
Implementing Post-Quantum Cryptography
on the Cortex M4

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen

Radboud University, Nijmegen, The Netherlands

2018-09-13
RIOT Summit 2018

1 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken.
I ECC is broken.
I Symmetric crypto is broken.. but easily fixed.

2 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}

I Destructive things: break crypto

I RSA is broken.
I ECC is broken.
I Symmetric crypto is broken.. but easily fixed.

2 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken.
I ECC is broken.
I Symmetric crypto is broken.. but easily fixed.

2 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken.

I ECC is broken.
I Symmetric crypto is broken.. but easily fixed.

2 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken.
I ECC is broken.

I Symmetric crypto is broken.. but easily fixed.

2 / 15



The quantum threat

I RIOT Summit 2017: Post Quantum Crypto for the IoT, by
Simona Samardjiska

I A large quantum computer can do..
I Useful things: complex simulations that solve

{global warming, world hunger, diseases, ..}
I Destructive things: break crypto

I RSA is broken.
I ECC is broken.
I Symmetric crypto is broken.. but easily fixed.

2 / 15



Grover: Search in O(
√
n) Shor: Factorize in poly(n)

≈ Solve DLP

3 / 15



Grover: Search in O(
√
n) Shor: Factorize in poly(n)

≈ Solve DLP

3 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s

I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m

I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)

I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2

I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .

I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



So all is lost?

I Symmetric crypto is fine!
I Grover queries are expensive: AES-128 might be ‘ok’

I Asymmetric crypto is fun!
I 99 problems, but the DLP ain’t one

I Lattices As + e ; s
I Error-correcting codes mĜ + z ; m
I Multivariate quadratics y =MQ(x)
I Supersingular isogenies φ : E1 → E2
I Hashes H(x) ; x
I . . .
I post-quantum RSA ‘What if we used 1GiB keys?’

4 / 15



NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I ≈ 58 still unbroken in Round 1

I PQC Standardization conference: April 11-13, 2018
I 2nd conference: Aug/Sept 2019

I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

5 / 15



NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions

I ≈ 58 still unbroken in Round 1

I PQC Standardization conference: April 11-13, 2018
I 2nd conference: Aug/Sept 2019

I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

5 / 15



NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I ≈ 58 still unbroken in Round 1

I PQC Standardization conference: April 11-13, 2018
I 2nd conference: Aug/Sept 2019

I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

5 / 15



NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I ≈ 58 still unbroken in Round 1

I PQC Standardization conference: April 11-13, 2018
I 2nd conference: Aug/Sept 2019

I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

5 / 15



NIST Post-Quantum not-a-competition

I National Institute of Standards and Technology
I See also: AES and SHA-3 competitions

I Deadline: November 30, 2017

I 82 submissions
I ≈ 58 still unbroken in Round 1

I PQC Standardization conference: April 11-13, 2018
I 2nd conference: Aug/Sept 2019

I Final ‘portfolio:’ in 3 - 5 years

I ‘Not a competition’

5 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break

⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”

– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQC on the IOT

I Algorithm flexibility?
I PQC is an active research field

⇒ things break
⇒ not yet standardized

I Key sizes, ciphertext sizes, signature sizes ..?
I Speed ..?

“It’s big and it’s slow”
– everyone, always

I This project: where do we stand? How do we improve?

6 / 15



PQM4 framework

I Deliverable of the EU H2020 PQCRYPTO project
I ‘Small devices’

I Target platform: Cortex M4
(STM32 M4 discovery board)
I STM32F407VG

I ‘PQC on M4’ framework
I Testing
I Benchmarking

7 / 15



PQM4 framework

I Build system: linkable static library per scheme

I Internal correctness tests
I Sign & verify, encapsulate & decapsulate, ..

I Test vector comparison
I WIP: NIST known answer test files

I Benchmarking cycle count and stack usage
I Easy integration of new schemes/implementations

I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



PQM4 framework

I Build system: linkable static library per scheme
I Internal correctness tests

I Sign & verify, encapsulate & decapsulate, ..

I Test vector comparison
I WIP: NIST known answer test files

I Benchmarking cycle count and stack usage
I Easy integration of new schemes/implementations

I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



PQM4 framework

I Build system: linkable static library per scheme
I Internal correctness tests

I Sign & verify, encapsulate & decapsulate, ..
I Test vector comparison

I WIP: NIST known answer test files

I Benchmarking cycle count and stack usage
I Easy integration of new schemes/implementations

I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



PQM4 framework

I Build system: linkable static library per scheme
I Internal correctness tests

I Sign & verify, encapsulate & decapsulate, ..
I Test vector comparison

I WIP: NIST known answer test files
I Benchmarking cycle count and stack usage

I Easy integration of new schemes/implementations
I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



PQM4 framework

I Build system: linkable static library per scheme
I Internal correctness tests

I Sign & verify, encapsulate & decapsulate, ..
I Test vector comparison

I WIP: NIST known answer test files
I Benchmarking cycle count and stack usage
I Easy integration of new schemes/implementations

I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



PQM4 framework

I Build system: linkable static library per scheme
I Internal correctness tests

I Sign & verify, encapsulate & decapsulate, ..
I Test vector comparison

I WIP: NIST known answer test files
I Benchmarking cycle count and stack usage
I Easy integration of new schemes/implementations

I NIST level 3
I Accepting pull requests!

FrodoKEM-640-cSHAKE, KINDI-256-3-4-2, Kyber-768,
NewHope-1024-CCA-KEM, NTRU-HRSS-KEM-701, Saber, SIKE-p571,
Streamlined NTRU Prime 4591761, Dilithium-III, qTesla-I, qTesla-III-size,
qTesla-III-speed, SPHINCS+-SHAKE256-128s

8 / 15



Adding new schemes

1. Copy into subdirectory of crypto_kem/ or crypto_sign/
I e.g. crypto_kem/newhope1024cca/m4 or

crypto_sign/dilithium/ref

2. Write a Makefile to build libpqm4.a
I Flexible template included

3. Optionally, for pure C: add libpqhost.a host target

4. Optionally, replace SHA3 calls
I PQM4 contains highly optimized SHA3 & variants

9 / 15



Adding new schemes

1. Copy into subdirectory of crypto_kem/ or crypto_sign/
I e.g. crypto_kem/newhope1024cca/m4 or

crypto_sign/dilithium/ref

2. Write a Makefile to build libpqm4.a
I Flexible template included

3. Optionally, for pure C: add libpqhost.a host target

4. Optionally, replace SHA3 calls
I PQM4 contains highly optimized SHA3 & variants

9 / 15



Adding new schemes

1. Copy into subdirectory of crypto_kem/ or crypto_sign/
I e.g. crypto_kem/newhope1024cca/m4 or

crypto_sign/dilithium/ref

2. Write a Makefile to build libpqm4.a
I Flexible template included

3. Optionally, for pure C: add libpqhost.a host target

4. Optionally, replace SHA3 calls
I PQM4 contains highly optimized SHA3 & variants

9 / 15



Adding new schemes

1. Copy into subdirectory of crypto_kem/ or crypto_sign/
I e.g. crypto_kem/newhope1024cca/m4 or

crypto_sign/dilithium/ref

2. Write a Makefile to build libpqm4.a
I Flexible template included

3. Optionally, for pure C: add libpqhost.a host target

4. Optionally, replace SHA3 calls
I PQM4 contains highly optimized SHA3 & variants

9 / 15



Adding new schemes

1. Copy into subdirectory of crypto_kem/ or crypto_sign/
I e.g. crypto_kem/newhope1024cca/m4 or

crypto_sign/dilithium/ref

2. Write a Makefile to build libpqm4.a
I Flexible template included

3. Optionally, for pure C: add libpqhost.a host target

4. Optionally, replace SHA3 calls
I PQM4 contains highly optimized SHA3 & variants

9 / 15



PQM4 on RIOT OS

I Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen)
https://github.com/jowlo/pqm4

I Adapted build system
I Uses RIOT’s hardware interfacing functions

I Report some success on M0 and M3 targets

I Crypto schemes are not ready for production use

10 / 15

https://github.com/jowlo/pqm4


PQM4 on RIOT OS

I Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen)
https://github.com/jowlo/pqm4

I Adapted build system
I Uses RIOT’s hardware interfacing functions

I Report some success on M0 and M3 targets

I Crypto schemes are not ready for production use

10 / 15

https://github.com/jowlo/pqm4


PQM4 on RIOT OS

I Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen)
https://github.com/jowlo/pqm4

I Adapted build system
I Uses RIOT’s hardware interfacing functions

I Report some success on M0 and M3 targets

I Crypto schemes are not ready for production use

10 / 15

https://github.com/jowlo/pqm4


PQM4 on RIOT OS

I Ongoing work by Sara Stadler & Jonas Wloka (Uni. Bremen)
https://github.com/jowlo/pqm4

I Adapted build system
I Uses RIOT’s hardware interfacing functions

I Report some success on M0 and M3 targets

I Crypto schemes are not ready for production use

10 / 15

https://github.com/jowlo/pqm4


Optimized implementations: lattice-based schemes

I Lattice-based schemes are popular: 28 NIST submissions

I Ideal lattices: arithmetic in a polynomial ring
I Very fast (beats ECC!)
I Acceptable sizes (1-2KiB ciphertexts/keys)

I Fast polynomial multiplication, coefficients modulo q
I Varying degree n
I Prime q or

11 / 15



Optimized implementations: lattice-based schemes

I Lattice-based schemes are popular: 28 NIST submissions

I Ideal lattices: arithmetic in a polynomial ring
I Very fast (beats ECC!)
I Acceptable sizes (1-2KiB ciphertexts/keys)

I Fast polynomial multiplication, coefficients modulo q
I Varying degree n
I Prime q or

11 / 15



Optimized implementations: lattice-based schemes

I Lattice-based schemes are popular: 28 NIST submissions

I Ideal lattices: arithmetic in a polynomial ring
I Very fast (beats ECC!)
I Acceptable sizes (1-2KiB ciphertexts/keys)

I Fast polynomial multiplication, coefficients modulo q

I Varying degree n
I Prime q or

11 / 15



Optimized implementations: lattice-based schemes

I Lattice-based schemes are popular: 28 NIST submissions

I Ideal lattices: arithmetic in a polynomial ring
I Very fast (beats ECC!)
I Acceptable sizes (1-2KiB ciphertexts/keys)

I Fast polynomial multiplication, coefficients modulo q
I Varying degree n
I Prime q or q = 2n

11 / 15



Optimized implementations: lattice-based schemes

I Lattice-based schemes are popular: 28 NIST submissions

I Ideal lattices: arithmetic in a polynomial ring
I Very fast (beats ECC!)
I Acceptable sizes (1-2KiB ciphertexts/keys)

I Fast polynomial multiplication, coefficients modulo q
I Varying degree n
I Prime q or q = 2k

11 / 15



How to multiply a polynomial

I Depends on degree n

I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions
I Toom-3 / Toom-4

I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



How to multiply a polynomial

I Depends on degree n
I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions
I Toom-3 / Toom-4

I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



How to multiply a polynomial

I Depends on degree n
I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions
I Toom-3 / Toom-4

I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



How to multiply a polynomial

I Depends on degree n
I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions

I Toom-3 / Toom-4
I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



How to multiply a polynomial

I Depends on degree n
I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions
I Toom-3 / Toom-4

I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



How to multiply a polynomial

I Depends on degree n
I Break down into smaller n

I Schoolbook
I i.e. O(n2) multiplications

I Karatsuba
I trade a 1

2n-mult for additions
I Toom-3 / Toom-4

I split into 3 or 4 parts

1024

512

256

128

64

32

16

258

86

43

21 22

10 11

T4
K

T4

K

T4

K

K

K

K

T3

K

K K

K K K

12 / 15



Preliminary results

I Arbitrary degree n (≤ 1024)
I Python scripts generate ARMv7M assembly

13 / 15



Speed records
I Directly applies to several NIST submissions

I Work in progress
scheme params impl key gen encaps decaps

KINDI n = 256
q = 214

ref 22,942k 29,656k 37,817k
ours 1,101k 1,494k 1,726k

NTRU-HRSS n = 701
q = 213

ref 204,854k 5,166k 15,067k
ours 164,090k 451k 917k

NTRU-KEM n = 743
q = 211

ref 53,326k 7,144k 12,782k
ours 5,445k 1,825k 2,145k

SABER n = 256
q = 213

ref 7,123k 9,471k 12,304k
[1] 1,147k 1,444k 1,543k

ours 982k 1,277k 1,323k

RLizard n = 1024
q = 211

ref 26,428k 32,211k 57,344k
ours 626k 1,513k 1,986k

[1] Karmakar, A., Mera, J. M. B., Roy, S. S., & Verbauwhede, I. (2018). Saber on ARM. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 243-266.

14 / 15



Interested?
Find us at https://github.com/mupq/pqm4

All code available as public domain where possible.

15 / 15

https://github.com/mupq/pqm4

