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Not really, no.
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Post-quantum cryptography

I In the event of a large, practical quantum computer, we ..

I .. need new key exchange algorithms
I .. need new digital signature algorithms
I .. still have symmetric crypto

I No DLP or factoring, but various new (and old) problems
I Lattices, codes,MQ, isogenies, hashes, . . .
I Ongoing NIST not-a-competition

I This talk: hash-based signatures
I Pre-image resistance: H(x) = y ; x
I The conservative choice
I RFC 8391: XMSS and XMSSMT
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Authenticating a single bit

I Preparation step:
I Generate sYES and sNO (large random values)

I Publish sYESh( ) and sNOh( )

time passes

I Authentication step:
I Publish sYES or sNO to authenticate ‘YES’ or ‘NO’

I Anyone can check and compare to hashes
I Can never re-use!
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Lamport signatures

I ‘Classic example’ of hash-based signatures

I Private key: N pairs of random numbers

s0,1

s0,0

s1,1

s1,0

s2,1

s2,0

. . .

. . .

sN−3,1

sN−3,0

sN−2,1

sN−2,0

sN−1,1

sN−1,0

I Public key: hashes of these random numbers

s0,1h( )
s0,0h( )

s1,1h( )
s1,0h( )

s2,1h( )
s2,0h( )

. . .

. . .

sN−3,1h( )
sN−3,0h( )

sN−2,1h( )
sN−2,0h( )

sN−1,1h( )
sN−1,0h( )

I Signature on N-bit value, e.g. 100. . .110
s0,1 s1,0 s2,0 . . .. . . sN−3,1 sN−2,1 sN−1,0

I Verification: hash, compare to public key
I Can still only do this once!
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The Winternitz improvement

I Idea: sign groups of log(w) bits (let w = 2n)
I Trade time for signature and key size

I Example: w = 4, let’s sign 10 00 11 01 01

s0 s1 s2 s3 s4

c0 c1

pk:

sk:

I Checksum: Σ`1
i=1(w − 1−mi ), convert to base w
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Merkle trees

I One public key, multiple signatures?
I OTS, so multiple signatures → multiple private keys

I Merkle: build ‘authentication tree’ on top

p8p7p6p5p4p3p2p1

I Leaf pi = OTS public key i
I Parent = h(LeftChild ‖ RightChild)
I New public key: root node
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Merkle trees
I Signature must now include:

I OTS signature

I OTS public key
I Index in the Merkle tree, e.g. 5
I Nodes along the authentication path

pk

p8p7p6p5p4p3p2p1

I Verification
1. Implicitly verify OTS signature

(reconstruct OTS public key)
2. Reconstruct root node

(using authentication path)
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XMSSMT

I Number of signatures ⇒ size of tree
I Cannot reasonably generate entire tree!

I ‘Tree of trees’
I Only generate needed subtrees
I Link trees with OTS

I Remember partial tree
I Tree traversal

I Speed / size trade-offs

I In practice:
I Prevent multi-target attacks
I 64 byte public keys, 2-20KiB sig.
I Standardized as RFC 8391

pk

m
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Java Card

I Smartcard platform standard
I Oracle, ‘Java Card forum’
I 20 billion cards solds (2016)
I Java-based, but: no GC, 16-bit shorts, ...

I APIs for cryptographic primitives
I ‘Flexible’

I ~10-100KiB ROM, ~1-10KiB RAM

I XMSS on ‘bare metal’ [HBB13]
I We focus on JC 2.2.2 to 3.0.4

I Context: already-deployed Java Cards, to authenticate VPN
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Implementation

I APDU-centered design
I 256 bytes per output block

init WOTS+

chains checksum
auth
path

prepare

8x

dx

2hx

m

R, index 8x 8 nodes 3 nodes h/d nodes

I Retain leafs, compute in next tree when consumed
I Computationally most expensive part
I Slight unbalance
I Prepare after signing

I Treehash algorithm for WOTS+ leafs
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Hash functions

I SHA-256
I Many hash calls on small input
I MessageDigest API

I AES-based hashing?
I More accessible hardware support?
I Davies-Meyer? Matyas-Meyer-Oseas?
I Parallelism using ECB mode?

I Java stack is the bottleneck!

I h = 20, d = 5, 13KiB signatures; 50 sec. signing!
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Java Card API considerations
I Usability vs. flexibility vs. performance

I ‘Parallel’ hashing
I duals of existing methods, i.e. updateParallel
I Very flexible, requires expert developers

I Complete WOTS+ chains
I Combine 16 · 67 calls; overlapping inputs
I Less flexible across schemes

I WOTS+ nodes and hash trees
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Discussion

I Relevant and suitable use-case!
I Long-term security
I State management comes naturally

I The theory is ready!
I The software is ready!

I (Modulo use-case specific trade-offs)

I The platform.. is not

I Call to action for manufacturers
I .. let’s talk!

I Code is available (public domain):
https://joostrijneveld.nl/papers/javacard-xmss
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