» Say we do 232 signatures (= 4 - 10°)

» Key generation is slow: compute tree of 233 — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path
> Keys are small

» Public key is one hash value
» Private key is billions of random values

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path
> Keys are small

» Public key is one hash value
» Private key is bilions-efrandeom—values a seed

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path
> Keys are small

» Public key is one hash value
» Private key is bilions-efrandeom—values a seed

» Signatures are small:
» OTS signature (2KiB) + authentication path (1 KiB)

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path

> Keys are small

» Public key is one hash value
» Private key is bilions-efrandeom—values a seed

» Signatures are small:
» OTS signature (2KiB) + authentication path (1 KiB)

» Can only use each leaf node once

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path

> Keys are small

» Public key is one hash value
» Private key is bilions-efrandeom—values a seed

» Signatures are small:
» OTS signature (2KiB) + authentication path (1 KiB)

» Can only use each leaf node once
»> We must store and update the index

26 / 30

Analysis

232

> Say we do signatures (= 4 - 109)

233

> Key generation is slow: compute tree of — 1 nodes

» Signing is fast
» OTS signature on (hash of) message
» Small update to authentication path
> Keys are small
» Public key is one hash value
> Private key is biliens-of randem—values a seed
» Signatures are small:
» OTS signature (2KiB) + authentication path (1 KiB)

» Can only use each leaf node once

»> We must store and update the index
> We must keep a state!

26 / 30

https://sphincs.cr.yp.to

https://sphincs.cr.yp.to

SPHINCS

> Seriously big tree (= 2%* leafs)
= Allows random leaf selection

Note: omitting bottom layer of ‘Few-Time Signatures' for simplicity
28 /30

SPHINCS

> Seriously big tree (= 2%* leafs)
= Allows random leaf selection
= Stateless!

Note: omitting bottom layer of ‘Few-Time Signatures' for simplicity
28 /30

SPHINCS

> Seriously big tree (= 2%* leafs)
= Allows random leaf selection
= Stateless!

» Cannot generate entire tree!

> ‘Tree of trees’'
» Only generate needed subtrees
> Link trees with OTS

Note: omitting bottom layer of ‘Few-Time Signatures' for simplicity
28 /30

SPHINCS

> Seriously big tree (= 2%* leafs)
= Allows random leaf selection
= Stateless!

» Cannot generate entire tree!

> ‘Tree of trees’'
» Only generate needed subtrees
> Link trees with OTS

> Signatures larger and slower
> 8KiB - 40KiB, ~ 100ms

Note: omitting bottom layer of ‘Few-Time Signatures' for simplicity
28 /30

Forest of Random Subsets

> ‘Few-time’ signature scheme to sign m = shorter hypertree

29 / 30

Forest of Random Subsets

> ‘Few-time’ signature scheme to sign m = shorter hypertree
> Ex.. d =6, log(t) =3, sign 100 010 011 001 110 111

R A A

N e A

29 / 30

Forest of Random Subsets

> ‘Few-time’ signature scheme to sign m = shorter hypertree
> Ex.. d =6, log(t) =3, sign 100 010 011 001 110 111

N A

» Public key: h(ro, r1, ..., 15)
> Signature: 6x sk (), 6x authentication path (O, O, O)

29 / 30

More of this?

Year 1: Security v

Year 2: Introduction to Cryptography (elective)
TRU/e: Cryptology
TRU/e: Cryptographic Engineering (elective)

» (Maths BSc: Rings & Fields)

30 / 30

More of this?

Year 1: Security v

Year 2: Introduction to Cryptography (elective)
TRU/e: Cryptology
TRU/e: Cryptographic Engineering (elective)

» (Maths BSc: Rings & Fields)

» Implement your own crypto!

30 / 30

More of this?

Year 1: Security v

Year 2: Introduction to Cryptography (elective)
TRU/e: Cryptology
TRU/e: Cryptographic Engineering (elective)

» (Maths BSc: Rings & Fields)

» Implement your own crypto!

» ... but maaaybe don’t use it in production

30 / 30

More of this?

Year 1: Security v

TRU/e: Cryptology

>

» Year 2: Introduction to Cryptography (elective)
>

» TRU/e: Cryptographic Engineering (elective)

» (Maths BSc: Rings & Fields)

» Implement your own crypto!
» ... but maaaybe don’t use it in production

> Ask questions!

30 / 30

References |

@ Daniel J. Bernstein, Diana Hopwood, Andreas Hiilsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Peter Schwabe and Zooko
Wilcox O'Hearn.

SPHINCS: Stateless, practical, hash-based, incredibly nice cryptographic
signatures.

In Marc Fischlin and Elisabeth Oswald, editors, Advances in Cryptology —
EUROCRYPT 2015, volume 9056 of LNCS, pages 368-397. Springer,
2015.

https://eprint.iacr.org/2014/795.pdf

@ John Rompel.
One-way functions are necessary and sufficient for secure signatures.

In Proceedings of the twenty-second annual ACM symposium on theory of
computing, pages 387-394. ACM, 1990.

https://www.cs.princeton.edu/courses/archive/spr08/cos598D/
Rompel.pdf

31/ 30

https://eprint.iacr.org/2014/795.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf

References |l

[H Ralph Merkle.
A certified digital signature.

In Gilles Brassard, editor, Advances in Cryptology — Crypto ‘89, volume
435 of LNCS, pages 218-238. Springer-Verlag, 1990.

http://www.merkle.com/papers/Certified1979.pdf

[Oded Goldreich.
Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In Andrew M. Odlyzko, editor, Advances in Cryptology — Crypto ‘86,
volume 263 of LNCS, pages 104-110. Springer-Verlag, 1987.

http://www.wisdom.weizmann.ac.il/~oded/PSX/gmr .pdf

@ Andreas Hiilsing.
W-OTS+ — shorter signatures for hash-based signature schemes.

In Amr Youssef, Abderrahmane Nitaj and Aboul-Ella Hassanien, editors,
Progress in Cryptology — AFRICACRYPT 2013, volume 7918 of LNCS,
pages 173-188. Springer, 2013.

https://eprint.iacr.org/2017/965.pdf

32/ 30

http://www.merkle.com/papers/Certified1979.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/gmr.pdf
https://eprint.iacr.org/2017/965.pdf

Treehash

> Merkle trees are large!

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

oA
s - ~
- ~
- N
- - NP
/ Y’ i \’
\ \
¢ ¢
» =X ~ =X
/ N a N
7 A 7 N
- - -
i \’ / \’ / \’ / \’
\ \ \ \
7/ 7/ 7/ 7/
7 I I 7

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

S0 A
s - ~
- N
- ~
P NP
/ Y’ i \’
\ \
¢ /
» =X ~ =X
/7 \ 7/ \
7 P -7 N
-~ -
\l / \l / \’
\ \ \
7/ 7/ 7/
7 I 7

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

alEN
7/ \
e N -
- -
/ \’ / \’
\ \
’ ,
I 7

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

»~ =X
7/ \
’ N
~
/ \’
\
7/
7
/A
- .=
! \1/ \1
\ S ,

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

/,\\
\ 1
N_ -

33 /30

Treehash

P> Merkle trees are large!
P Treehash: only remember relevant nodes
> Maintain a stack: max. log(2") nodes

33 /30

