SOFIA: $\mathcal{M Q}$-based signatures in the QROM

Ming-Shing Chen ${ }^{1}$, Andreas Hülsing ${ }^{2}$, Joost Rijneveld ${ }^{3}$, Simona Samardjiska ${ }^{3,4}$, and Peter Schwabe ${ }^{3}$
${ }^{1}$ National Taiwan University / Academia Sinica, Taipei, Taiwan
${ }^{2}$ Technische Universiteit Eindhoven, Eindhoven, The Netherlands
${ }^{3}$ Radboud University, Nijmegen, The Netherlands
4 "Ss. Cyril and Methodius" University, Skopje, R. Macedonia
2018-02-01
Tenerife

$\mathcal{M Q}$-based signatures

- Important candidate for post-quantum signatures
- Several submissions to NIST
- DualModeMS [FPR17], GeMSS [CFMR+17], Gui [PCY ${ }^{+} 15, \mathrm{DCP}^{+}$17a], HiMQ-3 [SPK17], LUOV [BPSV17], MQDSS [CHR $\left.{ }^{+} 16, \mathrm{CHR}^{+} 17\right]$, Rainbow [DS05, $\mathrm{DCP}^{+} 17 \mathrm{~b}$]
- Traditionally small signatures, larger keys
- (except DualModeMS, LUOV, MQDSS)

$\mathcal{M Q}$-based signatures

- Important candidate for post-quantum signatures
- Several submissions to NIST
- DualModeMS [FPR17], GeMSS [CFMR+17], Gui [PCY ${ }^{+}$15, DCP ${ }^{+}$17a], HiMQ-3 [SPK17], LUOV [BPSV17], MQDSS [CHR $\left.{ }^{+} 16, \mathrm{CHR}^{+} 17\right]$, Rainbow [DS05, DCP^{+}17b]
- Traditionally small signatures, larger keys
- (except DualModeMS, LUOV, MQDSS)
- Typically based on $\mathcal{M Q}$ but also related problems (e.g. IP)
- MQDSS: (lossy) ROM reduction to $\mathcal{M Q}$

$\mathcal{M Q}$-based signatures

- Important candidate for post-quantum signatures
- Several submissions to NIST
- DualModeMS [FPR17], GeMSS [CFMR+17], Gui [PCY ${ }^{+} 15, \mathrm{DCP}^{+}$17a], HiMQ-3 [SPK17], LUOV [BPSV17], MQDSS [CHR $\left.{ }^{+} 16, \mathrm{CHR}^{+} 17\right]$, Rainbow [DS05, DCP^{+}17b]
- Traditionally small signatures, larger keys
- (except DualModeMS, LUOV, MQDSS)
- Typically based on $\mathcal{M Q}$ but also related problems (e.g. IP)
- MQDSS: (lossy) ROM reduction to $\mathcal{M Q}$
- SOFIA: continue in line of MQDSS
- Transform an $\mathcal{M Q}$-based IDS

Why not Fiat-Shamir?

- Non-tight proof in the ROM
- No proof in the QROM
- Forking lemma \Rightarrow rewinding adversary

Why not Fiat-Shamir?

- Non-tight proof in the ROM
- No proof in the QROM
- Forking lemma \Rightarrow rewinding adversary
- .. at the time of writing
- Lots of ongoing work!

Why not Fiat-Shamir?

- Non-tight proof in the ROM
- No proof in the QROM
- Forking lemma \Rightarrow rewinding adversary
- .. at the time of writing
- Lots of ongoing work!
- [KLP17]: tight Fiat-Shamir in the ROM
- But similar issues in the QROM
- [KLS17]: Fiat-Shamir in QROM
- Requires changing the IDS and parameters

This work

1. Extend Unruh's transform [Unr15] to 5-pass IDS

- Specifically q2-IDS [CHR $\left.{ }^{+} 16\right]$

This work

1. Extend Unruh's transform [Unr15] to 5-pass IDS

- Specifically q2-IDS [CHR $\left.{ }^{+} 16\right]$

2. Prove EU-CMA security in QROM

- Via a (tight) proof in ROM

This work

1. Extend Unruh's transform [Unr15] to 5-pass IDS

- Specifically q2-IDS [CHR $\left.{ }^{+} 16\right]$

2. Prove EU-CMA security in QROM

- Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]

This work

1. Extend Unruh's transform [Unr15] to 5-pass IDS

- Specifically q2-IDS [CHR $\left.{ }^{+} 16\right]$

2. Prove EU-CMA security in QROM

- Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]
4. Parameterize to achieve 128 -bit post-quantum

- SOFIA-4-128

This work

1. Extend Unruh's transform [Unr15] to 5-pass IDS

- Specifically q2-IDS [CHR $\left.{ }^{+} 16\right]$

2. Prove EU-CMA security in QROM

- Via a (tight) proof in ROM

3. Instantiate and tweak for specific IDS [SSH11]
4. Parameterize to achieve 128 -bit post-quantum

- SOFIA-4-128

5. Implement and compare on AVX2

Canonical Identification Schemes

Informally:

1. Prover commits to some (randomized) value derived from sk
2. Verifier picks a challenge 'ch'
3. Prover computes response 'resp'
4. Verifier checks if response matches challenge

Security of the IDS

- Passively secure IDS

Soundness: the probability that an adversary can convince is 'small'

Honest-Verifier Zero-Knowledge: simulator can 'fake' transcripts

Special soundness: two 'similar' transcripts \Rightarrow secret exposed

Security of the IDS

- Passively secure IDS

Soundness: the probability that an adversary can convince is 'small'

- Adversary \mathcal{A} can 'guess right': soundness error κ

$$
\operatorname{Pr}\left[\begin{array}{l}
(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{KGen}\left(1^{k}\right) \\
\left\langle\mathcal{A}\left(1^{k}, \mathrm{pk}\right), \mathcal{V}(\mathrm{pk})\right\rangle=1
\end{array}\right] \leq \kappa+\operatorname{negl}(k) .
$$

Honest-Verifier Zero-Knowledge: simulator can 'fake' transcripts

- Shows transcripts do not leak the secret

Special soundness: two 'similar' transcripts \Rightarrow secret exposed

- Proof relies on constructing an 'extractor'

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash \Rightarrow "blind" responses

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash \Rightarrow "blind" responses
4. Sample challenge vector

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash \Rightarrow "blind" responses
4. Sample challenge vector
5. Reveal one response per commit

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash \Rightarrow "blind" responses
4. Sample challenge vector
5. Reveal one response per commit

- In the proof, "blinding" is an invertible permutation
- Adversary must have known several transcripts
- Unblinding makes them available to extractor

Unruh's transform [Unr15]

- Based on Fischlin's transform [Fis05]
- Informally:

1. Generate transcripts for a commit
2. Iterate for multiple challenges
3. Apply length-preserving hash \Rightarrow "blind" responses
4. Sample challenge vector
5. Reveal one response per commit

- In the proof, "blinding" is an invertible permutation
- Adversary must have known several transcripts
- Unblinding makes them available to extractor
- Parallelize r rounds to decrease error
- Extra parameter: prepare for t challenges

Canonical Identification Schemes

5-pass q2 Identification Schemes

\mathcal{P}		\mathcal{V}
com $\leftarrow_{R} \mathcal{P}_{0}$ (sk)	com	
	α	$\alpha \leftarrow R \mathbb{F}_{q}$
$\mathrm{resp}_{1} \leftarrow \mathcal{P}_{1}(\mathrm{sk}, \mathrm{com}, \alpha)$	resp_{1}	
	ch_{2}	$\mathrm{ch}_{2} \leftarrow R\{0,1\}$
$\begin{array}{r} \mathrm{resp}_{2} \leftarrow \mathcal{P}_{2}(\mathrm{sk}, \operatorname{com}, \alpha \\ \left.\mathrm{resp}_{1}, \mathrm{ch}_{2}\right) \end{array}$	resp_{2}	
		$\begin{gathered} b \leftarrow \mathrm{Vf}\left(\mathrm{pk}, \operatorname{com}, \alpha, \text { resp }_{1},\right. \\ \left.\mathrm{ch}_{2}, \text { resp }_{2}\right) \end{gathered}$

5-pass q2 Identification Schemes

\mathcal{P}		
com $\leftarrow_{R} \mathcal{P}_{0}$ (sk)	com	
	α	$\alpha \leftarrow R \mathbb{F}_{q}$
$\mathrm{resp}_{1} \leftarrow \mathcal{P}_{1}($ sk, com, α)	resp_{1}	
	ch_{2}	$\mathrm{ch}_{2} \leftarrow R\{0,1\}$
$\begin{array}{r} \operatorname{resp}_{2} \leftarrow \mathcal{P}_{2}(\mathrm{sk}, \operatorname{com}, \alpha \\ \left.\operatorname{resp}_{1}, \mathrm{ch}_{2}\right) \end{array}$	resp_{2}	
		$\begin{gathered} b \leftarrow \mathrm{Vf}\left(\mathrm{pk}, \operatorname{com}, \alpha, \mathrm{resp}_{1}\right. \\ \left.\mathrm{ch}_{2}, \mathrm{resp}_{2}\right) \end{gathered}$

- Unruh's transform: resp $_{2}$ for both $\mathrm{ch}_{2} \in\{0,1\}$, per α

$\mathcal{M Q}$ problem

The function family $\mathcal{M} \mathcal{Q}\left(n, m, \mathbb{F}_{q}\right)$:
$\mathbf{F}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)$, where $f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i}$ for $a_{i, j}^{(s)}, b_{i}^{(s)} \in \mathbb{F}_{q}, s \in\{1, \ldots, m\}$

$\mathcal{M Q}$ problem

The function family $\mathcal{M Q}\left(n, m, \mathbb{F}_{q}\right)$:

$$
\begin{aligned}
\mathbf{F}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right), & \text { where } f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i} \\
& \text { for } a_{i, j}^{(s)}, b_{i}^{(s)} \in \mathbb{F}_{q}, s \in\{1, \ldots, m\}
\end{aligned}
$$

Problem: For given $\mathbf{y} \in \mathbb{F}_{q}^{m}$, find $\mathbf{x} \in \mathbb{F}_{q}^{n}$ such that $\mathbf{F}(\mathbf{x})=\mathbf{y}$.

$\mathcal{M Q}$ problem

The function family $\mathcal{M Q}\left(n, m, \mathbb{F}_{q}\right)$:

$$
\begin{array}{r}
\mathbf{F}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right), \text { where } f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i} \\
\text { for } a_{i, j}^{(s)}, b_{i}^{(s)} \in \mathbb{F}_{q}, s \in\{1, \ldots, m\}
\end{array}
$$

Problem: For given $\mathbf{y} \in \mathbb{F}_{q}^{m}$, find $\mathbf{x} \in \mathbb{F}_{q}^{n}$ such that $\mathbf{F}(\mathbf{x})=\mathbf{y}$.
i.e., solve the system of equations:
$y_{1}=a_{1,1}^{(1)} x_{1} x_{1}+a_{1,2}^{(1)} x_{1} x_{2}+\ldots+a_{n, n}^{(1)} x_{n} x_{n}+b_{1}^{(1)} x_{1}+\ldots+b_{n}^{(1)} x_{n}$
$y_{m}=a_{1,1}^{(m)} x_{1} x_{1}+a_{1,2}^{(m)} x_{1} x_{2}+\ldots+a_{n, n}^{(m)} x_{n} x_{n}+b_{1}^{(m)} x_{1}+\ldots+b_{n}^{(m)} x_{n}$

$\mathcal{M Q}$ problem: numerical example

- Example parameters: $n=m=3, \mathbb{F}_{q}=\mathbb{F}_{5}$

$\mathcal{M Q}$ problem: numerical example

- Example parameters: $n=m=3, \mathbb{F}_{q}=\mathbb{F}_{5}$
- Random system of functions F:

$$
\begin{aligned}
& y_{1}=4 x_{1} x_{1}+3 x_{1} x_{2}+0 x_{1} x_{3}+x_{2} x_{2}+2 x_{2} x_{3}+x_{3} x_{3}+0 x_{1}+2 x_{2}+2 x_{3} \\
& y_{2}=x_{1} x_{1}+2 x_{1} x_{2}+x_{1} x_{3}+0 x_{2} x_{2}+3 x_{2} x_{3}+4 x_{3} x_{3}+0 x_{1}+3 x_{2}+2 x_{3} \\
& y_{3}=0 x_{1} x_{1}+x_{1} x_{2}+4 x_{1} x_{3}+3 x_{2} x_{2}+0 x_{2} x_{3}+x_{3} x_{3}+4 x_{1}+x_{2}+0 x_{3}
\end{aligned}
$$

$\mathcal{M Q}$ problem: numerical example

- Example parameters: $n=m=3, \mathbb{F}_{q}=\mathbb{F}_{5}$
- Random system of functions F:

$$
\begin{aligned}
& y_{1}=4 x_{1} x_{1}+3 x_{1} x_{2}+0 x_{1} x_{3}+x_{2} x_{2}+2 x_{2} x_{3}+x_{3} x_{3}+0 x_{1}+2 x_{2}+2 x_{3} \\
& y_{2}=x_{1} x_{1}+2 x_{1} x_{2}+x_{1} x_{3}+0 x_{2} x_{2}+3 x_{2} x_{3}+4 x_{3} x_{3}+0 x_{1}+3 x_{2}+2 x_{3} \\
& y_{3}=0 x_{1} x_{1}+x_{1} x_{2}+4 x_{1} x_{3}+3 x_{2} x_{2}+0 x_{2} x_{3}+x_{3} x_{3}+4 x_{1}+x_{2}+0 x_{3}
\end{aligned}
$$

- 'Secret' input $\mathbf{x}=(1,4,3)$

$\mathcal{M Q}$ problem: numerical example

- Example parameters: $n=m=3, \mathbb{F}_{q}=\mathbb{F}_{5}$
- Random system of functions \mathbf{F} :

$$
\begin{aligned}
& y_{1}=4 x_{1} x_{1}+3 x_{1} x_{2}+0 x_{1} x_{3}+x_{2} x_{2}+2 x_{2} x_{3}+x_{3} x_{3}+0 x_{1}+2 x_{2}+2 x_{3} \\
& y_{2}=x_{1} x_{1}+2 x_{1} x_{2}+x_{1} x_{3}+0 x_{2} x_{2}+3 x_{2} x_{3}+4 x_{3} x_{3}+0 x_{1}+3 x_{2}+2 x_{3} \\
& y_{3}=0 x_{1} x_{1}+x_{1} x_{2}+4 x_{1} x_{3}+3 x_{2} x_{2}+0 x_{2} x_{3}+x_{3} x_{3}+4 x_{1}+x_{2}+0 x_{3}
\end{aligned}
$$

- 'Secret' input $\mathbf{x}=(1,4,3)$

$$
\begin{aligned}
& y_{1}=4 \cdot 1 \cdot 1+3 \cdot 1 \cdot 4+4 \cdot 4+2 \cdot 4 \cdot 3+3 \cdot 3+2 \cdot 4+2 \cdot 3 \\
& y_{2}=1 \cdot 1+2 \cdot 1 \cdot 4+1 \cdot 3+3 \cdot 4 \cdot 3+4 \cdot 3 \cdot 3+3 \cdot 4+2 \cdot 3 \\
& y_{3}=1 \cdot 4+4 \cdot 1 \cdot 3+3 \cdot 4 \cdot 4+3 \cdot 3+4 \cdot 1+4
\end{aligned}
$$

$\mathcal{M Q}$ problem: numerical example

- Example parameters: $n=m=3, \mathbb{F}_{q}=\mathbb{F}_{5}$
- Random system of functions \mathbf{F} :

$$
\begin{aligned}
y_{1} & =4 x_{1} x_{1}+3 x_{1} x_{2}+0 x_{1} x_{3}+x_{2} x_{2}+2 x_{2} x_{3}+x_{3} x_{3}+0 x_{1}+2 x_{2}+2 x_{3} \\
y_{2} & =x_{1} x_{1}+2 x_{1} x_{2}+x_{1} x_{3}+0 x_{2} x_{2}+3 x_{2} x_{3}+4 x_{3} x_{3}+0 x_{1}+3 x_{2}+2 x_{3} \\
y_{3} & =0 x_{1} x_{1}+x_{1} x_{2}+4 x_{1} x_{3}+3 x_{2} x_{2}+0 x_{2} x_{3}+x_{3} x_{3}+4 x_{1}+x_{2}+0 x_{3} \\
& \text { 'Secret' input } \mathbf{x}=(1,4,3) \\
y_{1} & =4 \cdot 1 \cdot 1+3 \cdot 1 \cdot 4+4 \cdot 4+2 \cdot 4 \cdot 3+3 \cdot 3+2 \cdot 4+2 \cdot 3=79 \equiv 4 \\
y_{2} & =1 \cdot 1+2 \cdot 1 \cdot 4+1 \cdot 3+3 \cdot 4 \cdot 3+4 \cdot 3 \cdot 3+3 \cdot 4+2 \cdot 3=102 \equiv 2 \\
y_{3} & =1 \cdot 4+4 \cdot 1 \cdot 3+3 \cdot 4 \cdot 4+3 \cdot 3+4 \cdot 1+4=81 \equiv 1
\end{aligned}
$$

- 'Public' output $\mathbf{y}=(4,2,1)$

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

$$
\begin{aligned}
& \mathcal{P}:(\mathbf{F}, \mathbf{v}, \mathbf{s}) \quad \mathcal{V}:(\mathbf{F}, \mathbf{v}) \\
& \mathbf{r}_{0}, \mathbf{t}_{0} \leftarrow_{R} \mathbb{F}_{q}^{n}, \mathbf{e}_{0} \leftarrow_{R} \mathbb{F}_{q}^{m} \\
& \mathbf{r}_{1} \leftarrow \mathbf{s}-\mathbf{r}_{0} \\
& c_{0} \leftarrow \operatorname{Com}\left(\mathbf{r}_{0}, \mathbf{t}_{0}, \mathbf{e}_{0}\right) \\
& c_{1} \leftarrow \operatorname{Com}\left(\mathbf{r}_{1}, \mathbf{G}\left(\mathbf{t}_{0}, \mathbf{r}_{1}\right)+\mathbf{e}_{0}\right) \xrightarrow{\left(c_{0}, c_{1}\right)} \\
& \alpha \\
& \mathbf{t}_{1} \leftarrow \alpha \mathbf{r}_{0}-\mathbf{t}_{0} \\
& \mathbf{e}_{1} \leftarrow \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{0} \\
& \xrightarrow[\mathrm{ch}_{2}]{\stackrel{\mathrm{resp}_{1}=\left(\mathbf{t}_{1}, \mathbf{e}_{1}\right)}{\longrightarrow}} \\
& \mathrm{ch}_{2} \leftarrow_{R}\{0,1\} \\
& \text { If } \mathrm{ch}_{2}=0, \text { resp }_{2} \leftarrow \mathbf{r}_{0} \\
& \text { Else } \text { resp }_{2} \leftarrow \mathbf{r}_{1} \\
& \text { If } \mathrm{ch}_{2}=0 \text {, Parse resp }{ }_{2}=\mathrm{r}_{0} \text {, check } \\
& c_{0} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{0}, \alpha \mathbf{r}_{0}-\mathbf{t}_{1}, \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{1}\right) \\
& \text { Else Parse resp }{ }_{2}=\mathbf{r}_{1} \text {, check } \\
& c_{1} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{1}, \alpha\left(\mathbf{v}-\mathbf{F}\left(\mathbf{r}_{1}\right)\right)-\mathbf{G}\left(\mathbf{t}_{1}, \mathbf{r}_{1}\right)-\mathbf{e}_{1}\right)
\end{aligned}
$$

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

```
\(\mathcal{P}:(\mathbf{F}, \mathbf{v}, \mathbf{s}) \quad \mathcal{V}:(\mathbf{F}, \mathbf{v})\)
\(\mathbf{r}_{0}, \mathbf{t}_{0} \leftarrow_{R} \mathbb{F}_{q}^{n}, \mathbf{e}_{0} \leftarrow_{R} \mathbb{F}_{q}^{m}\)
\(\mathbf{r}_{1} \leftarrow \mathbf{s}-\mathbf{r}_{0}\)
\(c_{0} \leftarrow \operatorname{Com}\left(\mathbf{r}_{0}\right.\). \(\left.\boldsymbol{t}_{0} \mathbf{e}_{0}\right)\)
\(c_{1} \leftarrow \operatorname{Com}\left(\mathbf{r}_{1}, \mathbf{G}\left(\mathbf{t}_{0}\right), \mathbf{r}_{1}\right)+\mathbf{e}_{0} \xrightarrow{\left(c_{0}, c_{1}\right)}\)
\(\alpha \leftarrow R \mathbb{F}_{q}\)
\(\mathbf{t}_{1} \leftarrow \alpha \mathbf{r}_{0}-\mathbf{t}_{0}\)
\(\mathbf{e}_{1} \leftarrow \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)^{-\mathbf{e}_{0}}\)
\(\xrightarrow[\mathrm{ch}_{2}]{\stackrel{\mathrm{resp}_{1}=\left(\mathbf{t}_{1}, \mathbf{e}_{1}\right)}{\longrightarrow}}\)
\(\mathrm{ch}_{2} \leftarrow_{R}\{0,1\}\)
If \(\mathrm{ch}_{2}=0\), resp \(_{2} \leftarrow \mathbf{r}_{0}\)
Else resp \(_{2} \leftarrow \mathbf{r}_{1}\)
    \(\operatorname{resp}_{2}\)
\[
\begin{aligned}
& \text { If } \mathrm{ch}_{2}=0 \text {, Parse resp }{ }_{2}=\mathbf{r}_{0} \text {, check } \\
& c_{0} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{0}, \alpha \mathbf{r}_{0}-\mathbf{t}_{1}, \alpha \mathbf{F}\left(\mathbf{r}_{\mathbf{d}}\right)-\mathbf{e}_{1}\right) \\
& \text { Else Parse resp }{ }_{2}=\mathbf{r}_{1} \text { check } \\
& \left.c_{1} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{1}, \alpha\left(\mathbf{v}-\mathbf{F}\left(\mathbf{r}_{1}\right)\right)-\mathbf{G}\left(\mathbf{t}_{1}\right), \mathbf{r}_{1}\right)-\mathbf{e}_{1}\right)
\end{aligned}
\]
```


Sakumoto-Shirai-Hiwatari IDS [SSH11]

- Key technique: cut-and-choose for $\mathcal{M Q}$
- Analogously, consider DLP: $s=r_{0}+r_{1} \Rightarrow g^{s}=g^{r_{0}} \cdot g^{r_{1}}$

Sakumoto-Shirai-Hiwatari IDS [SSH11]

- Key technique: cut-and-choose for $\mathcal{M Q}$
- Analogously, consider DLP: $s=r_{0}+r_{1} \Rightarrow g^{s}=g^{r_{0}} \cdot g^{r_{1}}$
- Bilinear map $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})-\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{y})$
- Split \mathbf{s} and $\mathbf{F}(\mathbf{s})$ into $\mathbf{r}_{0}, \mathbf{r}_{1}$ and $\mathbf{F}\left(\mathbf{r}_{0}\right), \mathbf{F}\left(\mathbf{r}_{1}\right)$
- Since then $\mathbf{s}=\mathbf{r}_{0}+\mathbf{r}_{1} \Rightarrow \mathbf{F}(\mathbf{s})=\mathbf{G}\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{0}\right)+\mathbf{F}\left(\mathbf{r}_{1}\right)$
- Split \mathbf{r}_{0} and $\mathbf{F}\left(\mathbf{r}_{0}\right)$ further into $\mathbf{t}_{0}, \mathbf{t}_{1}$ resp. $\mathbf{e}_{0}, \mathbf{e}_{1}$

Sakumoto-Shirai-Hiwatari IDS [SSH11]

- Key technique: cut-and-choose for $\mathcal{M Q}$
- Analogously, consider DLP: $s=r_{0}+r_{1} \Rightarrow g^{s}=g^{r_{0}} \cdot g^{r_{1}}$
- Bilinear map $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})-\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{y})$
- Split \mathbf{s} and $\mathbf{F}(\mathbf{s})$ into $\mathbf{r}_{0}, \mathbf{r}_{1}$ and $\mathbf{F}\left(\mathbf{r}_{0}\right), \mathbf{F}\left(\mathbf{r}_{1}\right)$
- Since then $\mathbf{s}=\mathbf{r}_{0}+\mathbf{r}_{1} \Rightarrow \mathbf{F}(\mathbf{s})=\mathbf{G}\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{0}\right)+\mathbf{F}\left(\mathbf{r}_{1}\right)$
- Split \mathbf{r}_{0} and $\mathbf{F}\left(\mathbf{r}_{0}\right)$ further into $\mathbf{t}_{0}, \mathbf{t}_{1}$ resp. $\mathbf{e}_{0}, \mathbf{e}_{1}$
- For $g_{s} \in \mathbf{G}: g_{s}(\mathbf{x}, \mathbf{y})=\sum_{i, j} a_{i, j}^{(s)}\left(x_{i} y_{j}+x_{j} y_{i}\right)$
- Recall: $f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i}$

Sakumoto-Shirai-Hiwatari IDS [SSH11]

- Key technique: cut-and-choose for $\mathcal{M Q}$
- Analogously, consider DLP: $s=r_{0}+r_{1} \Rightarrow g^{s}=g^{r_{0}} \cdot g^{r_{1}}$
- Bilinear map $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})-\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{y})$
- Split \mathbf{s} and $\mathbf{F}(\mathbf{s})$ into $\mathbf{r}_{0}, \mathbf{r}_{1}$ and $\mathbf{F}\left(\mathbf{r}_{0}\right), \mathbf{F}\left(\mathbf{r}_{1}\right)$
- Since then $\mathbf{s}=\mathbf{r}_{0}+\mathbf{r}_{1} \Rightarrow \mathbf{F}(\mathbf{s})=\mathbf{G}\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{0}\right)+\mathbf{F}\left(\mathbf{r}_{1}\right)$
- Split \mathbf{r}_{0} and $\mathbf{F}\left(\mathbf{r}_{0}\right)$ further into $\mathbf{t}_{0}, \mathbf{t}_{1}$ resp. $\mathbf{e}_{0}, \mathbf{e}_{1}$
- For $g_{s} \in \mathbf{G}: g_{s}(\mathbf{x}, \mathbf{y})=\sum_{i, j} a_{i, j}^{(s)}\left(x_{i} y_{j}+x_{j} y_{i}\right)$
- Recall: $f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i}$
- See [SSH11] for details
- Takeaway: evaluating $\mathbf{G} \approx$ evaluating \mathbf{F}

Sakumoto-Shirai-Hiwatari IDS [SSH11]

- Key technique: cut-and-choose for $\mathcal{M Q}$
- Analogously, consider DLP: $s=r_{0}+r_{1} \Rightarrow g^{s}=g^{r_{0}} \cdot g^{r_{1}}$
- Bilinear map $\mathbf{G}(\mathbf{x}, \mathbf{y})=\mathbf{F}(\mathbf{x}+\mathbf{y})-\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{y})$
- Split \mathbf{s} and $\mathbf{F}(\mathbf{s})$ into $\mathbf{r}_{0}, \mathbf{r}_{1}$ and $\mathbf{F}\left(\mathbf{r}_{0}\right), \mathbf{F}\left(\mathbf{r}_{1}\right)$
- Since then $\mathbf{s}=\mathbf{r}_{0}+\mathbf{r}_{1} \Rightarrow \mathbf{F}(\mathbf{s})=\mathbf{G}\left(\mathbf{r}_{0}, \mathbf{r}_{1}\right)+\mathbf{F}\left(\mathbf{r}_{0}\right)+\mathbf{F}\left(\mathbf{r}_{1}\right)$
- Split \mathbf{r}_{0} and $\mathbf{F}\left(\mathbf{r}_{0}\right)$ further into $\mathbf{t}_{0}, \mathbf{t}_{1}$ resp. $\mathbf{e}_{0}, \mathbf{e}_{1}$
- For $g_{s} \in \mathbf{G}: g_{s}(\mathbf{x}, \mathbf{y})=\sum_{i, j} a_{i, j}^{(s)}\left(x_{i} y_{j}+x_{j} y_{i}\right)$
- Recall: $f_{s}(\mathbf{x})=\sum_{i, j} a_{i, j}^{(s)} x_{i} x_{j}+\sum_{i} b_{i}^{(s)} x_{i}$
- See [SSH11] for details
- Takeaway: evaluating $\mathbf{G} \approx$ evaluating \mathbf{F}
- Result: reveal either \mathbf{r}_{0} or \mathbf{r}_{1}, and $\left(\mathbf{t}_{0}, \mathbf{e}_{0}\right)$ or $\left(\mathbf{t}_{1}, \mathbf{e}_{1}\right)$

SOFIA

Key generation:

- Sample seeds, expand \mathbf{F}, evaluate $\mathbf{v}=\mathbf{F}(\mathbf{s})$
- Identical to MQDSS

SOFIA

Key generation:

- Sample seeds, expand \mathbf{F}, evaluate $\mathbf{v}=\mathbf{F}(\mathbf{s})$
- Identical to MQDSS

Signing:

- Run the transformed IDS r times in parallel
- Commit to randomness; $r \times \mathbf{G}$
- Respond to t challenges $\alpha \in \mathbb{F}_{q} ; r \times t \times \mathbf{F}$
- Hash all (blinded) responses to set of indices
- Unblind indicated responses

SOFIA

Key generation:

- Sample seeds, expand \mathbf{F}, evaluate $\mathbf{v}=\mathbf{F}(\mathbf{s})$
- Identical to MQDSS

Signing:

- Run the transformed IDS r times in parallel
- Commit to randomness; $r \times \mathbf{G}$
- Respond to t challenges $\alpha \in \mathbb{F}_{q} ; r \times t \times \mathbf{F}$
- Hash all (blinded) responses to set of indices
- Unblind indicated responses

Verification:

- Reconstruct indices
- Verify revealed responses
- Verify that commitments match responses; $r \times \mathbf{F}, \backsim \frac{1}{2} r \times \mathbf{G}$

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses
- Fix challenge space to $\left|\mathrm{ChS}_{1}\right|=t$

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses
- Fix challenge space to $\left|\mathrm{ChS}_{1}\right|=t$
- Unlink α and ch $_{2}$

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses
- Fix challenge space to $\left|\mathrm{ChS}_{1}\right|=t$
- Unlink α and ch $_{2}$
- Omit commitments [SSH11]

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses
- Fix challenge space to $\left|\mathrm{ChS}_{1}\right|=t$
- Unlink α and ch $_{2}$
- Omit commitments [SSH11]
- Self-randomizing commitments

Optimizations

Many similarities to e.g. Picnic [CDG $\left.{ }^{+} 17\right]$

- Exclude redundant blinded responses
- Fix challenge space to $\left|\mathrm{ChS}_{1}\right|=t$
- Unlink α and ch $_{2}$
- Omit commitments [SSH11]
- Self-randomizing commitments

What doesn't help:

- Opening for multiple α
- Committing to multiple \mathbf{t}_{0}

Parameter choice

- 128 bits post-quantum security
- Focus on signature size

Parameter choice

- 128 bits post-quantum security
- Focus on signature size
- Candidates: $\mathcal{M} \mathcal{Q}\left(128, \mathbb{F}_{4}\right), \mathcal{M} \mathcal{Q}\left(96, \mathbb{F}_{7}\right), \mathcal{M} \mathcal{Q}\left(72, \mathbb{F}_{16}\right)$
- \ldots and even $\mathbb{F}_{5}, \mathbb{F}_{8}$

Parameter choice

- 128 bits post-quantum security
- Focus on signature size
- Candidates: $\underline{\mathcal{M} \mathcal{Q}\left(128, \mathbb{F}_{4}\right), \mathcal{M} \mathcal{Q}\left(96, \mathbb{F}_{7}\right), \mathcal{M} \mathcal{Q}\left(72, \mathbb{F}_{16}\right), ~(1)}$
- \ldots and even $\mathbb{F}_{5}, \mathbb{F}_{8}$

Parameter choice

- 128 bits post-quantum security
- Focus on signature size
- Candidates: $\underline{\mathcal{M} \mathcal{Q}\left(128, \mathbb{F}_{4}\right), \mathcal{M} \mathcal{Q}\left(96, \mathbb{F}_{7}\right), \mathcal{M} \mathcal{Q}\left(72, \mathbb{F}_{16}\right), ~(1)}$
- ... and even $\mathbb{F}_{5}, \mathbb{F}_{8}$
- Analyzed using Hybrid approach and BooleanSolve
- Instantiated with Grover search
- At least 2^{117} operations

Parameter choice

- 128 bits post-quantum security
- Focus on signature size
- Candidates: $\underline{\mathcal{M} \mathcal{Q}\left(128, \mathbb{F}_{4}\right), \mathcal{M} \mathcal{Q}\left(96, \mathbb{F}_{7}\right), \mathcal{M} \mathcal{Q}\left(72, \mathbb{F}_{16}\right), ~(1)}$
- ... and even $\mathbb{F}_{5}, \mathbb{F}_{8}$
- Analyzed using Hybrid approach and BooleanSolve
- Instantiated with Grover search
- At least 2^{117} operations
$-t=3, r=438 \quad\left(\right.$ since $\left.2^{-\left(r \log \frac{2 t}{t+1}\right) / 2}<2^{-128}\right)$
- XOFs, hashes, PRGs: SHAKE, cSHAKE, (AES)

Implementation

- Evaluating $\mathcal{M Q}$
- XOFs

Implementation

- Evaluating $\mathcal{M Q}$
- 438 rounds, $2 x$ per round
- Pairwise multiply $128 x \in \mathbb{F}_{4}$
- Multiply by coefficients from $\mathbf{F}, \in \mathbb{F}_{4}$
- Accumulate
- XOFs
- Blinding commitments
- Expanding F: 262 KiB
- External parallelism and cSHAKE

Evaluating $\mathcal{M Q}$

- From $\mathbf{F}(\mathbf{x})$ to \mathbf{x} is hard
- From \mathbf{x} to $\mathbf{F}(\mathbf{x})$ should be easy

Evaluating $\mathcal{M Q}$

- From $\mathbf{F}(\mathbf{x})$ to \mathbf{x} is hard
- From \mathbf{x} to $\mathbf{F}(\mathbf{x})$ should be fast

Evaluating $\mathcal{M Q}$

- From $\mathbf{F}(\mathbf{x})$ to \mathbf{x} is hard
- From \mathbf{x} to $\mathbf{F}(\mathbf{x})$ should be fast

Evaluating $\mathcal{M Q}$

- From $\mathbf{F}(\mathbf{x})$ to \mathbf{x} is hard
- From \mathbf{x} to $\mathbf{F}(\mathbf{x})$ should be fast

Evaluating $\mathcal{M Q}$

- From $\mathbf{F}(\mathbf{x})$ to \mathbf{x} is hard
- From \mathbf{x} to $\mathbf{F}(\mathbf{x})$ should be fast

Evaluating $\mathcal{M Q}$

- $128 \times \mathbb{F}_{4}$
- Bitsliced: two lanes in AVX2 register
- Each lane: 16 bytes, vpshufb
- Quadratic terms: ‘scheduling scripts' similar to MQDSS

Evaluating $\mathcal{M Q}$

- $128 \times \mathbb{F}_{4}$
- Bitsliced: two lanes in AVX2 register
- Each lane: 16 bytes, vpshufb
- Quadratic terms: ‘scheduling scripts' similar to MQDSS
- Pre-set two register: $\left[\mathbf{x}_{\text {high }} \oplus \mathbf{x}_{\text {low }} \mid \mathbf{x}_{\text {low }}\right]$ and $\left[\mathbf{x}_{\text {high }} \mid \mathbf{x}_{\text {high }}\right]$

Evaluating $\mathcal{M Q}$

- $128 \times \mathbb{F}_{4}$
- Bitsliced: two lanes in AVX2 register
- Each lane: 16 bytes, vpshufb
- Quadratic terms: ‘scheduling scripts' similar to MQDSS
- Pre-set two register: $\left[\mathbf{x}_{\text {high }} \oplus \mathbf{x}_{\text {low }} \mid \mathbf{x}_{\text {low }}\right]$ and $\left[\mathbf{x}_{\text {high }} \mid \mathbf{x}_{\text {high }}\right]$

$$
\begin{aligned}
c_{\text {high }} & =\left(a_{\text {high }} \wedge\left(b_{\text {high }} \oplus b_{\text {low }}\right)\right) \oplus\left(a_{\text {low }} \wedge b_{\text {high }}\right) \\
c_{\text {low }} & =\left(a_{\text {low }} \wedge b_{\text {low }}\right) \oplus\left(a_{\text {high }} \wedge b_{\text {high }}\right)
\end{aligned}
$$

- vpand, vpand, vpermq, vpxor

Evaluating $\mathcal{M Q}$

- 'Vertically:' broadcast monomial, multiply with \mathbf{F}
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,1}^{(2)} x_{1} x_{1}, a_{1,1}^{(3)} x_{1} x_{1}, a_{1,1}^{(4)} x_{1} x_{1}, \ldots$
- 'Horizontally:' iterate over output elements, popent
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,2}^{(1)} x_{1} x_{2}, a_{1,3}^{(1)} x_{1} x_{3}, \ldots a_{2,1}^{(1)} x_{2} x_{1}, a_{2,2}^{(1)} x_{2} x_{2}, \ldots$

Evaluating $\mathcal{M Q}$

- 'Vertically:' broadcast monomial, multiply with \mathbf{F}
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,1}^{(2)} x_{1} x_{1}, a_{1,1}^{(3)} x_{1} x_{1}, a_{1,1}^{(4)} x_{1} x_{1}, \ldots$
- 'Horizontally:' iterate over output elements, popent
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,2}^{(1)} x_{1} x_{2}, a_{1,3}^{(1)} x_{1} x_{3}, \ldots a_{2,1}^{(1)} x_{2} x_{1}, a_{2,2}^{(1)} x_{2} x_{2}, \ldots$
- Horizontal: more loads, but internal parallelism

Evaluating $\mathcal{M Q}$

- 'Vertically:' broadcast monomial, multiply with \mathbf{F}
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,1}^{(2)} x_{1} x_{1}, a_{1,1}^{(3)} x_{1} x_{1}, a_{1,1}^{(4)} x_{1} x_{1}, \ldots$
- 'Horizontally:' iterate over output elements, popent
$-a_{1,1}^{(1)} x_{1} x_{1}, a_{1,2}^{(1)} x_{1} x_{2}, a_{1,3}^{(1)} x_{1} x_{3}, \ldots a_{2,1}^{(1)} x_{2} x_{1}, a_{2,2}^{(1)} x_{2} x_{2}, \ldots$
- Horizontal: more loads, but internal parallelism
- Both cases: delay reductions in \mathbb{F}_{4}
$-\left[\hat{\mathbf{x}}_{\text {high }} \wedge \mathbf{f}_{\text {high }} \mid \hat{\mathbf{x}}_{\text {low }} \wedge \mathbf{f}_{\text {low }}\right]$ and $\left[\hat{\mathbf{x}}_{\text {low }} \wedge \mathbf{f}_{\text {high }} \mid \hat{\mathbf{x}}_{\text {high }} \wedge \mathbf{f}_{\text {low }}\right]$

Evaluating $\mathcal{M Q}$

- 'Vertically:' broadcast monomial, multiply with \mathbf{F}
- $a_{1,1}^{(1)} x_{1} x_{1}, a_{1,1}^{(2)} x_{1} x_{1}, a_{1,1}^{(3)} x_{1} x_{1}, a_{1,1}^{(4)} x_{1} x_{1}, \ldots$
- 'Horizontally:' iterate over output elements, popent
$-a_{1,1}^{(1)} x_{1} x_{1}, a_{1,2}^{(1)} x_{1} x_{2}, a_{1,3}^{(1)} x_{1} x_{3}, \ldots a_{2,1}^{(1)} x_{2} x_{1}, a_{2,2}^{(1)} x_{2} x_{2}, \ldots$
- Horizontal: more loads, but internal parallelism
- Both cases: delay reductions in \mathbb{F}_{4}
$-\left[\hat{\mathbf{x}}_{\text {high }} \wedge \mathbf{f}_{\text {high }} \mid \hat{\mathbf{x}}_{\text {low }} \wedge \mathbf{f}_{\text {low }}\right]$ and $\left[\hat{\mathbf{x}}_{\text {low }} \wedge \mathbf{f}_{\text {high }} \mid \hat{\mathbf{x}}_{\text {high }} \wedge \mathbf{f}_{\text {low }}\right]$
- Both cases: external parallelism over constant \mathbf{F}
- Horizontal in batches of 3, avg. 17558 cycles per $\mathcal{M Q}$

SOFIA-4-128 vs MQDSS-31-64

a.k.a. the price of QROM

- Signature size: 123 KiB
- 64 bytes pk, 32 bytes sk
(MQDSS: 40 KiB)
(MQDSS: $72 \mathrm{~B}, 64 \mathrm{~B}$)

SOFIA-4-128 vs MQDSS-31-64

a.k.a. the price of QROM

- Signature size: 123 KiB
- 64 bytes pk, 32 bytes sk
- Key generation $\quad 1.16 \mathrm{M}$ cycles (MQDSS: 1.18 M)
- Signing 21.31 M cycles
- $\sim 75 \% \mathcal{M Q}$
- $\sim 25 \%$ SHAKE
- Verification $\quad 15.49 \mathrm{M}$ cycles (MQDSS: 5.75 M)
(Intel Haswell, Core-i7-4770K, AVX2)
(MQDSS: 40 KiB)
(MQDSS: $72 \mathrm{~B}, 64 \mathrm{~B}$)
(MQDSS: 8.51 M)

Conclusions and comparisons

- Conservative $\mathcal{M Q}$ in the QROM
- Small keys, large signatures, not too slow

Conclusions and comparisons

- Conservative $\mathcal{M Q}$ in the QROM
- Small keys, large signatures, not too slow
- Significantly bigger than SPHINCS-256
- And thus SPHINCS ${ }^{+}$
- Smaller \& faster than Picnic-10-38
- \sim as big as Picnic-L5-FS

Conclusions and comparisons

- Conservative $\mathcal{M Q}$ in the QROM
- Small keys, large signatures, not too slow
- Significantly bigger than SPHINCS-256
- And thus SPHINCS ${ }^{+}$
- Smaller \& faster than Picnic-10-38
- \sim as big as Picnic-L5-FS
- Much bigger/slower than lattices, e.g. Dilithium, qTESLA
- .. but much faster (\& smaller keys) than TESLA-1,-2

Conclusions and comparisons

- Conservative $\mathcal{M Q}$ in the QROM
- Small keys, large signatures, not too slow
- Significantly bigger than SPHINCS-256
- And thus SPHINCS ${ }^{+}$
- Smaller \& faster than Picnic-10-38
- \sim as big as Picnic-L5-FS
- Much bigger/slower than lattices, e.g. Dilithium, qTESLA
- .. but much faster (\& smaller keys) than TESLA-1,-2
- C and AVX2 code available (public domain): https://joostrijneveld.nl/papers/sofia

References I

围
Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren. LUOV.
Submission to NIST's post-quantum crypto standardization project, 2017.
(Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives.
Cryptology ePrint Archive, Report 2017/279, 2017.
http://eprint.iacr.org/2017/279/.
R A. Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Perret, and J. Ryckeghem.
GeMSS.
Submission to NIST's post-quantum crypto standardization project, 2017.

References II

國 Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe.
From 5-pass $\mathcal{M} \mathcal{Q}$-based identification to $\mathcal{M} \mathcal{Q}$-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology

- ASIACRYPT 2016, volume 10032 of LNCS, pages 135-165. Springer, 2016.
http://eprint.iacr.org/2016/708.
Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe.
MQDSS.
Submission to NIST's post-quantum crypto standardization project, 2017.
圊
Jintai Ding, Ming-Shen Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang.
Gui.
Submission to NIST's post-quantum crypto standardization project, 2017.

References III

圊
Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin Yang.
Rainbow.
Submission to NIST's post-quantum crypto standardization project, 2017.
國 Jintai Ding and Dieter Schmidt.
Rainbow, a new multivariable polynomial signature scheme.
In John loannidis, Angelos D. Keromytis, and Moti Yung, editors, Applied
Cryptography and Network Security, volume 3531 of LNCS, pages
164-175. Springer, 2005.
https://www.semanticscholar.org/paper/
Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/ 7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf.

References IV

Marc Fischlin.
Communication-efficient non-interactive proofs of knowledge with online extractors.
In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of LNCS, pages 152-168. Springer, 2005.
https:
//www.iacr.org/archive/crypto2005/36210148/36210148.pdf.
國 Jean-Charles Faugère, Ludovic Perret, and J. Ryckeghem.
DualModeMS.
Submission to NIST's post-quantum crypto standardization project, 2017.
Eike Kiltz, Julian Loss, and Jiaxin Pan.
Tightly-secure signatures from five-move identification protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, pages 68-94, Cham, 2017. Springer International Publishing.

References V

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.
A concrete treatment of fiat-shamir signatures in the quantum random-oracle model.
Cryptology ePrint Archive, Report 2017/916, 2017.
https://eprint.iacr.org/2017/916.
䍰 Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai Ding.
Design principles for HFEv- based multivariate signature schemes.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology ASIACRYPT 2015, volume 9452 of LNCS, pages 311-334. Springer, 2015.
http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf.
R Kyung-Ah Shim, Cheol-Min Park, and Aeyoung Kim.
HiMQ-3.
Submission to NIST's post-quantum crypto standardization project, 2017.

References VI

Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari.
Public-key identification schemes based on multivariate quadratic polynomials.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS, pages 706-723. Springer, 2011.
https:
//www.iacr.org/archive/crypto2011/68410703/68410703.pdf.
Dominique Unruh.
Non-interactive zero-knowledge proofs in the quantum random oracle model.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology EUROCRYPT 2015, volume 9056 of LNCS, pages 755-784. Springer, 2015.
http://eprint.iacr.org/2014/587.

