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y tho

I Axiom: we want public-key cryptography
I To exchange keys, to sign, . . . and do other things

I We have public-key cryptography
I RSA, DH, ECC, ECDH, . . .

Quantum computers!
.. maybe

// had
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whoami

I PhD student at Digital Security
I EU PQCRYPTO Project
I Supervisor: Peter Schwabe
I ‘Cryptographic engineering’

I Reference C, optimized assembly
I Big Intels, small ARMs

I 2015 – 2019 (June?)

I 2013 – 2015 Kerckhoffs’ Master (now )
I 2010 – 2013 Computing Science Bachelor

I Minor in Mathematics
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What is a quantum computer?
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What is a quantum computer?

I .. I don’t really know

I But there’s models
I .. so I don’t really care
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What can it do?

I Useful things: complex simulations
I Solve {global warming, world hunger, diseases, . . . }

I Destructive things: break crypto
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What can it do?

Grover: Search in O(
√
n) Shor: Factorize in poly(n)

≈ Solve DLP
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What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)

I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!
I Fix: ..?
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When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012
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Attacker model
I Eve?

xkcd.com/177

I Or a Nation State Adversary?

See also: ‘The Moral Character of Cryptographic Work’ by Phillip Rogaway
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So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’
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I Multivariate quadratics y =MQ(x)

I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
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NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’
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Hash-based signatures
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In a nutshell..

I Relies only on secure hash function
I Pre-image resistance: H(x) ; x
I No other assumptions
I The conservative choice

I Signatures are somewhat large (≈ 8KiB)
I Signing is either slow or ‘complicated’

I Serious candidates for standardization
I draft-irtf-cfrg-xmss-hash-based-signatures
I SPHINCS+ NIST submission
I (Full disclosure: I’m involved in XMSS and SPHINCS+)

/ RFC 8391
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Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)

I Publish sYESh( ) and sNOh( )

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!
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Lamport signatures

I ‘Classic example’ of hash-based signatures

I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h( )
s0,0h( )

s1,1h( )
s1,0h( )

s2,1h( )
s2,0h( )

. . .

. . .

sN−3,1h( )
sN−3,0h( )

sN−2,1h( )
sN−2,0h( )

sN−1,1h( )
sN−1,0h( )

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 . . .. . . sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!
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The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size

I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
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Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)
I New public key: root node
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Merkle trees
I Signature must now include:

I OTS signature

I OTS public key
I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)
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Analysis

I Say we do 232 signatures (≈ 4 · 109)

I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!
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Special note
to law-enforcem

ent agents:

“The word ‘state’ is a technical ter
m in

cryptography
. [..] We are not talking

about eliminating other types
of states.

We love most states, e
specially yours!

Also, ‘hash’
is another te

chnical term
and

has nothing
to do with cannabis.”

— https://sphincs.cr.yp.to
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SPHINCS

I Seriously big tree (≈ 264 leafs)
⇒ Allows random leaf selection

⇒ Stateless!

I Cannot generate entire tree!
I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Signatures larger and slower
I 8KiB – 40KiB, ≈ 100ms

pk

m

Note: omitting bottom layer of ‘Few-Time Signatures’ for simplicity
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Forest of Random Subsets
I ‘Few-time’ signature scheme to sign m ⇒ shorter hypertree

I Ex.: d = 6, log(t) = 3, sign 100 010 011 001 110 111

r0 r1 r2

r3 r4 r5

I Public key: h(r0, r1, . . . , r5)
I Signature: 6x sk ( ), 6x authentication path ( , , )
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More of this?

I Year 1: Security X

I Year 2: Introduction to Cryptography (elective)
I : Cryptology
I : Cryptographic Engineering (elective)

I (Maths BSc: Rings & Fields)

I Implement your own crypto!
I . . . but maaaybe don’t use it in production

I Ask questions!
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Treehash

I Merkle trees are large!

I Treehash: only remember relevant nodes
I Maintain a stack: max. log(2h) nodes
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