MQDSS

Ming-Shing Chen ${ }^{1}$, Andreas Hülsing ${ }^{2}$, Joost Rijneveld ${ }^{3}$, Simona Samardjiska ${ }^{3,4}$, and Peter Schwabe ${ }^{3}$

${ }^{1}$ National Taiwan University / Academia Sinica, Taipei, Taiwan
${ }^{2}$ Technische Universiteit Eindhoven, Eindhoven, The Netherlands
${ }^{3}$ Radboud University, Nijmegen, The Netherlands
4 "Ss. Cyril and Methodius" University, Skopje, R. Macedonia

2018-04-12
NIST PQC Standardization Conference

In a nutshell..

- $\mathcal{M Q}$-based 5 -pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak'

In a nutshell..

- $\mathcal{M Q}$-based 5 -pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak'
- MQDSS-31-48: level $1,32.1 \mathrm{KiB}$ sigs.
- MQDSS-31-64: level 3, 66.2 KiB sigs.
- 62 resp. 88 byte public keys

In a nutshell..

- MQ-based 5 -pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak'
- MQDSS-31-48: level $1,32.1 \mathrm{KiB}$ sigs.
- MQDSS-31-64: level 3, 66.2 KiB sigs.
- 62 resp. 88 byte public keys
- Not blazingly fast, not prohibitively slow: $0.3-0.7 \mathrm{~ms}$ keygen, $2-4 \mathrm{~ms}$ sign, $1-3 \mathrm{~ms}$ verify
(3.5GHz Haswell, AVX2)

In a nutshell..

- $\mathcal{M Q}$-based 5 -pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak'
- MQDSS-31-48: level 1, 32.1 KiB sigs.
- MQDSS-31-64: level 3, 66.2 KiB sigs.
- 62 resp. 88 byte public keys
- Not blazingly fast, not prohibitively slow: $0.3-0.7 \mathrm{~ms}$ keygen, $2-4 \mathrm{~ms}$ sign, $1-3 \mathrm{~ms}$ verify
(3.5GHz Haswell, AVX2)
- Only small tweaks since ASIACRYPT 2016 [CHR $\left.{ }^{+} 16\right]$

Canonical Identification Schemes

\mathcal{P}, sk		\mathcal{V}, pk
com $\leftarrow_{R} \mathcal{P}_{0}$ (sk)	com	ch $\leftarrow_{R} \mathrm{ChS}\left(1^{k}\right)$
resp $\leftarrow \mathcal{P}_{1}$ (sk, com, ch)	ch	
	resp	$b \leftarrow \mathrm{Vf}(\mathrm{pk}, \mathrm{com}, \mathrm{ch}, \mathrm{resp})$

Informally:

1. Prover commits to some (randomized) value derived from sk
2. Verifier picks a challenge 'ch'
3. Prover computes response 'resp'
4. Verifier checks if response matches challenge

Fiat-Shamir transform

```
P},\mathrm{ sk,m
com}\leftarrowR\mp@subsup{R}{0}{}\mp@subsup{\mathcal{P}}{0}{(sk)
ch}\leftarrow\mathcal{H}(\textrm{com},m
resp}\leftarrow\mp@subsup{\mathcal{P}}{1}{}(\mathrm{ sk, com, ch) m, com, resp
    ch}\leftarrow\mathcal{H}(\textrm{com},m
    b\leftarrowVf(pk, com, ch, resp)
```

 \(\mathcal{V}, \mathrm{pk}\)
 - Unpredictably derive ch from m and com
- Repeat to compensate for adversary 'guessing right'

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

$$
\begin{aligned}
& \mathcal{P}:(\mathbf{F}, \mathbf{v}, \mathbf{s}) \quad \mathcal{V}:(\mathbf{F}, \mathbf{v}) \\
& \mathbf{r}_{0}, \mathbf{t}_{0} \leftarrow R \mathbb{F}_{q}^{n}, \mathbf{e}_{0} \leftarrow R \mathbb{F}_{q}^{m} \\
& \mathbf{r}_{1} \leftarrow \mathbf{s}-\mathbf{r}_{0} \\
& c_{0} \leftarrow \operatorname{Com}\left(\mathbf{r}_{0}, \mathbf{t}_{0}, \mathbf{e}_{0}\right) \\
& c_{1} \leftarrow \operatorname{Com}\left(\mathbf{r}_{1}, \mathbf{G}\left(\mathbf{t}_{0}, \mathbf{r}_{1}\right)+\mathbf{e}_{0}\right) \quad\left(c_{0}, c_{1}\right) \\
& \alpha \\
& \alpha \leftarrow_{R} \mathbb{F}_{\boldsymbol{q}} \\
& \mathbf{t}_{1} \leftarrow \alpha \mathbf{r}_{0}-\mathbf{t}_{0} \\
& \mathbf{e}_{1} \leftarrow \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{0} \\
& \underset{\mathrm{ch}_{2}}{\mathrm{resp}_{1}=\left(\mathbf{t}_{1}, \mathbf{e}_{1}\right)} \\
& \mathrm{ch}_{2} \leftarrow R\{0,1\} \\
& \text { If } \mathrm{ch}_{2}=0 \text {, } \text { resp }_{2} \leftarrow \mathbf{r}_{0} \\
& \text { Else } \text { resp }_{2} \leftarrow \mathbf{r}_{1} \\
& \text { resp }_{2} \\
& \text { If } \mathrm{ch}_{2}=0 \text {, Parse resp }{ }_{2}=\mathbf{r}_{0} \text {, check } \\
& c_{0} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{0}, \alpha \mathbf{r}_{0}-\mathbf{t}_{1}, \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{1}\right) \\
& \text { Else Parse resp }{ }_{2}=\mathbf{r}_{1} \text {, check } \\
& c_{1} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{1}, \alpha\left(\mathbf{v}-\mathbf{F}\left(\mathbf{r}_{1}\right)\right)-\mathbf{G}\left(\mathbf{t}_{1}, \mathbf{r}_{1}\right)-\mathbf{e}_{1}\right)
\end{aligned}
$$

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

(evaluating $\mathbf{G} \approx$ evaluating \mathbf{F})

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations
- Verifying
- Reconstruct D, F

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations
- Verifying
- Reconstruct D, F
- Reconstruct challenges

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations
- Verifying
- Reconstruct D, F
- Reconstruct challenges
- Reconstruct commitments
- r commitments
- $\sim 1 \frac{1}{2} r \mathcal{M Q}$ evaluations

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations
- Verifying
- Reconstruct D, F
- Reconstruct challenges
- Reconstruct commitments
- r commitments
- $\sim 1 \frac{1}{2} r \mathcal{M Q}$ evaluations
- Check combined commitments hash

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}$, sk $\in \mathbb{F}_{q}^{n} \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{s k}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{p k}=\mathbf{F}(\mathbf{s k}) \quad \Rightarrow\left(\mathcal{S}_{F}, \mathbf{p k}\right)$
- Signing
- Sign randomized digest D over M
- Perform r parallel rounds of transformed IDS
- Sample r vectors \mathbf{r}, \mathbf{t} and \mathbf{e}
- $2 r$ commitments, some multiplications in \mathbb{F}_{q}
- $2 r \mathcal{M Q}$ evaluations
- Verifying
- Reconstruct D, F
- Reconstruct challenges
- Reconstruct commitments
- r commitments
- $\sim 1 \frac{1}{2} r \mathcal{M Q}$ evaluations
- Check combined commitments hash
- Parameters: k, n, m, \mathbb{F}_{q}, Com, hash functions, PRGs

Hardness of $\mathcal{M Q}$

- Assume $m \geqslant n, m \in \mathcal{O}(n)$
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]
- Algebraic techniques with exhaustive search

Hardness of $\mathcal{M Q}$

- Assume $m \geqslant n, m \in \mathcal{O}(n)$
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]
- Algebraic techniques with exhaustive search
- Instantiate with Grover?

Hardness of $\mathcal{M Q}$

- Assume $m \geqslant n, m \in \mathcal{O}(n)$
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]
- Algebraic techniques with exhaustive search
- Instantiate with Grover?
- Analyze both classically and using Grover
- Classical gates, quantum gates, circuit depth

MQDSS-31-48, MQDSS-31-64

- $k=256($ level 1$)$
$k=384$ (level 3)

MQDSS-31-48, MQDSS-31-64

- $k=256($ level 1$)$

$$
k=384(\text { level } 3)
$$

- $n=m=48$

$$
n=m=64
$$

- $\mathbb{F}_{q}=\mathbb{F}_{31}$
- Fast arithmetic, parallelizes nicely
- Loose reduction \Rightarrow consider best known attacks

MQDSS-31-48, MQDSS-31-64

- $k=256($ level 1$)$

$$
k=384(\text { level } 3)
$$

- $n=m=48$

$$
n=m=64
$$

- $\mathbb{F}_{q}=\mathbb{F}_{31}$
- Fast arithmetic, parallelizes nicely
- Loose reduction \Rightarrow consider best known attacks
- $r=269$

$$
r=403
$$

- Follows from $\mathrm{k}: \quad 2^{-\left(r \log \frac{2 q}{q+1}\right)}<2^{-k}$

MQDSS-31-48, MQDSS-31-64

- $k=256($ level 1$)$

$$
k=384(\text { level } 3)
$$

- $n=m=48$

$$
n=m=64
$$

- $\mathbb{F}_{q}=\mathbb{F}_{31}$
- Fast arithmetic, parallelizes nicely
- Loose reduction \Rightarrow consider best known attacks
- $r=269$

$$
r=403
$$

- Follows from $\mathrm{k}: \quad 2^{-\left(r \log \frac{2 q}{q+1}\right)}<2^{-k}$
- SHAKE-256 for commitments / hashes
- Match output length to k

Implementation considerations

- Very natural internal parallelism

Implementation considerations

- Very natural internal parallelism
- Naively constant-time

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized
- Expanding \mathbf{F} is memory-intensive (134 KiB)
- Problematic on small devices

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized
- Expanding \mathbf{F} is memory-intensive (134 KiB)
- Problematic on small devices

In a nutshell..

- $\mathcal{M Q}$-based 5 -pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak'
- MQDSS-31-48: level 1, 32.1 KiB sigs.
- MQDSS-31-64: level 3, 66.2 KiB sigs.
- 62 resp. 88 byte public keys
- Not blazingly fast, not prohibitively slow: $0.3-0.7 \mathrm{~ms}$ keygen, $2-4 \mathrm{~ms}$ sign, $1-3 \mathrm{~ms}$ verify
(3.5GHz Haswell, AVX2)
- Only small tweaks since ASIACRYPT 2016 [CHR $\left.{ }^{+} 16\right]$

References I

易
Magali Bardet, Jean-Charles Faugère, and Bruno Salvy.
On the complexity of the F5 Gröbner basis algorithm.
Journal of Symbolic Computation, 70(Supplement C):49 - 70, 2015.
https://arxiv.org/pdf/1312.1655.pdf.
(i) Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer.
On the complexity of solving quadratic boolean systems.
Journal of Complexity, 29(1):53-75, 2013.
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf.
R Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe.
From 5-pass $\mathcal{M} \mathcal{Q}$-based identification to $\mathcal{M} \mathcal{Q}$-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology

- ASIACRYPT 2016, volume 10032 of LNCS, pages 135-165. Springer, 2016.
http://eprint.iacr.org/2016/708.

References II

Antoine Joux and Vanessa Vitse.
A crossbred algorithm for solving boolean polynomial systems.
Cryptology ePrint Archive, Report 2017/372, 2017.
http://eprint.iacr.org/2017/372.
Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari.
Public-key identification schemes based on multivariate quadratic polynomials.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS, pages 706-723. Springer, 2011.
https:
//www.iacr.org/archive/crypto2011/68410703/68410703.pdf.

