
Post-quantum cryptography

Joost Rijneveld

Digital Security,
Radboud University

2018-05-14
Colloquium Thalia

1 / 30

y tho

I Axiom: we want public-key cryptography
I To exchange keys, to sign, . . . and do other things

I We have public-key cryptography
I RSA, DH, ECC, ECDH, . . .

Quantum computers!
.. maybe

// had

2 / 30

y tho

I Axiom: we want public-key cryptography
I To exchange keys, to sign, . . . and do other things

I We have public-key cryptography
I RSA, DH, ECC, ECDH, . . .

Quantum computers!
.. maybe

// had

2 / 30

y tho

I Axiom: we want public-key cryptography
I To exchange keys, to sign, . . . and do other things

I We have public-key cryptography
I RSA, DH, ECC, ECDH, . . .

Quantum computers!

.. maybe

// had
2 / 30

y tho

I Axiom: we want public-key cryptography
I To exchange keys, to sign, . . . and do other things

I We have public-key cryptography
I RSA, DH, ECC, ECDH, . . .

Quantum computers!
.. maybe

// had
2 / 30

whoami

I PhD student at Digital Security
I EU PQCRYPTO Project
I Supervisor: Peter Schwabe
I ‘Cryptographic engineering’

I Reference C, optimized assembly
I Big Intels, small ARMs

I 2015 – 2019 (June?)

I 2013 – 2015 Kerckhoffs’ Master (now)
I 2010 – 2013 Computing Science Bachelor

I Minor in Mathematics

3 / 30

What is a quantum computer?

4 / 30

X

X

What is a quantum computer?

I .. I don’t really know

I But there’s models
I .. so I don’t really care

9 / 30

What is a quantum computer?

I .. I don’t really know
I But there’s models

I .. so I don’t really care

9 / 30

What is a quantum computer?

I .. I don’t really know
I But there’s models
I .. so I don’t really care

9 / 30

What can it do?

I Useful things: complex simulations
I Solve {global warming, world hunger, diseases, . . . }

I Destructive things: break crypto

10 / 30

What can it do?

Grover: Search in O(
√
n) Shor: Factorize in poly(n)

≈ Solve DLP

11 / 30

What can it do?

Grover: Search in O(
√
n) Shor: Factorize in poly(n)

≈ Solve DLP

11 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)

I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!
I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes

I Fix: double the lengths!

I Factoring & solving DLP in poly(n)

I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!
I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)

I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!
I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)
I Given n = p · q, find p and q
I Given ga mod p, find a

I poly(n) in asymptotics? Actually fast!
I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)
I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics?

Actually fast!
I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)
I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!

I Fix: ..?

13 / 30

What can it do?

I Searching in O(
√
n)

I Brute force AES keys
I Pre-image / collision search for hashes
I Fix: double the lengths!

I Factoring & solving DLP in poly(n)
I Given n = p · q, find p and q
I Given ga mod p, find a
I poly(n) in asymptotics? Actually fast!
I Fix: ..?

13 / 30

When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

When though?

“In the past, people have said, maybe it’s 50 years away, it’s a
dream, maybe it’ll happen sometime. I used to think it was 50.
Now I’m thinking like it’s 15 or a little more. It’s within reach.
It’s within our lifetime. It’s going to happen.”

— Mark Ketchen (IBM), Feb. 2012

14 / 30

Attacker model
I Eve?

xkcd.com/177

I Or a Nation State Adversary?

See also: ‘The Moral Character of Cryptographic Work’ by Phillip Rogaway
15 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s

I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m

I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)

I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2

I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .

I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

17 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions

I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’

I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken

I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I 69 ‘complete and proper’
I ≈ 58 still unbroken
I 8 with Radboud involved

I PQC Standardization conference: April 11-13, 2018
I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

18 / 30

Hash-based signatures

19 / 30

In a nutshell..

I Relies only on secure hash function
I Pre-image resistance: H(x) ; x
I No other assumptions
I The conservative choice

I Signatures are somewhat large (≈ 8KiB)
I Signing is either slow or ‘complicated’

I Serious candidates for standardization
I draft-irtf-cfrg-xmss-hash-based-signatures
I SPHINCS+ NIST submission
I (Full disclosure: I’m involved in XMSS and SPHINCS+)

/ RFC 8391

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

I Relies only on secure hash function
I Pre-image resistance: H(x) ; x
I No other assumptions
I The conservative choice

I Signatures are somewhat large (≈ 8KiB)
I Signing is either slow or ‘complicated’

I Serious candidates for standardization
I draft-irtf-cfrg-xmss-hash-based-signatures
I SPHINCS+ NIST submission
I (Full disclosure: I’m involved in XMSS and SPHINCS+)

/ RFC 8391

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

I Relies only on secure hash function
I Pre-image resistance: H(x) ; x
I No other assumptions
I The conservative choice

I Signatures are somewhat large (≈ 8KiB)
I Signing is either slow or ‘complicated’

I Serious candidates for standardization
I draft-irtf-cfrg-xmss-hash-based-signatures
I SPHINCS+ NIST submission
I (Full disclosure: I’m involved in XMSS and SPHINCS+)

/ RFC 8391

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

In a nutshell..

I Relies only on secure hash function
I Pre-image resistance: H(x) ; x
I No other assumptions
I The conservative choice

I Signatures are somewhat large (≈ 8KiB)
I Signing is either slow or ‘complicated’

I Serious candidates for standardization
I draft-irtf-cfrg-xmss-hash-based-signatures
I SPHINCS+ NIST submission
I (Full disclosure: I’m involved in XMSS and SPHINCS+)

/ RFC 8391

20 / 30

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://sphincs.org

Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)

I Publish sYESh() and sNOh()

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!

21 / 30

Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)
I Publish sYESh() and sNOh()

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!

21 / 30

Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)
I Publish sYESh() and sNOh()

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!

21 / 30

Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)
I Publish sYESh() and sNOh()

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!

21 / 30

Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)
I Publish sYESh() and sNOh()

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!

21 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures

I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!

22 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures
I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!

22 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures
I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!

22 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures
I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!

22 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures
I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key

I Can still only do this once!

22 / 30

Lamport signatures

I ‘Classic example’ of hash-based signatures
I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h()
s0,0h()

s1,1h()
s1,0h()

s2,1h()
s2,0h()

. . .

. . .

sN−3,1h()
sN−3,0h()

sN−2,1h()
sN−2,0h()

sN−1,1h()
sN−1,0h()

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!

22 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size

I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4

public key:

private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size
I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4

public key:

private key:

I Can still only do this once!

Note: ‘checksum chains’ to prevent forgery omitted for simplicity
23 / 30

Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)
I New public key: root node

24 / 30

Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i

I Parent = h(LeftChild ‖ RightChild)
I New public key: root node

24 / 30

Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)

I New public key: root node

24 / 30

Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)

I New public key: root node

24 / 30

Merkle trees
I One public key, multiple signatures?

I OTS, so multiple signatures → multiple private keys
I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)

I New public key: root node

24 / 30

Merkle trees
I One public key, multiple signatures?

I OTS, so multiple signatures → multiple private keys
I Merkle: build ‘authentication tree’ on top

pk

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)
I New public key: root node

24 / 30

Merkle trees
I Signature must now include:

I OTS signature

I OTS public key
I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)

25 / 30

Merkle trees
I Signature must now include:

I OTS signature
I OTS public key

I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)

25 / 30

Merkle trees
I Signature must now include:

I OTS signature
I OTS public key
I Index in the Merkle tree, e.g. 5

I Nodes along the authentication path
pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)

25 / 30

Merkle trees
I Signature must now include:

I OTS signature
I OTS public key
I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)

25 / 30

Merkle trees
I Signature must now include:

I OTS signature
I OTS public key
I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)
25 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)

I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast

I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value

I Private key is
I Signatures are small:

I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values a seed

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values a seed

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values a seed

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once

I We must store and update the index
I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values a seed

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index

I We must keep a state!

26 / 30

Analysis

I Say we do 232 signatures (≈ 4 · 109)
I Key generation is slow: compute tree of 233 − 1 nodes

I Signing is fast
I OTS signature on (hash of) message
I Small update to authentication path

I Keys are small
I Public key is one hash value
I Private key is billions of random values a seed

I Signatures are small:
I OTS signature (2KiB) + authentication path (1KiB)

I Can only use each leaf node once
I We must store and update the index
I We must keep a state!

26 / 30

Special note
to law-enforcem

ent agents:

“The word ‘state’ is a technical ter
m in

cryptography
. [..] We are not talking

about eliminating other types
of states.

We love most states, e
specially yours!

Also, ‘hash’
is another te

chnical term
and

has nothing
to do with cannabis.”

— https://sphincs.cr.yp.to

https://sphincs.cr.yp.to

Special note
to law-enforcem

ent agents:

“The word ‘state’ is a technical ter
m in

cryptography
. [..] We are not talking

about eliminating other types
of states.

We love most states, e
specially yours!

Also, ‘hash’
is another te

chnical term
and

has nothing
to do with cannabis.”

— https://sphincs.cr.yp.to

https://sphincs.cr.yp.to

SPHINCS

I Seriously big tree (≈ 264 leafs)
⇒ Allows random leaf selection

⇒ Stateless!

I Cannot generate entire tree!
I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Signatures larger and slower
I 8KiB – 40KiB, ≈ 100ms

pk

m

Note: omitting bottom layer of ‘Few-Time Signatures’ for simplicity
28 / 30

SPHINCS

I Seriously big tree (≈ 264 leafs)
⇒ Allows random leaf selection
⇒ Stateless!

I Cannot generate entire tree!
I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Signatures larger and slower
I 8KiB – 40KiB, ≈ 100ms

pk

m

Note: omitting bottom layer of ‘Few-Time Signatures’ for simplicity
28 / 30

SPHINCS

I Seriously big tree (≈ 264 leafs)
⇒ Allows random leaf selection
⇒ Stateless!

I Cannot generate entire tree!
I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Signatures larger and slower
I 8KiB – 40KiB, ≈ 100ms

pk

m

Note: omitting bottom layer of ‘Few-Time Signatures’ for simplicity
28 / 30

SPHINCS

I Seriously big tree (≈ 264 leafs)
⇒ Allows random leaf selection
⇒ Stateless!

I Cannot generate entire tree!
I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Signatures larger and slower
I 8KiB – 40KiB, ≈ 100ms

pk

m

Note: omitting bottom layer of ‘Few-Time Signatures’ for simplicity
28 / 30

Forest of Random Subsets
I ‘Few-time’ signature scheme to sign m ⇒ shorter hypertree

I Ex.: d = 6, log(t) = 3, sign 100 010 011 001 110 111

r0 r1 r2

r3 r4 r5

I Public key: h(r0, r1, . . . , r5)
I Signature: 6x sk (), 6x authentication path (, ,)

29 / 30

Forest of Random Subsets
I ‘Few-time’ signature scheme to sign m ⇒ shorter hypertree
I Ex.: d = 6, log(t) = 3, sign 100 010 011 001 110 111

r0 r1 r2

r3 r4 r5

I Public key: h(r0, r1, . . . , r5)
I Signature: 6x sk (), 6x authentication path (, ,)

29 / 30

Forest of Random Subsets
I ‘Few-time’ signature scheme to sign m ⇒ shorter hypertree
I Ex.: d = 6, log(t) = 3, sign 100 010 011 001 110 111

r0 r1 r2

r3 r4 r5

I Public key: h(r0, r1, . . . , r5)
I Signature: 6x sk (), 6x authentication path (, ,)

29 / 30

More of this?

I Year 1: Security X

I Year 2: Introduction to Cryptography (elective)
I : Cryptology
I : Cryptographic Engineering (elective)

I (Maths BSc: Rings & Fields)

I Implement your own crypto!
I . . . but maaaybe don’t use it in production

I Ask questions!

30 / 30

More of this?

I Year 1: Security X

I Year 2: Introduction to Cryptography (elective)
I : Cryptology
I : Cryptographic Engineering (elective)

I (Maths BSc: Rings & Fields)

I Implement your own crypto!

I . . . but maaaybe don’t use it in production

I Ask questions!

30 / 30

More of this?

I Year 1: Security X

I Year 2: Introduction to Cryptography (elective)
I : Cryptology
I : Cryptographic Engineering (elective)

I (Maths BSc: Rings & Fields)

I Implement your own crypto!
I . . . but maaaybe don’t use it in production

I Ask questions!

30 / 30

More of this?

I Year 1: Security X

I Year 2: Introduction to Cryptography (elective)
I : Cryptology
I : Cryptographic Engineering (elective)

I (Maths BSc: Rings & Fields)

I Implement your own crypto!
I . . . but maaaybe don’t use it in production

I Ask questions!

30 / 30

References I

Daniel J. Bernstein, Diana Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Peter Schwabe and Zooko
Wilcox O’Hearn.
SPHINCS: Stateless, practical, hash-based, incredibly nice cryptographic
signatures.
In Marc Fischlin and Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 368-397. Springer,
2015.
https://eprint.iacr.org/2014/795.pdf

John Rompel.
One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the twenty-second annual ACM symposium on theory of
computing, pages 387–394. ACM, 1990.
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/
Rompel.pdf

31 / 30

https://eprint.iacr.org/2014/795.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf

References II
Ralph Merkle.
A certified digital signature.
In Gilles Brassard, editor, Advances in Cryptology – Crypto ‘89, volume
435 of LNCS, pages 218-238. Springer-Verlag, 1990.
http://www.merkle.com/papers/Certified1979.pdf

Oded Goldreich.
Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.
In Andrew M. Odlyzko, editor, Advances in Cryptology – Crypto ‘86,
volume 263 of LNCS, pages 104-110. Springer-Verlag, 1987.
http://www.wisdom.weizmann.ac.il/~oded/PSX/gmr.pdf

Andreas Hülsing.
W-OTS+ – shorter signatures for hash-based signature schemes.
In Amr Youssef, Abderrahmane Nitaj and Aboul-Ella Hassanien, editors,
Progress in Cryptology – AFRICACRYPT 2013, volume 7918 of LNCS,
pages 173-188. Springer, 2013.
https://eprint.iacr.org/2017/965.pdf

32 / 30

http://www.merkle.com/papers/Certified1979.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/gmr.pdf
https://eprint.iacr.org/2017/965.pdf

Treehash

I Merkle trees are large!

I Treehash: only remember relevant nodes
I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

Treehash

I Merkle trees are large!
I Treehash: only remember relevant nodes

I Maintain a stack: max. log(2h) nodes

33 / 30

