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MQ-based signatures

I Important candidate for post-quantum signatures
I Several submissions to NIST

I DualModeMS [FPR17], GeMSS [CFMR+17],
Gui [PCY+15, DCP+17a], HiMQ-3 [SPK17], LUOV [BPSV17],
MQDSS [CHR+16, CHR+17], Rainbow [DS05, DCP+17b]

I Traditionally small signatures, larger keys
I (except DualModeMS, LUOV, MQDSS)

I Typically based onMQ but also related problems (e.g. IP)
I MQDSS: (lossy) ROM reduction toMQ

I SOFIA: continue in line of MQDSS
I Transform anMQ-based IDS
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Why not Fiat-Shamir?

I Non-tight proof in the ROM
I No proof in the QROM

I Forking lemma ⇒ rewinding adversary

I .. at the time of writing
I Lots of ongoing work!
I [KLP17]: tight Fiat-Shamir in the ROM

I But similar issues in the QROM
I [KLS17]: Fiat-Shamir in QROM

I Requires changing the IDS and parameters
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This work

1. Extend Unruh’s transform [Unr15] to 5-pass IDS
I Specifically q2-IDS [CHR+16]

2. Prove EU-CMA security in QROM
I Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

4. Parameterize to achieve 128-bit post-quantum
I SOFIA-4-128

5. Implement and compare using Intel AVX2
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Canonical Identification Schemes

P V

com←R P0(sk) com

ch←R ChS(1k)ch

resp← P1(sk, com, ch) resp

b ← Vf(pk, com, ch, resp)

Informally:
1. Prover commits to some (randomized) value derived from sk
2. Verifier picks a challenge ‘ch’
3. Prover computes response ‘resp’
4. Verifier checks if response matches challenge
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Unruh’s transform [Unr15]

I Based on Fischlin’s transform [Fis05]

I Informally:
1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash ⇒ “blind” responses
4. Sample challenges
5. Reveal one response per commit

I In the proof, “blinding” is an invertible permutation
I Adversary must have known several transcripts
I Unblinding makes them available to extractor

I Parallelize r rounds to decrease error
I Extra parameter: prepare for t challenges
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5-pass q2 Identification Schemes

P V

com←R P0(sk) com

α←R Fqα

resp1 ← P1(sk, com, α) resp1

ch2 ←R {0, 1}ch2

resp2 ← P2(sk, com, α,
resp1, ch2) resp2

b ← Vf(pk, com, α, resp1,
ch2, resp2)

I Unruh’s transform: resp2 for both ch2 ∈ {0, 1}, per α
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MQ problem

The function familyMQ(n,m,Fq):

F(x) = (f1(x), . . . , fm(x)), where fs(x) =
∑

i ,j a(s)
i ,j xixj +

∑
i b(s)

i xi

for a(s)
i ,j , b(s)

i ∈ Fq, s ∈ {1, . . . ,m}

Problem: For given y ∈ Fm
q , find x ∈ Fn

q such that F(x) = y.

i.e., solve the system of equations:

y1 =a(1)
1,1x1x1 + a(1)

1,2x1x2 + . . .+ a(1)
n,nxnxn + b(1)

1 x1 + . . .+ b(1)
n xn

...

ym =a(m)
1,1 x1x1 + a(m)

1,2 x1x2 + . . .+ a(m)
n,n xnxn + b(m)

1 x1 + . . .+ b(m)
n xn
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Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

P : (F, v, s) V : (F, v)

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s− r0
c0 ← Com(r0, t0, e0)
c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)

α←R Fqα

t1 ← αr0 − t0
e1 ← αF(r0)− e0 resp1 = (t1, e1)

ch2 ←R {0, 1}ch2

If ch2 = 0, resp2 ← r0
Else resp2 ← r1 resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))− G(t1, r1)− e1)

(evaluating G ≈ evaluating F)
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SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS

Signing:
I Run the transformed IDS r times in parallel

I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16



SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS
Signing:

I Run the transformed IDS r times in parallel
I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16



SOFIA

Key generation:
I Sample seeds, expand F, evaluate v = F(s)

I Identical to MQDSS
Signing:

I Run the transformed IDS r times in parallel
I Commit to randomness; r × G
I Respond to t challenges α ∈ Fq; r × t × F

I Hash (blinded) responses to set of indices
I Unblind indicated responses

Verification:
I Reconstruct indices, responses, commitments
I Verify revealed responses
I Verify that commitments match responses; r × F, v 1

2 r × G

10 / 16



Parameter choice

I 128 bits post-quantum security
I Focus on signature size

I Candidates: MQ(128,F4),MQ(96,F7),MQ(72,F16)
I . . . and even F5, F8

I Analyzed using Hybrid approach and BooleanSolve
I Instantiated with Grover search
I At least 2117 operations

I t = 3, r = 438 (since 2−(r log 2t
t+1 )/2 < 2−128)

I XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)
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Implementation

I EvaluatingMQ

I 438 rounds, 2x per round
I Pairwise multiply 128x ∈ F4
I Multiply by coefficients from F, ∈ F4
I Accumulate

I XOFs

I Blinding commitments
I Expanding F: 262KiB

I External parallelism and cSHAKE
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EvaluatingMQ

I From F(x) to x is hard
I From x to F(x) should be easy

x0 x1 x2 . . . xn
x0
x1
x2
...

xn
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EvaluatingMQ

I 128x F4
I Bitsliced: two lanes in AVX2 register
I Each lane: 16 bytes, vpshufb
I Quadratic terms: ‘scheduling scripts’ similar to MQDSS

I Pre-set two register: [xhigh ⊕ xlow |xlow ] and [xhigh|xhigh]
⇒ very fast multiplication

chigh = (ahigh ∧ (bhigh ⊕ blow ))⊕ (alow ∧ bhigh)
clow = (alow ∧ blow )⊕ (ahigh ∧ bhigh)

I vpand, vpand, vpermq, vpxor
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SOFIA-4-128 vs MQDSS-31-64

a.k.a. the price of QROM

I Signature size: 123KiB (MQDSS: 40KiB)
I 64 bytes pk, 32 bytes sk (MQDSS: 72B, 64B)

I Key generation 1.16M cycles (MQDSS: 1.18M)
I Signing 21.31M cycles (MQDSS: 8.51M)

I v75%MQ
I v25% SHAKE

I Verification 15.49M cycles (MQDSS: 5.75M)

(Intel Haswell, Core-i7-4770K, AVX2)
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Conclusions and comparisons

I ConservativeMQ in the QROM
I Small keys, large signatures, not prohibitively slow

I Significantly bigger than SPHINCS-256
I And thus SPHINCS+

I Smaller & faster than Picnic-10-38
I v as big as Picnic-L5-FS

I Much bigger/slower than lattices, e.g. Dilithium, qTESLA
I .. but much faster (& smaller keys) than TESLA-1,-2

I C and AVX2 code available (public domain):
https://joostrijneveld.nl/papers/sofia
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Sakumoto-Shirai-Hiwatari IDS [SSH11]

I Key technique: cut-and-choose forMQ
I Analogously, consider DLP: s = r0 + r1 ⇒ g s = g r0 · g r1

I Bilinear map G(x, y) = F(x + y)− F(x)− F(y)
I Split s and F(s) into r0, r1 and F(r0),F(r1)

I Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)
I Split r0 and F(r0) further into t0, t1 resp. e0, e1

I For gs ∈ G: gs(x, y) =
∑

i,j a(s)
i,j (xiyj + xjyi)

I Recall: fs(x) =
∑

i,j a
(s)
i,j xixj +

∑
i b

(s)
i xi

I See [SSH11] for details
I Takeaway: evaluating G ≈ evaluating F

I Result: reveal either r0 or r1, and (t0, e0) or (t1, e1)
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Optimizations

Many similarities to e.g. Picnic [CDG+17]
I Exclude redundant blinded responses
I Fix challenge space to |ChS1| = t
I Unlink α and ch2
I Omit commitments [SSH11]
I Self-randomizing commitments

What doesn’t help:
I Opening for multiple α
I Committing to multiple t0
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EvaluatingMQ, cont.

I ‘Vertically:’ broadcast monomial, multiply with F
I a(1)

1,1x1x1, a
(2)
1,1x1x1, a

(3)
1,1x1x1, a

(4)
1,1x1x1, . . .

I ‘Horizontally:’ iterate over output elements, popcnt
I a(1)

1,1x1x1, a
(1)
1,2x1x2, a(1)

1,3x1x3, . . . a(1)
2,1x2x1, a

(1)
2,2x2x2, . . .

I Horizontal: more loads, but internal parallelism

I Both cases: delay reductions in F4
I [x̂high ∧ fhigh|x̂low ∧ flow ] and [x̂low ∧ fhigh|x̂high ∧ flow ]

I Both cases: external parallelism over constant F

I Horizontal in batches of 3, avg. 17 558 cycles perMQ
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