
SOFIA:MQ-based signatures in the QROM

Ming-Shing Chen1, Andreas Hülsing2, Joost Rijneveld3,
Simona Samardjiska3,4, and Peter Schwabe3

1 National Taiwan University / Academia Sinica, Taipei, Taiwan
2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

3 Radboud University, Nijmegen, The Netherlands
4 “Ss. Cyril and Methodius” University, Skopje, R. Macedonia

2018-03-28
PKC 2018, Rio de Janeiro

1 / 16

MQ-based signatures

I Important candidate for post-quantum signatures
I Several submissions to NIST

I DualModeMS [FPR17], GeMSS [CFMR+17],
Gui [PCY+15, DCP+17a], HiMQ-3 [SPK17], LUOV [BPSV17],
MQDSS [CHR+16, CHR+17], Rainbow [DS05, DCP+17b]

I Traditionally small signatures, larger keys
I (except DualModeMS, LUOV, MQDSS)

I Typically based onMQ but also related problems (e.g. IP)
I MQDSS: (lossy) ROM reduction toMQ

I SOFIA: continue in line of MQDSS
I Transform anMQ-based IDS

2 / 16

MQ-based signatures

I Important candidate for post-quantum signatures
I Several submissions to NIST

I DualModeMS [FPR17], GeMSS [CFMR+17],
Gui [PCY+15, DCP+17a], HiMQ-3 [SPK17], LUOV [BPSV17],
MQDSS [CHR+16, CHR+17], Rainbow [DS05, DCP+17b]

I Traditionally small signatures, larger keys
I (except DualModeMS, LUOV, MQDSS)

I Typically based onMQ but also related problems (e.g. IP)
I MQDSS: (lossy) ROM reduction toMQ

I SOFIA: continue in line of MQDSS
I Transform anMQ-based IDS

2 / 16

MQ-based signatures

I Important candidate for post-quantum signatures
I Several submissions to NIST

I DualModeMS [FPR17], GeMSS [CFMR+17],
Gui [PCY+15, DCP+17a], HiMQ-3 [SPK17], LUOV [BPSV17],
MQDSS [CHR+16, CHR+17], Rainbow [DS05, DCP+17b]

I Traditionally small signatures, larger keys
I (except DualModeMS, LUOV, MQDSS)

I Typically based onMQ but also related problems (e.g. IP)
I MQDSS: (lossy) ROM reduction toMQ

I SOFIA: continue in line of MQDSS
I Transform anMQ-based IDS

2 / 16

Why not Fiat-Shamir?

I Non-tight proof in the ROM
I No proof in the QROM

I Forking lemma ⇒ rewinding adversary

I .. at the time of writing
I Lots of ongoing work!
I [KLP17]: tight Fiat-Shamir in the ROM

I But similar issues in the QROM
I [KLS17]: Fiat-Shamir in QROM

I Requires changing the IDS and parameters

3 / 16

Why not Fiat-Shamir?

I Non-tight proof in the ROM
I No proof in the QROM

I Forking lemma ⇒ rewinding adversary

I .. at the time of writing
I Lots of ongoing work!

I [KLP17]: tight Fiat-Shamir in the ROM
I But similar issues in the QROM

I [KLS17]: Fiat-Shamir in QROM
I Requires changing the IDS and parameters

3 / 16

Why not Fiat-Shamir?

I Non-tight proof in the ROM
I No proof in the QROM

I Forking lemma ⇒ rewinding adversary

I .. at the time of writing
I Lots of ongoing work!
I [KLP17]: tight Fiat-Shamir in the ROM

I But similar issues in the QROM
I [KLS17]: Fiat-Shamir in QROM

I Requires changing the IDS and parameters

3 / 16

This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2

4 / 16

This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2

4 / 16

This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2

4 / 16

This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2

4 / 16

This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2

4 / 16

Canonical Identification Schemes

P V

com←R P0(sk) com

ch←R ChS(1k)ch

resp← P1(sk, com, ch) resp

b ← Vf(pk, com, ch, resp)

Informally:
1. Prover commits to some (randomized) value derived from sk
2. Verifier picks a challenge ‘ch’
3. Prover computes response ‘resp’
4. Verifier checks if response matches challenge

5 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit

2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges

3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses

4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges

5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges

6 / 16

Canonical Identification Schemes

P V

com←R P0(sk) com

ch←R ChS(1k)ch

resp← P1(sk, com, ch) resp

b ← Vf(pk, com, ch, resp)

7 / 16

5-pass q2 Identification Schemes

P V

com←R P0(sk) com

α←R Fqα

resp1 ← P1(sk, com, α) resp1

ch2 ←R {0, 1}ch2

resp2 ← P2(sk, com, α,
resp1, ch2) resp2

b ← Vf(pk, com, α, resp1,
ch2, resp2)

I Unruh’s transform: resp2 for both ch2 ∈ {0, 1}, per α

7 / 16

5-pass q2 Identification Schemes

P V

com←R P0(sk) com

α←R Fqα

resp1 ← P1(sk, com, α) resp1

ch2 ←R {0, 1}ch2

resp2 ← P2(sk, com, α,
resp1, ch2) resp2

b ← Vf(pk, com, α, resp1,
ch2, resp2)

I Unruh’s transform: resp2 for both ch2 ∈ {0, 1}, per α

7 / 16

MQ problem

The function familyMQ(n,m,Fq):

F(x) = (f1(x), . . . , fm(x)), where fs(x) =
∑

i ,j a(s)
i ,j xixj +

∑
i b(s)

i xi

for a(s)
i ,j , b(s)

i ∈ Fq, s ∈ {1, . . . ,m}

Problem: For given y ∈ Fm
q , find x ∈ Fn

q such that F(x) = y.

i.e., solve the system of equations:

y1 =a(1)
1,1x1x1 + a(1)

1,2x1x2 + . . .+ a(1)
n,nxnxn + b(1)

1 x1 + . . .+ b(1)
n xn

...

ym =a(m)
1,1 x1x1 + a(m)

1,2 x1x2 + . . .+ a(m)
n,n xnxn + b(m)

1 x1 + . . .+ b(m)
n xn

8 / 16

MQ problem

The function familyMQ(n,m,Fq):

F(x) = (f1(x), . . . , fm(x)), where fs(x) =
∑

i ,j a(s)
i ,j xixj +

∑
i b(s)

i xi

for a(s)
i ,j , b(s)

i ∈ Fq, s ∈ {1, . . . ,m}

Problem: For given y ∈ Fm
q , find x ∈ Fn

q such that F(x) = y.

i.e., solve the system of equations:

y1 =a(1)
1,1x1x1 + a(1)

1,2x1x2 + . . .+ a(1)
n,nxnxn + b(1)

1 x1 + . . .+ b(1)
n xn

...

ym =a(m)
1,1 x1x1 + a(m)

1,2 x1x2 + . . .+ a(m)
n,n xnxn + b(m)

1 x1 + . . .+ b(m)
n xn

8 / 16

MQ problem

The function familyMQ(n,m,Fq):

F(x) = (f1(x), . . . , fm(x)), where fs(x) =
∑

i ,j a(s)
i ,j xixj +

∑
i b(s)

i xi

for a(s)
i ,j , b(s)

i ∈ Fq, s ∈ {1, . . . ,m}

Problem: For given y ∈ Fm
q , find x ∈ Fn

q such that F(x) = y.

i.e., solve the system of equations:

y1 =a(1)
1,1x1x1 + a(1)

1,2x1x2 + . . .+ a(1)
n,nxnxn + b(1)

1 x1 + . . .+ b(1)
n xn

...

ym =a(m)
1,1 x1x1 + a(m)

1,2 x1x2 + . . .+ a(m)
n,n xnxn + b(m)

1 x1 + . . .+ b(m)
n xn

8 / 16

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

P : (F, v, s) V : (F, v)

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s− r0
c0 ← Com(r0, t0, e0)
c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)

α←R Fqα

t1 ← αr0 − t0
e1 ← αF(r0)− e0 resp1 = (t1, e1)

ch2 ←R {0, 1}ch2

If ch2 = 0, resp2 ← r0
Else resp2 ← r1 resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))− G(t1, r1)− e1)

(evaluating G ≈ evaluating F)

9 / 16

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

P : (F, v, s) V : (F, v)

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s− r0
c0 ← Com(r0, t0, e0)
c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)

α←R Fqα

t1 ← αr0 − t0
e1 ← αF(r0)− e0 resp1 = (t1, e1)

ch2 ←R {0, 1}ch2

If ch2 = 0, resp2 ← r0
Else resp2 ← r1 resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))− G(t1, r1)− e1)

(evaluating G ≈ evaluating F)

9 / 16

SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS

Signing:
I Run the transformed IDS r times in parallel

I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16

SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS
Signing:

I Run the transformed IDS r times in parallel
I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16

SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS
Signing:

I Run the transformed IDS r times in parallel
I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16

Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1)/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

11 / 16

Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1)/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

11 / 16

Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1)/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

11 / 16

Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1)/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

11 / 16

Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1)/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

11 / 16

Implementation

I EvaluatingMQ

I 438 rounds, 2x per round
I Pairwise multiply 128x ∈ F4
I Multiply by coefficients from F, ∈ F4
I Accumulate

I XOFs

I Blinding commitments
I Expanding F: 262KiB

I External parallelism and cSHAKE

12 / 16

Implementation

I EvaluatingMQ
I 438 rounds, 2x per round
I Pairwise multiply 128x ∈ F4
I Multiply by coefficients from F, ∈ F4
I Accumulate

I XOFs
I Blinding commitments
I Expanding F: 262KiB

I External parallelism and cSHAKE

12 / 16

EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be easy

x0 x1 x2 . . . xn
x0
x1
x2
...

xn

13 / 16

EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be fast

x0 x1 x2 . . . xn
x0
x1
x2
...

xn

13 / 16

EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be fast

x0 x1 x2 . . . xn
x0
x1
x2
...

xn

13 / 16

EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be fast

x0 x1 x2 . . . xn

?
?
?

13 / 16

EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be fast

x0 x1 x2 . . . xn

?
?
?

13 / 16

EvaluatingMQ

I 128x F4
I Bitsliced: two lanes in AVX2 register
I Each lane: 16 bytes, vpshufb
I Quadratic terms: ‘scheduling scripts’ similar to MQDSS

I Pre-set two register: [xhigh ⊕ xlow |xlow] and [xhigh|xhigh]
⇒ very fast multiplication

chigh = (ahigh ∧ (bhigh ⊕ blow))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow)⊕ (ahigh ∧ bhigh)

I vpand, vpand, vpermq, vpxor

14 / 16

EvaluatingMQ

I 128x F4
I Bitsliced: two lanes in AVX2 register
I Each lane: 16 bytes, vpshufb
I Quadratic terms: ‘scheduling scripts’ similar to MQDSS

I Pre-set two register: [xhigh ⊕ xlow |xlow] and [xhigh|xhigh]

⇒ very fast multiplication

chigh = (ahigh ∧ (bhigh ⊕ blow))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow)⊕ (ahigh ∧ bhigh)

I vpand, vpand, vpermq, vpxor

14 / 16

EvaluatingMQ

I 128x F4
I Bitsliced: two lanes in AVX2 register
I Each lane: 16 bytes, vpshufb
I Quadratic terms: ‘scheduling scripts’ similar to MQDSS

I Pre-set two register: [xhigh ⊕ xlow |xlow] and [xhigh|xhigh]
⇒ very fast multiplication

chigh = (ahigh ∧ (bhigh ⊕ blow))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow)⊕ (ahigh ∧ bhigh)

I vpand, vpand, vpermq, vpxor

14 / 16

SOFIA-4-128 vs MQDSS-31-64

a.k.a. the price of QROM

I Signature size: 123KiB (MQDSS: 40KiB)
I 64 bytes pk, 32 bytes sk (MQDSS: 72B, 64B)

I Key generation 1.16M cycles (MQDSS: 1.18M)
I Signing 21.31M cycles (MQDSS: 8.51M)

I v75%MQ
I v25% SHAKE

I Verification 15.49M cycles (MQDSS: 5.75M)

(Intel Haswell, Core-i7-4770K, AVX2)

15 / 16

SOFIA-4-128 vs MQDSS-31-64

a.k.a. the price of QROM

I Signature size: 123KiB (MQDSS: 40KiB)
I 64 bytes pk, 32 bytes sk (MQDSS: 72B, 64B)

I Key generation 1.16M cycles (MQDSS: 1.18M)
I Signing 21.31M cycles (MQDSS: 8.51M)

I v75%MQ
I v25% SHAKE

I Verification 15.49M cycles (MQDSS: 5.75M)

(Intel Haswell, Core-i7-4770K, AVX2)

15 / 16

Conclusions and comparisons

I ConservativeMQ in the QROM
I Small keys, large signatures, not prohibitively slow

I Significantly bigger than SPHINCS-256
I And thus SPHINCS+

I Smaller & faster than Picnic-10-38
I v as big as Picnic-L5-FS

I Much bigger/slower than lattices, e.g. Dilithium, qTESLA
I .. but much faster (& smaller keys) than TESLA-1,-2

I C and AVX2 code available (public domain):
https://joostrijneveld.nl/papers/sofia

16 / 16

https://joostrijneveld.nl/papers/sofia

Conclusions and comparisons

I ConservativeMQ in the QROM
I Small keys, large signatures, not prohibitively slow

I Significantly bigger than SPHINCS-256
I And thus SPHINCS+

I Smaller & faster than Picnic-10-38
I v as big as Picnic-L5-FS

I Much bigger/slower than lattices, e.g. Dilithium, qTESLA
I .. but much faster (& smaller keys) than TESLA-1,-2

I C and AVX2 code available (public domain):
https://joostrijneveld.nl/papers/sofia

16 / 16

https://joostrijneveld.nl/papers/sofia

Conclusions and comparisons

I ConservativeMQ in the QROM
I Small keys, large signatures, not prohibitively slow

I Significantly bigger than SPHINCS-256
I And thus SPHINCS+

I Smaller & faster than Picnic-10-38
I v as big as Picnic-L5-FS

I Much bigger/slower than lattices, e.g. Dilithium, qTESLA
I .. but much faster (& smaller keys) than TESLA-1,-2

I C and AVX2 code available (public domain):
https://joostrijneveld.nl/papers/sofia

16 / 16

https://joostrijneveld.nl/papers/sofia

Conclusions and comparisons

I ConservativeMQ in the QROM
I Small keys, large signatures, not prohibitively slow

I Significantly bigger than SPHINCS-256
I And thus SPHINCS+

I Smaller & faster than Picnic-10-38
I v as big as Picnic-L5-FS

I Much bigger/slower than lattices, e.g. Dilithium, qTESLA
I .. but much faster (& smaller keys) than TESLA-1,-2

I C and AVX2 code available (public domain):
https://joostrijneveld.nl/papers/sofia

16 / 16

https://joostrijneveld.nl/papers/sofia

References I

Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren.
LUOV.
Submission to NIST’s post-quantum crypto standardization project, 2017.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key
primitives.
Cryptology ePrint Archive, Report 2017/279, 2017.
http://eprint.iacr.org/2017/279/.

A. Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin,
Ludovic Perret, and J. Ryckeghem.
GeMSS.
Submission to NIST’s post-quantum crypto standardization project, 2017.

17 / 16

http://eprint.iacr.org/2017/279/

References II

Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe.
From 5-passMQ-based identification toMQ-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, volume 10032 of LNCS, pages 135–165. Springer,
2016.
http://eprint.iacr.org/2016/708.

Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe.
MQDSS.
Submission to NIST’s post-quantum crypto standardization project, 2017.

Jintai Ding, Ming-Shen Chen, Albrecht Petzoldt, Dieter Schmidt, and
Bo-Yin Yang.
Gui.
Submission to NIST’s post-quantum crypto standardization project, 2017.

18 / 16

http://eprint.iacr.org/2016/708

References III

Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and
Bo-Yin Yang.
Rainbow.
Submission to NIST’s post-quantum crypto standardization project, 2017.

Jintai Ding and Dieter Schmidt.
Rainbow, a new multivariable polynomial signature scheme.
In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, Applied
Cryptography and Network Security, volume 3531 of LNCS, pages
164–175. Springer, 2005.
https://www.semanticscholar.org/paper/
Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/
7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf.

19 / 16

https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf
https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf
https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf

References IV
Marc Fischlin.
Communication-efficient non-interactive proofs of knowledge with online
extractors.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of LNCS, pages 152–168. Springer, 2005.
https:
//www.iacr.org/archive/crypto2005/36210148/36210148.pdf.

Jean-Charles Faugère, Ludovic Perret, and J. Ryckeghem.
DualModeMS.
Submission to NIST’s post-quantum crypto standardization project, 2017.

Eike Kiltz, Julian Loss, and Jiaxin Pan.
Tightly-secure signatures from five-move identification protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part III, pages 68–94, Cham, 2017.
Springer International Publishing.

20 / 16

https://www.iacr.org/archive/crypto2005/36210148/36210148.pdf
https://www.iacr.org/archive/crypto2005/36210148/36210148.pdf

References V

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.
A concrete treatment of fiat-shamir signatures in the quantum
random-oracle model.
Cryptology ePrint Archive, Report 2017/916, 2017.
https://eprint.iacr.org/2017/916.

Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and
Jintai Ding.
Design principles for HFEv- based multivariate signature schemes.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology –
ASIACRYPT 2015, volume 9452 of LNCS, pages 311–334. Springer, 2015.

http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf.

Kyung-Ah Shim, Cheol-Min Park, and Aeyoung Kim.
HiMQ-3.
Submission to NIST’s post-quantum crypto standardization project, 2017.

21 / 16

https://eprint.iacr.org/2017/916
http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf

References VI

Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari.
Public-key identification schemes based on multivariate quadratic
polynomials.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of LNCS, pages 706–723. Springer, 2011.
https:
//www.iacr.org/archive/crypto2011/68410703/68410703.pdf.

Dominique Unruh.
Non-interactive zero-knowledge proofs in the quantum random oracle
model.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 755–784. Springer,
2015.
http://eprint.iacr.org/2014/587.

22 / 16

https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
http://eprint.iacr.org/2014/587

Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)

23 / 16

Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)

23 / 16

Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)

23 / 16

Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)

23 / 16

Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)

23 / 16

Optimizations

Many similarities to e.g. Picnic [CDG+17]
I Exclude redundant blinded responses
I Fix challenge space to |ChS1| = t
I Unlink α and ch2
I Omit commitments [SSH11]
I Self-randomizing commitments

What doesn’t help:
I Opening for multiple α
I Committing to multiple t0

24 / 16

EvaluatingMQ, cont.

I ‘Vertically:’ broadcast monomial, multiply with F
I a(1)

1,1x1x1, a
(2)
1,1x1x1, a

(3)
1,1x1x1, a

(4)
1,1x1x1, . . .

I ‘Horizontally:’ iterate over output elements, popcnt
I a(1)

1,1x1x1, a
(1)
1,2x1x2, a(1)

1,3x1x3, . . . a(1)
2,1x2x1, a

(1)
2,2x2x2, . . .

I Horizontal: more loads, but internal parallelism

I Both cases: delay reductions in F4
I [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧ fhigh|x̂high ∧ flow]

I Both cases: external parallelism over constant F

I Horizontal in batches of 3, avg. 17 558 cycles perMQ

25 / 16

EvaluatingMQ, cont.

I ‘Vertically:’ broadcast monomial, multiply with F
I a(1)

1,1x1x1, a
(2)
1,1x1x1, a

(3)
1,1x1x1, a

(4)
1,1x1x1, . . .

I ‘Horizontally:’ iterate over output elements, popcnt
I a(1)

1,1x1x1, a
(1)
1,2x1x2, a(1)

1,3x1x3, . . . a(1)
2,1x2x1, a

(1)
2,2x2x2, . . .

I Horizontal: more loads, but internal parallelism

I Both cases: delay reductions in F4
I [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧ fhigh|x̂high ∧ flow]

I Both cases: external parallelism over constant F

I Horizontal in batches of 3, avg. 17 558 cycles perMQ

25 / 16

EvaluatingMQ, cont.

I ‘Vertically:’ broadcast monomial, multiply with F
I a(1)

1,1x1x1, a
(2)
1,1x1x1, a

(3)
1,1x1x1, a

(4)
1,1x1x1, . . .

I ‘Horizontally:’ iterate over output elements, popcnt
I a(1)

1,1x1x1, a
(1)
1,2x1x2, a(1)

1,3x1x3, . . . a(1)
2,1x2x1, a

(1)
2,2x2x2, . . .

I Horizontal: more loads, but internal parallelism

I Both cases: delay reductions in F4
I [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧ fhigh|x̂high ∧ flow]

I Both cases: external parallelism over constant F

I Horizontal in batches of 3, avg. 17 558 cycles perMQ

25 / 16

EvaluatingMQ, cont.

I ‘Vertically:’ broadcast monomial, multiply with F
I a(1)

1,1x1x1, a
(2)
1,1x1x1, a

(3)
1,1x1x1, a

(4)
1,1x1x1, . . .

I ‘Horizontally:’ iterate over output elements, popcnt
I a(1)

1,1x1x1, a
(1)
1,2x1x2, a(1)

1,3x1x3, . . . a(1)
2,1x2x1, a

(1)
2,2x2x2, . . .

I Horizontal: more loads, but internal parallelism

I Both cases: delay reductions in F4
I [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧ fhigh|x̂high ∧ flow]

I Both cases: external parallelism over constant F

I Horizontal in batches of 3, avg. 17 558 cycles perMQ

25 / 16

