Implementing Post-Quantum Cryptography on the Cortex M4

Matthias Kannwischer, **Joost Rijneveld**, Peter Schwabe, and Ko Stoffelen

Radboud University, Nijmegen, The Netherlands

2018-09-13 RIOT Summit 2018

 RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska

- RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska
- A large quantum computer can do..
 - Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}

- RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska
- A large quantum computer can do..
 - Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
 - Destructive things: break crypto

- RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska
- A large quantum computer can do..
 - Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
 - Destructive things: break crypto

- RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska
- A large quantum computer can do..
 - Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
 - Destructive things: break crypto
- RSA is broken.
- ECC is broken.

- RIOT Summit 2017: Post Quantum Crypto for the IoT, by Simona Samardjiska
- A large quantum computer can do..
 - Useful things: complex simulations that solve {global warming, world hunger, diseases, ..}
 - Destructive things: break crypto
- RSA is broken.
- ECC is broken.
- Symmetric crypto is broken.. but easily fixed.

Grover: Search in $\mathcal{O}(\sqrt{n})$

Shor: Factorize in poly(n)

Grover: Search in $\mathcal{O}(\sqrt{n})$

Shor: Factorize in poly(n) \approx 50/Ve DLP

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

• Lattices
$$As + e \Rightarrow s$$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Lattices $As + e \Rightarrow s$

• Error-correcting codes $\mathbf{m}\widehat{\mathbf{G}} + \mathbf{z} \Rightarrow \mathbf{m}$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

• Multivariate quadratics $\mathbf{y} = \mathcal{MQ}(\mathbf{x})$

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Symmetric crypto is fine!

Grover queries are expensive: AES-128 might be 'ok'

Asymmetric crypto is fun!

99 problems, but the DLP ain't one

Lattices
 Error-correcting codes
 Multivariate quadratics
 Supersingular isogenies
 Hashes
 ...
 post-guantum RSA

$$\begin{aligned} \mathbf{As} + \mathbf{e} &\Rightarrow \mathbf{s} \\ \mathbf{m}\widehat{\mathbf{G}} + \mathbf{z} &\Rightarrow \mathbf{m} \\ \mathbf{y} &= \mathcal{M}\mathcal{Q}(\mathbf{x}) \\ \phi &: E_1 \to E_2 \\ \mathcal{H}(\mathbf{x}) &\Rightarrow \mathbf{x} \end{aligned}$$

'What if we used 1 GiB keys?'

National Institute of Standards and Technology

- See also: AES and SHA-3 competitions
- Deadline: November 30, 2017

National Institute of Standards and Technology

- See also: AES and SHA-3 competitions
- Deadline: November 30, 2017

82 submissions

- National Institute of Standards and Technology
 - See also: AES and SHA-3 competitions
- Deadline: November 30, 2017
- 82 submissions
- \blacktriangleright pprox 58 still unbroken in Round 1

- National Institute of Standards and Technology
 - See also: AES and SHA-3 competitions
- Deadline: November 30, 2017
- 82 submissions
- \blacktriangleright pprox 58 still unbroken in Round 1
- PQC Standardization conference: April 11-13, 2018
 2nd conference: Aug/Sept 2019
- Final 'portfolio:' in 3 5 years

- National Institute of Standards and Technology
 - See also: AES and SHA-3 competitions
- Deadline: November 30, 2017
- 82 submissions
- \blacktriangleright pprox 58 still unbroken in Round 1
- PQC Standardization conference: April 11-13, 2018
 2nd conference: Aug/Sept 2019
- Final 'portfolio:' in 3 5 years
- 'Not a competition'

PQC on the IOT

Algorithm flexibility?

PQC is an active research field

PQC on the IOT

Algorithm flexibility?

- ▶ PQC is an active research field
 - $\Rightarrow \mathsf{things} \; \mathsf{break}$

Algorithm flexibility?

- PQC is an active research field
 - $\Rightarrow \mathsf{things} \; \mathsf{break}$
 - \Rightarrow not yet standardized

Algorithm flexibility?

- PQC is an active research field
 - \Rightarrow things break
 - \Rightarrow not yet standardized

Key sizes, ciphertext sizes, signature sizes ..?

► Speed ..?

Algorithm flexibility?

- PQC is an active research field
 - \Rightarrow things break
 - \Rightarrow not yet standardized

Key sizes, ciphertext sizes, signature sizes ..?

► Speed ..?

"It's big and it's slow"

Algorithm flexibility?

PQC is an active research field

 \Rightarrow things break

 \Rightarrow not yet standardized

Key sizes, ciphertext sizes, signature sizes ..?

► Speed ..?

"It's big and it's slow" — everyone, always

Algorithm flexibility?

PQC is an active research field

 \Rightarrow things break

 \Rightarrow not yet standardized

Key sizes, ciphertext sizes, signature sizes ..?

► Speed ..?

"It's big and it's slow" – everyone, always

Deliverable of the EU H2020 PQCRYPTO project

'Small devices'

 Target platform: Cortex M4 (STM32 M4 discovery board)

STM32F407VG

- 'PQC on M4' framework
 - Testing
 - Benchmarking

Build system: linkable static library per scheme

Build system: linkable static library per scheme

Internal correctness tests

Sign & verify, encapsulate & decapsulate, ...

Build system: linkable static library per scheme

- Internal correctness tests
 - Sign & verify, encapsulate & decapsulate, ...
- Test vector comparison
 - WIP: NIST known answer test files

- Build system: linkable static library per scheme
- Internal correctness tests
 - Sign & verify, encapsulate & decapsulate, ...
- Test vector comparison
 - WIP: NIST known answer test files
- Benchmarking cycle count and stack usage

- Build system: linkable static library per scheme
- Internal correctness tests
 - Sign & verify, encapsulate & decapsulate, ...
- Test vector comparison
 - WIP: NIST known answer test files
- Benchmarking cycle count and stack usage
- Easy integration of new schemes/implementations
 - NIST level 3
 - Accepting pull requests!

- Build system: linkable static library per scheme
- Internal correctness tests
 - Sign & verify, encapsulate & decapsulate, ...
- Test vector comparison
 - WIP: NIST known answer test files
- Benchmarking cycle count and stack usage
- Easy integration of new schemes/implementations
 - NIST level 3
 - Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768, NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571, Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size, qTesla-III-speed, SPHINCS+-SHAKE256-128s

1. Copy into subdirectory of crypto_kem/ or crypto_sign/

e.g. crypto_kem/newhope1024cca/m4 or crypto_sign/dilithium/ref

1. Copy into subdirectory of crypto_kem/ or crypto_sign/

e.g. crypto_kem/newhope1024cca/m4 or crypto_sign/dilithium/ref

- 2. Write a Makefile to build libpqm4.a
 - Flexible template included

1. Copy into subdirectory of crypto_kem/ or crypto_sign/

- e.g. crypto_kem/newhope1024cca/m4 or crypto_sign/dilithium/ref
- 2. Write a Makefile to build libpqm4.a
 - Flexible template included
- 3. Optionally, for pure C: add libpqhost.a host target

1. Copy into subdirectory of crypto_kem/ or crypto_sign/

- e.g. crypto_kem/newhope1024cca/m4 or crypto_sign/dilithium/ref
- 2. Write a Makefile to build libpqm4.a
 - Flexible template included
- 3. Optionally, for pure C: add libpqhost.a host target
- 4. Optionally, replace SHA3 calls
 - PQM4 contains highly optimized SHA3 & variants

1. Copy into subdirectory of crypto_kem/ or crypto_sign/

- e.g. crypto_kem/newhope1024cca/m4 or crypto_sign/dilithium/ref
- 2. Write a Makefile to build libpqm4.a
 - Flexible template included
- 3. Optionally, for pure C: add libpqhost.a host target
- 4. Optionally, replace SHA3 calls
 - PQM4 contains highly optimized SHA3 & variants

Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen) https://github.com/jowlo/pqm4

Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen) https://github.com/jowlo/pqm4

Adapted build system

Uses RIOT's hardware interfacing functions

Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen) https://github.com/jowlo/pqm4

Adapted build system

Uses RIOT's hardware interfacing functions

Report some success on M0 and M3 targets

Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen) https://github.com/jowlo/pqm4

Adapted build system

Uses RIOT's hardware interfacing functions

- Report some success on M0 and M3 targets
- Crypto schemes are not ready for production use

▶ Lattice-based schemes are popular: 28 NIST submissions

► Lattice-based schemes are popular: 28 NIST submissions

Ideal lattices: arithmetic in a polynomial ring

- Very fast (beats ECC!)
- Acceptable sizes (1-2KiB ciphertexts/keys)

Lattice-based schemes are popular: 28 NIST submissions

Ideal lattices: arithmetic in a polynomial ring

- Very fast (beats ECC!)
- Acceptable sizes (1-2KiB ciphertexts/keys)

Fast polynomial multiplication, coefficients modulo q

Lattice-based schemes are popular: 28 NIST submissions

Ideal lattices: arithmetic in a polynomial ring

- Very fast (beats ECC!)
- Acceptable sizes (1-2KiB ciphertexts/keys)

Fast polynomial multiplication, coefficients modulo q

- Varying degree n
- Prime q or $q = 2^n$

Lattice-based schemes are popular: 28 NIST submissions

Ideal lattices: arithmetic in a polynomial ring

- Very fast (beats ECC!)
- Acceptable sizes (1-2KiB ciphertexts/keys)

Fast polynomial multiplication, coefficients modulo q

- Varying degree n
- Prime q or $q = 2^k$

► Depends on degree *n*

► Depends on degree *n*

Break down into smaller n

Depends on degree n

Break down into smaller n

Schoolbook

▶ i.e. $\mathcal{O}(n^2)$ multiplications

Depends on degree n

Break down into smaller n

Schoolbook
 i.e. O(n²) multiplications

Karatsuba

• trade a $\frac{1}{2}n$ -mult for additions

Depends on degree n

Break down into smaller n

Schoolbook

 i.e. O(n²) multiplications

 Karatsuba

 trade a ¹/₂n-mult for additions

 Toom-3 / Toom-4

split into 3 or 4 parts

12 / 15

Preliminary results

- Arbitrary degree $n (\leq 1024)$
- Python scripts generate ARMv7M assembly

Speed records

Directly applies to several NIST submissions

Work in progress

scheme	params	impl	key gen	encaps	decaps
KINDI	<i>n</i> = 256	ref	22,942k	29,656k	37,817k
	$q = 2^{14}$	ours	1,101k	1,494k	1,726k
NTRU-HRSS	<i>n</i> = 701	ref	204,854k	5,166k	15,067k
	$q = 2^{13}$	ours	164,090k	451k	917k
NTRU-KEM	<i>n</i> = 743	ref	53,326k	7,144k	12,782k
	$q = 2^{11}$	ours	5,445k	1,825k	2,145k
SABER	n = 256 $q = 2^{13}$	ref	7,123k	9,471k	12,304k
		[1]	1,147k	1,444k	1,543k
		ours	982k	1,277k	1,323k
RLizard	<i>n</i> = 1024	ref	26,428k	32,211k	57,344k
	$q = 2^{11}$	ours	626k	1,513k	1,986k

[1] Karmakar, A., Mera, J. M. B., Roy, S. S., & Verbauwhede, I. (2018). Saber on ARM. IACR Transactions on Cryptographic Hardware and Embedded Systems, 243-266.

Interested?

Find us at https://github.com/mupq/pqm4

All code available as public domain where possible.