High-speed key encapsulation from NTRU

Andreas Hiilsing!, Joost Rijneveld?, John Schanck3#,
Peter Schwabe?

1 Eindhoven University of Technology, The Netherlands
2 Radboud University, Nijmegen, The Netherlands
3 Institute for Quantum Computing, University of Waterloo, Canada
4 Security Innovation, Wilmington, MA, USA

2017-09-26
CHES 2017

1/17

Post-quantum key exchange

Want to securely exchange a key ..

2/17

Post-quantum key exchange

Want to securely exchange a key ..
. while the adversary has a quantum computer

2/17

Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

> Lattice-based schemes seem most promising
» High speed, reasonable size
» Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD'16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK™17], Kyber [BDK*17]

» Typically with real-world parameters and implementations

2/ 17

Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

> Lattice-based schemes seem most promising
» High speed, reasonable size

» Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD'16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK"17], Kyber [BDK"17]

» Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
» Now without NTRUEncrypt patents!

» Faster & more secure parameters

2/ 17

This talk

» Describe parameter choices (and KEM)
» Modulo some hand-waving
» Discuss implementation

3/17

This talk

» Describe parameter choices (and KEM)
» Modulo some hand-waving
» Discuss implementation

» Polynomial multiplications
» Polynomial inversions
» Show that it can be fast and constant time

317

This talk

» Describe parameter choices (and KEM)
» Modulo some hand-waving
» Discuss implementation

» Polynomial multiplications
» Polynomial inversions
» Show that it can be fast and constant time

Not this talk (see the paper!):

v

Fast and constant time sampling routine
History of NTRU

Security analysis of parameters

v

v

Discussion of alternatives
» Ring-LWE, NTRU Prime, ..

OW-CPA to OW-CCA2 transform [Den03] in QROM
» ‘Fusijaki-Okamoto transform for KEMs’

v

v

3/17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

4 /17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192

4 /17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)

4/17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)
> O, =x""14+ x4+ x+1
» x"—1=(x—-1) o,

4 /17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)

> b, =x" X x
» x"—1=(x—-1) o,

» sample f,g € 5/3 (i.e. coeffs. mod 3)

» lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
> Private key: f

» Publickey: h=f"1.g.-(x—1)

4 /17

NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)

> b, =x" X x
> x”—lz(X—l)-q),,

» sample f,g € 5/3 (i.e. coeffs. mod 3)

» lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
> Private key: f

» Publickey: h=f"1.g.-(x—1)

» Encrypt: e =3-r- h+lift(m)

» Decrypt: m' =e-f-f! (reduce R/q — S/3)

4 /17

Parameter choices

» n=701, p=23, and g = 8192
» R=17Z[x]/(x" —1), and S = Z[x]|/®,

» No decryption failures

» Mild assumptions! on distribution for f, g
» No assumptions on distribution for r, m

"Must be ‘non-negatively correlated’; can be fast and constant time
5/ 17

Parameter choices

» n=701, p=23, and g = 8192
» R=17Z[x]/(x" —1), and S = Z[x]|/®,
» No decryption failures

» Mild assumptions! on distribution for f, g
» No assumptions on distribution for r, m

» ®; = (x — 1) as factor of h
= h=0 mod (q, ;)
= No need for fixed Hamming-weight f and g

= No sorting or rejection sampling

"Must be ‘non-negatively correlated’; can be fast and constant time
5/ 17

Parameter choices

» n=701, p=23, and g = 8192
» R=17Z[x]/(x" —1), and S = Z[x]|/®,
» No decryption failures

» Mild assumptions! on distribution for f, g
» No assumptions on distribution for r, m

» ®; = (x — 1) as factor of h
= h=0 mod (q, ;)
= No need for fixed Hamming-weight f and g

= No sorting or rejection sampling

» &1 irreducible modulo 3 and g
= Every candidate f is invertible
= Easier constant time

!Must be ‘non-negatively correlated’; can be fast and constant time
5/ 17

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

6 /17

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

> Generate NTRU keypair
» Encapsulate:

1. Encrypt m to randomized ciphertext
» Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

6/ 17

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

> Generate NTRU keypair
» Encapsulate:

1. Encrypt m to randomized ciphertext
» Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM

6/ 17

Operations of interest

» Sampling in S/3 (K, E)

7/17

Operations of interest

v

Sampling in S/3 (K, E)

v

Multiplication in R/q (K, E, D)
Multiplication in §/3 (D)
Inversion in R/q (K)

Inversion in S/3 (K)

v

v

v

7/17

Operations of interest

» Sampling in 5/3 (K, E)

» Multiplication in R/q (K, E, D)
» Multiplication in S/3 (D)

» Inversion in R/q (K)

> Inversion in S/3 (K)

» Lift from S/3 to R/q (K, E)
» Modular arithmetic (K, E, D)

7/17

Operations of interest

» Sampling in 5/3 (K, E)

» Multiplication in R/q (K, E, D) N
» Multiplication in S/3 (D)
» Inversion in R/q (K) q

> Inversion in S/3 (K)

» Lift from S/3 to R/q (K, E)
» Modular arithmetic (K, E, D)

7/17

Operations of interest

» Sampling in 5/3 (K, E)

» Multiplication in R/q (K, E, D) N
» Multiplication in S/3 (D)
» Inversion in R/q (K) q

> Inversion in S/3 (K)

» Lift from S/3 to R/q (K, E)
» Modular arithmetic (K, E, D)

» Target platform: Intel Haswell, AVX2

7/17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

8 /17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

> 16x 16-bit words per vector register

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register

» Toom-Cook and Karatsuba multiplication

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register
» Toom-Cook and Karatsuba multiplication

» Get dimensions close to (multiples of) 16

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register
» Toom-Cook and Karatsuba multiplication

» Get dimensions close to (multiples of) 16

» Toom-4: 7 mults, 176 coeffs.

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register
» Toom-Cook and Karatsuba multiplication

» Get dimensions close to (multiples of) 16

» Toom-4: 7 mults, 176 coeffs.
» Karatsuba: 7 -3 = 21 mults, 88 coeffs.

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register

» Toom-Cook and Karatsuba multiplication

v

Get dimensions close to (multiples of) 16

v

Toom-4: 7 mults, 176 coeffs.
Karatsuba: 7 -3 = 21 mults, 88 coeffs.
Karatsuba: 21 -3 = 63 mults, 44 coeffs.

v

v

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register
» Toom-Cook and Karatsuba multiplication

» Get dimensions close to (multiples of) 16

» Toom-4: 7 mults, 176 coeffs.
» Karatsuba: 7 -3 = 21 mults, 88 coeffs.
» Karatsuba: 21 -3 = 63 mults, 44 coeffs.

> Transpose. 63 ~ 64 = 4 - 16 multiplications in parallel

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
> 16x 16-bit words per vector register
» Toom-Cook and Karatsuba multiplication

» Get dimensions close to (multiples of) 16

» Toom-4: 7 mults, 176 coeffs.

» Karatsuba: 7 -3 = 21 mults, 88 coeffs.

» Karatsuba: 21 -3 = 63 mults, 44 coeffs.

> Transpose. 63 ~ 64 = 4 - 16 multiplications in parallel
» 3x Karatsuba: 22, 11 and 5/6 coeffs.

» Schoolbook multiplication fits in registers (16x parallel)

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

>

>

>

16x 16-bit words per vector register
Toom-Cook and Karatsuba multiplication

Get dimensions close to (multiples of) 16

Toom-4: 7 mults, 176 coeffs.

Karatsuba: 7 -3 = 21 mults, 88 coeffs.

Karatsuba: 21 -3 = 63 mults, 44 coeffs.

Transpose. 63 =~ 64 = 4 - 16 multiplications in parallel
3x Karatsuba: 22, 11 and 5/6 coeffs.

Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles

8/ 17

Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

>

>

>

16x 16-bit words per vector register
Toom-Cook and Karatsuba multiplication

Get dimensions close to (multiples of) 16

Toom-4: 7 mults, 176 coeffs.

Karatsuba: 7 -3 = 21 mults, 88 coeffs.

Karatsuba: 21 -3 = 63 mults, 44 coeffs.

Transpose. 63 =~ 64 = 4 - 16 multiplications in parallel
3x Karatsuba: 22, 11 and 5/6 coeffs.

Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles \/

8/ 17

Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

9/ 17

Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

» Newton iteration: invert in R/2, scale to R/q = R/2%3
» At the cost of 8 multiplications in R/q [Sil99]

9/ 17

Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

» Newton iteration: invert in R/2, scale to R/q = R/2%3
» At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in Z/2

9/ 17

Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

10 / 17

Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

» Fermat's little theorem: 2 '—1 = 1,s0f 1= F270-2

10 / 17

Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

» Fermat's little theorem: 2 '—1 = 1,s0f 1= F270-2
» ltoh-Tsujii inversion

» 12 multiplications in R/2

» 13 multi-squarings (i.e. to the power 2™) in R/2

10 / 17

Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

» Fermat's little theorem: 2 '—1 = 1,s0f 1= F270-2
» ltoh-Tsujii inversion

» 12 multiplications in R/2

» 13 multi-squarings (i.e. to the power 2™) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2

10 / 17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

11 /17

Multiplication in R/2
Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

11 /17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

» Degree-3 Karatsuba: 6 mults, 234 coeffs.

11 /17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

» Degree-3 Karatsuba: 6 mults, 234 coeffs.
» Karatsuba: 6 -3 = 18 mults, 117 coeffs.

11 /17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

» Degree-3 Karatsuba: 6 mults, 234 coeffs.
» Karatsuba: 6 -3 = 18 mults, 117 coeffs.
» Schoolbook: 18 -4 = 72 mults, 59 ~ 64 coeffs.

11 /17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

» Degree-3 Karatsuba: 6 mults, 234 coeffs.
» Karatsuba: 6 -3 = 18 mults, 117 coeffs.
» Schoolbook: 18 -4 = 72 mults, 59 ~ 64 coeffs.

Optimized AVX2 assembly: 244 cycles

» Careful interleaving: no register spills

11 /17

Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

» Modern Intel CPUs: CLMUL instructions
» vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

» Degree-3 Karatsuba: 6 mults, 234 coeffs.
» Karatsuba: 6 -3 = 18 mults, 117 coeffs.
» Schoolbook: 18 -4 = 72 mults, 59 ~ 64 coeffs.

Optimized AVX2 assembly: 244 cycles

» Careful interleaving: no register spills

11 /17

Multi-squaring in R /2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F :X6+X5+X3+X+1 01101011

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

f =x5+x>+x3+x+1 01101011
f2 = X12—|—2X11—I—Xlo+2X9—|—2X8—|—2X7+5X6+2X5—|—2X4+2X3+X2—|—2X—|—1

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011
f2:X12—|—2X11—I—Xlo+2X9—|—2X8—|—2X7+5X6+2X5—|—2X4+2X3+X2—|—2X—|—1
=x12 4 x10 4 6 4 2 4+ 1 001010001000101

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011
f2:X12—|—2X11—I—Xlo+2X9—|—2X8—|—2X7+5X6+2X5—|—2X4+2X3+X2—|—2X—|—1
=x12 4 x10 4 6 4 2 4+ 1 001010001000101

...— 00010100

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011

f2:x12—|—2x11+x1°+2x9—|—2x8—|—2x7+5X6—|—2x5—|—2x4+2x3+x2—|—2x—|—1
=x2+x0+x0+x2+1 001010001000101
...— 00010100

=x0+ x5+ x3+x2+1 01101101

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011
f2:x12—|—2x11+x1°+2x9—|—2x8—|—2x7+5X6—|—2x5—|—2x4+2x3+x2—|—2x—|—1

=x12 4 x10 4 6 4 2 4+ 1 001010001000101

...— 00010100

=x0+ x5+ x3+x2+1 01101101

» Observation: multi-squarings are composed permutations

12 /17

Multi-squaring in R /2
Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011
f2:X12—|—2X11—I—Xlo+2X9—|—2X8—|—2X7+5X6+2X5—|—2X4+2X3+X2—|—2X—|—1

=x12 4 x10 4 6 4 2 4+ 1 001010001000101

...— 00010100

=x0+ x5+ x3+x2+1 01101101

» Observation: multi-squarings are composed permutations
» = Still ‘just’ permutations

New Goal: permutations on 701 bits

12 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

13 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

» Python tool: simulate relevant subset of AVX2

» Show bits by index, not by value
> Interactively create permutations, or generate

13 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

» Python tool: simulate relevant subset of AVX2

» Show bits by index, not by value
> Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)

» Based on patience-sort
» Relabel, find longest increasing sequences
» More efficient for structured permutations

13 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

» Python tool: simulate relevant subset of AVX2

» Show bits by index, not by value
> Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
» Based on patience-sort
» Relabel, find longest increasing sequences
» More efficient for structured permutations
2. Using vpshufb and vpermq

» Bytewise shuffling, masking
» Fairly uniform performance

13 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

» Python tool: simulate relevant subset of AVX2

» Show bits by index, not by value
> Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
» Based on patience-sort
» Relabel, find longest increasing sequences
» More efficient for structured permutations
2. Using vpshufb and vpermq

» Bytewise shuffling, masking
» Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles

13 /17

Permuting bits with AVX2

» Dedicated routines.. or generated assembly

» Python tool: simulate relevant subset of AVX2

» Show bits by index, not by value
> Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
» Based on patience-sort
» Relabel, find longest increasing sequences
» More efficient for structured permutations
2. Using vpshufb and vpermq

» Bytewise shuffling, masking
» Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles \/

13 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles
Inversion in R/2: 10322 cycles

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles
Inversion in R/2: 10322 cycles

Inversion in R/q: 107 726 cycles

» Includes some cost for conversions

14 /17

Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles
Inversion in R/2: 10322 cycles

Inversion in R/q: 107 726 cycles

» Includes some cost for conversions

14 /17

Results
» Encapsulation: 48 646 cycles

» R/q multiplication (11722)
» sampling, conversions, SHAKE128

15 /17

Results

» Encapsulation: 48 646 cycles
» R/q multiplication (11722)
» sampling, conversions, SHAKE128

> Decapsulation: 67 338 cycles

» 5/3 & R/q multiplication (2x 11722)
» encrypt (R/g multiplication, sampling)
» conversions, SHAKE128

15 /17

Results

» Encapsulation: 48 646 cycles
» R/q multiplication (11722)
» sampling, conversions, SHAKE128

> Decapsulation: 67 338 cycles
» 5/3 & R/q multiplication (2x 11722)
» encrypt (R/g multiplication, sampling)
» conversions, SHAKE128

> Key generation: 307914 cycles
5/3 inversion (159 606)
R/q inversion (107 726)
R/q multiplication (11722)
sampling, conversions

v

v vy

15 /17

Results

» Encapsulation: 48 646 cycles

» R/q multiplication (11722)
» sampling, conversions, SHAKE128

> Decapsulation: 67 338 cycles
» 5/3 & R/q multiplication (2x 11722)
» encrypt (R/g multiplication, sampling)
» conversions, SHAKE128

> Key generation: 307914 cycles
5/3 inversion (159 606)
R/q inversion (107 726)
R/q multiplication (11722)
sampling, conversions

v

v vy

» Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
» Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

15 /17

Comparison

» Comparison is hard: assumptions and optimizations vary

» See paper for footnotes

| K E D | pk sk ct
Passively secure KEMs
BCNS 25m 4.0m 482k | 4096 4096 4224
NewHope 89k 111k 19k | 1792 1824 2048
Frodo 29m 3.5m 338k |11.3k 113k 11.3k
CCA2-secure KEMs
Streamlined NTRU Prime 45017° [6.1m 60k 97k | 1600 1218 1047
spLWE-KEM 337k 8l4k 785k ? ? 804
Kyber 78k 120k 126k | 2400 1088 1184
NTRU-KEM (this work) 308k 49k 67k | 1422 1140 1281
CCA2-secure public-key encryption
NTRU ees743epl 1.2m 57k 111k | 1120 1027 980
Lizard 98m 35k 8lk | 467k 2.0m 1072

16 / 17

Takeaway

> When choosing the right parameters ..
> .. constant time key generation can be fast
» .. not just encryption / decryption;

> .. and constant time sampling can be fast

> .. without decryption failures

» NTRU can be a fast ephemeral CCA2-secure KEM

17 /17

https://joostrijneveld.nl/papers/ntrukem
https://joostrijneveld.nl/code/bitpermutations

Takeaway

v

When choosing the right parameters ..
> .. constant time key generation can be fast
» .. not just encryption / decryption;

> .. and constant time sampling can be fast

> .. without decryption failures

v

NTRU can be a fast ephemeral CCA2-secure KEM

v

Code is available (CCO Public Domain):
https://joostrijneveld.nl/papers/ntrukem

» Bit permutations tool included (CCO Public Domain):
https://joostrijneveld.nl/code/bitpermutations

17 /17

https://joostrijneveld.nl/papers/ntrukem
https://joostrijneveld.nl/code/bitpermutations

References |

B Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe.
Post-quantum key exchange — a new hope.

In Thorsten Holz and Stefan Savage, editors, Proceedings of the 25th
USENIX Security Symposium. USENIX Association, 2016.

https://cryptojedi.org/papers/#newhope.

B Joppe Bos, Craig Costello, Leo Ducas, llya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila.

Frodo: Take off the ring! Practical, quantum-secure key exchange from
LWE.

In Christopher Kruegel, Andrew Myers, and Shai Halevi, editors,
Conference on Computer and Communications Security — CCS ‘16, pages
1006-1018. ACM, 2016.

https://doi.org/10.1145/2976749.2978425.

18 / 17

https://cryptojedi.org/papers/#newhope
https://doi.org/10.1145/2976749.2978425

References |l

@ Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal.

NTRU Prime.

In Jan Camenisch and Carlisle Adams, editors, Selected Areas in
Cryptography — SAC 2017, LNCS, to appear. Springer, 2017.

http://ntruprime.cr.yp.to/papers.html.

@ Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.

Post-quantum key exchange for the TLS protocol from the ring learning
with errors problem.

In Lujo Bauer and Vitaly Shmatikov, editors, 2015 IEEE Symposium on
Security and Privacy, pages 553-570. |IEEE, 2015.

https://eprint.iacr.org/2014/599.

B Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé.

CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634, 2017.
http://eprint.iacr.org/2017/634.

19 /17

http://ntruprime.cr.yp.to/papers.html
https://eprint.iacr.org/2014/599
http://eprint.iacr.org/2017/634

References 1l

@ Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha
Son.

A practical post-quantum public-key cryptosystem based on spLWE.

In Seokhie Hong and Jong Hwan Park, editors, Information Security and
Cryptology — ICISC 2016, volume 10157 of LNCS, pages 51-74. Springer,
2017.

https://eprint.iacr.org/2016/1055.

@ Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song.

Lizard: Cut off the tail! Practical post-quantum public-key encryption
from LWE and LWR.

IACR Cryptology ePrint Archive report 2016/1126, 2016.
https://eprint.iacr.org/2016/1126.

B Alexander W. Dent.
A designer's guide to KEMs.

In Kenneth G. Paterson, editor, Cryptography and Coding, volume 2898 of
LNCS, pages 133-151. Springer, 2003.

http://www.cogentcryptography.com/papers/designer.pdf.

20 / 17

https://eprint.iacr.org/2016/1055
https://eprint.iacr.org/2016/1126
http://www.cogentcryptography.com/papers/designer.pdf

References IV

@ Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
NTRU: A ring-based public key cryptosystem.

In Joe P. Bubhler, editor, Algorithmic Number Theory — ANTS-III, volume
1423 of LNCS, pages 267—288. Springer, 1998.

http://dx.doi.org/10.1007/BFb0054868.

@ Joseph H. Silverman.
Almost inverses and fast NTRU key creation.
Technical Report #014, NTRU Cryptosystems, 1999.

Version 1. https://assets.onboardsecurity.com/static/downloads/
NTRU/resources/NTRUTech014.pdf.

21 /17

http://dx.doi.org/10.1007/BFb0054868
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

22 /17

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

» Bitslice 2-bit coeffients

» Get dimensions close to (multiples of) 256

22 /17

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

» Bitslice 2-bit coeffients

» Get dimensions close to (multiples of) 256

» bx Karatsuba, 253 mults of 22 coeffs.?
» Then 256x parallel schoolbook? Or more Karatsuba?

22 /17

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

» Bitslice 2-bit coeffients

v

Get dimensions close to (multiples of) 256

v

5x Karatsuba, 253 mults of 22 coeffs.?
Then 256x parallel schoolbook? Or more Karatsuba?

v

v

Re-use multiplication in R/q

v

Each product term stays well below g = 8192

22 /17

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

>

>

Bitslice 2-bit coeffients

Get dimensions close to (multiples of) 256

5x Karatsuba, 253 mults of 22 coeffs.?
Then 256x parallel schoolbook? Or more Karatsuba?

Re-use multiplication in R/q
Each product term stays well below g = 8192

Not optimal, but close enough and easier

22 /17

Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

>

>

Bitslice 2-bit coeffients

Get dimensions close to (multiples of) 256

5x Karatsuba, 253 mults of 22 coeffs.?
Then 256x parallel schoolbook? Or more Karatsuba?

Re-use multiplication in R/q
Each product term stays well below g = 8192

Not optimal, but close enough and easier

22 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]

» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2

23 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]

» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2

» Make constant timel!

23 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]
» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2
> Make constant time!
» Divide by x, multiply, add — for every coefficient
» 1400 iterations (as opposed to average ~933)
» Always swap f and g

23 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]
» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2
> Make constant time!
» Divide by x, multiply, add — for every coefficient
» 1400 iterations (as opposed to average ~933)
» Always swap f and g

» Truncated, bit-sliced vectors of coefficients

23 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]
» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2
> Make constant time!
» Divide by x, multiply, add — for every coefficient
» 1400 iterations (as opposed to average ~933)
» Always swap f and g

» Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159606 cycles

23 /17

Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3

» Use ‘almost inverse’ algorithm [Sil99]
» Can be seen as EGCD for S/3
> Inherently not constant time
» Ref. C code: also use this for R/2
> Make constant time!
» Divide by x, multiply, add — for every coefficient
» 1400 iterations (as opposed to average ~933)
» Always swap f and g

» Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159606 cycles

23 /17

Encapsulate and decapsulate

Encaps (h) Decaps ((e1, &), (f, h))

1: q+{0,1}# 1: m="D(e,f)

2: m = SampleT () 2: ¢ = XOF(m, i, coins)

3: ¢ = XOF(m, p1, coins) 3: k = XOF(m, p, key)

4: k = XOF(m, u1, key) 4; ef =&(m, e, h)

5. e =&(m, ¢, h) 5: e, = XOF(m, len(m), qrom)

6: e = XOF(m, len(m), qrom) 6: if (ef,€}) # (e, e2) then
Output: Ciphertext (eg,), 7. k=1

session key k. 8: end if

Output: Session key k

24 /17

	Overview

