High-speed key encapsulation from NTRU

Andreas Hülsing ${ }^{1}$, Joost Rijneveld ${ }^{2}$, John Schanck ${ }^{3,4}$, Peter Schwabe ${ }^{2}$

${ }^{1}$ Eindhoven University of Technology, The Netherlands
${ }^{2}$ Radboud University, Nijmegen, The Netherlands
${ }^{3}$ Institute for Quantum Computing, University of Waterloo, Canada
${ }^{4}$ Security Innovation, Wilmington, MA, USA

2017-09-26
CHES 2017

Post-quantum key exchange

Want to securely exchange a key ..

Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

- Lattice-based schemes seem most promising
- High speed, reasonable size
- Many schemes proposed, e.g.: [BCNS15], NewHope [ADPS16], Frodo [BCD+16], Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17], spLWE-KEM [CHK ${ }^{+}$17], Kyber [BDK+17]
- Typically with real-world parameters and implementations

Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

- Lattice-based schemes seem most promising
- High speed, reasonable size
- Many schemes proposed, e.g.: [BCNS15], NewHope [ADPS16], Frodo [BCD+16], Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17], spLWE-KEM [CHK ${ }^{+}$17], Kyber [BDK+17]
- Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]

- Now without NTRUEncrypt patents!
- Faster \& more secure parameters

This talk

- Describe parameter choices (and KEM)
- Modulo some hand-waving
- Discuss implementation

This talk

- Describe parameter choices (and KEM)
- Modulo some hand-waving
- Discuss implementation
- Polynomial multiplications
- Polynomial inversions
- Show that it can be fast and constant time

This talk

- Describe parameter choices (and KEM)
- Modulo some hand-waving
- Discuss implementation
- Polynomial multiplications
- Polynomial inversions
- Show that it can be fast and constant time

Not this talk (see the paper!):

- Fast and constant time sampling routine
- History of NTRU
- Security analysis of parameters
- Discussion of alternatives
- Ring-LWE, NTRU Prime,..
- OW-CPA to OW-CCA2 transform [Den03] in QROM
- 'Fusijaki-Okamoto transform for KEMs'

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q
- $n=701, p=3, q=8192$

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q
- $n=701, p=3, q=8192$
- Define $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$
(i.e. polys of deg. n)

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q
- $n=701, p=3, q=8192$
- Define $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$
(i.e. polys of deg. n)
- Define $S=\mathbb{Z}[x] / \Phi_{n}$
(i.e. polys of deg. $n-1$)
- $\Phi_{n}=x^{n-1}+\ldots+x^{2}+x+1$
- $x^{n}-1=(x-1) \cdot \Phi_{n}$

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q
- $n=701, p=3, q=8192$
- Define $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$
(i.e. polys of deg. n)
- Define $S=\mathbb{Z}[x] / \Phi_{n}$
(i.e. polys of deg. $n-1$)
- $\Phi_{n}=x^{n-1}+\ldots+x^{2}+x+1$
- $x^{n}-1=(x-1) \cdot \Phi_{n}$
- sample $f, g \in S / 3$
(i.e. coeffs. mod 3)
- lift f and g to f and g in R / q
(i.e. coeffs. mod 8192)
- Private key: f
- Public key: $h=f^{-1} \cdot g \cdot(x-1)$

NTRU \& parameters

- Three parameters: prime n, coprime integers p and q
- $n=701, p=3, q=8192$
- Define $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$
(i.e. polys of deg. n)
- Define $S=\mathbb{Z}[x] / \Phi_{n}$
(i.e. polys of deg. $n-1$)
- $\Phi_{n}=x^{n-1}+\ldots+x^{2}+x+1$
- $x^{n}-1=(x-1) \cdot \Phi_{n}$
- sample $f, g \in S / 3$
(i.e. coeffs. mod 3)
- lift f and g to f and g in R / q
(i.e. coeffs. mod 8192)
- Private key: f
- Public key: $h=f^{-1} \cdot g \cdot(x-1)$
- Encrypt: $e=3 \cdot r \cdot h+\operatorname{lift}(m)$
- Decrypt: $m^{\prime}=e \cdot f \cdot f^{-1}$
(reduce $R / q \rightarrow S / 3$)

Parameter choices

- $n=701, p=3$, and $q=8192$
- $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$, and $S=\mathbb{Z}[x] / \Phi_{n}$
- No decryption failures
- Mild assumptions ${ }^{1}$ on distribution for f, g
- No assumptions on distribution for r, m
${ }^{1}$ Must be 'non-negatively correlated'; can be fast and constant time

Parameter choices

- $n=701, p=3$, and $q=8192$
- $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$, and $S=\mathbb{Z}[x] / \Phi_{n}$
- No decryption failures
- Mild assumptions ${ }^{1}$ on distribution for f, g
- No assumptions on distribution for r, m
- $\Phi_{1}=(x-1)$ as factor of h
$\Rightarrow h \equiv 0 \bmod \left(q, \Phi_{1}\right)$
\Rightarrow No need for fixed Hamming-weight f and g
\Rightarrow No sorting or rejection sampling

Parameter choices

- $n=701, p=3$, and $q=8192$
- $R=\mathbb{Z}[x] /\left(x^{n}-1\right)$, and $S=\mathbb{Z}[x] / \Phi_{n}$
- No decryption failures
- Mild assumptions ${ }^{1}$ on distribution for f, g
- No assumptions on distribution for r, m
- $\Phi_{1}=(x-1)$ as factor of h
$\Rightarrow h \equiv 0 \bmod \left(q, \Phi_{1}\right)$
\Rightarrow No need for fixed Hamming-weight f and g
\Rightarrow No sorting or rejection sampling
- Φ_{701} irreducible modulo 3 and q
\Rightarrow Every candidate f is invertible
\Rightarrow Easier constant time

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

- Generate NTRU keypair
- Encapsulate:

1. Encrypt m to randomized ciphertext

- Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

- Generate NTRU keypair
- Encapsulate:

1. Encrypt m to randomized ciphertext

- Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM

Operations of interest

- Sampling in S/3 (K, E)

Operations of interest

- Sampling in S/3 (K, E)
- Multiplication in R / q (K, E, D)
- Multiplication in $S / 3$ (D)
- Inversion in R / q (K)
- Inversion in $S / 3$ (K)

Operations of interest

- Sampling in S/3 (K, E)
- Multiplication in $R / q(\mathbf{K}, \mathbf{E}, \mathbf{D})$
- Multiplication in $S / 3$ (D)
- Inversion in R / q (K)
- Inversion in $S / 3$ (K)
- Lift from $S / 3$ to $R / q(\mathbf{K}, \mathbf{E})$
- Modular arithmetic (K, E, D)

Operations of interest

- Sampling in S/3 (K, E)
- Multiplication in R / q (K, E, D)
- Multiplication in $S / 3$ (D)
- Inversion in R / q (K)
- Inversion in $S / 3$ (K)
- Lift from $S / 3$ to $R / q(\mathbf{K}, \mathbf{E})$
- Modular arithmetic (K, E, D)

Operations of interest

- Sampling in S/3 (K, E)
- Multiplication in $R / q(\mathbf{K}, \mathbf{E}, \mathbf{D})$
- Multiplication in $S / 3$ (D)
- Inversion in R / q (K)
- Inversion in $S / 3$ (K)
- Lift from $S / 3$ to $R / q(\mathbf{K}, \mathbf{E})$
- Modular arithmetic (K, E, D)
- Target platform: Intel Haswell, AVX2

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16×16-bit words per vector register

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3=63$ mults, 44 coeffs.

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3=63$ mults, 44 coeffs.
- Transpose. $63 \approx 64=4 \cdot 16$ multiplications in parallel

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3=63$ mults, 44 coeffs.
- Transpose. $63 \approx 64=4 \cdot 16$ multiplications in parallel
- 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3=63$ mults, 44 coeffs.
- Transpose. $63 \approx 64=4 \cdot 16$ multiplications in parallel
- 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles

Multiplication in R / q

Goal: multiply polynomials with 701 , coeffs. in $\mathbb{Z} / 8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3=21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3=63$ mults, 44 coeffs.
- Transpose. $63 \approx 64=4 \cdot 16$ multiplications in parallel
- 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles

Inversion in R / q

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$

Inversion in R / q

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$

- Newton iteration: invert in $R / 2$, scale to $R / q=R / 2^{13}$
- At the cost of 8 multiplications in R / q [Sil99]

Inversion in R / q

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$

- Newton iteration: invert in $R / 2$, scale to $R / q=R / 2^{13}$
- At the cost of 8 multiplications in R / q [Sil99]

New goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 2$

Inversion in $R / 2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 2$

Inversion in $R / 2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$

Inversion in $R / 2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$
- Itoh-Tsujii inversion
- 12 multiplications in $R / 2$
- 13 multi-squarings (i.e. to the power 2^{m}) in $R / 2$

Inversion in $R / 2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$
- Itoh-Tsujii inversion
- 12 multiplications in $R / 2$
- 13 multi-squarings (i.e. to the power 2^{m}) in $R / 2$

New goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$ New goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: 6-3 = 18 mults, 117 coeffs.

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3=18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4=72$ mults, $59 \approx 64$ coeffs.

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3=18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4=72$ mults, $59 \approx 64$ coeffs.

Optimized AVX2 assembly: 244 cycles

- Careful interleaving: no register spills

Multiplication in $R / 2$

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- Modern Intel CPUs: CLMUL instructions
- vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z} / 2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3=18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4=72$ mults, $59 \approx 64$ coeffs.

Optimized AVX2 assembly: 244 cycles

- Careful interleaving: no register spills

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials $\bmod \left(x^{7}-1\right)$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$
$f=x^{6}+x^{5}+x^{3}+x+1 \quad 0000000001101011$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{aligned}
& f=x^{6}+x^{5}+x^{3}+x+1 \\
& f^{2}=x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1
\end{aligned}
$$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{array}{rlr}
f & =x^{6}+x^{5}+x^{3}+x+1 & 0000000001101011 \\
f^{2} & =x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1 \\
& \equiv x^{12}+x^{10}+x^{6}+x^{2}+1 & 0001010001000101
\end{array}
$$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{array}{rlr}
f & =x^{6}+x^{5}+x^{3}+x+1 & 0000000001101011 \\
f^{2} & =x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1 \\
& \equiv x^{12}+x^{10}+x^{6}+x^{2}+1 & 0001010001000101
\end{array}
$$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{array}{rlr}
f & =x^{6}+x^{5}+x^{3}+x+1 & 0000000001101011 \\
f^{2} & =x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1 \\
& \equiv x^{12}+x^{10}+x^{6}+x^{2}+1 & 0001010001000101 \\
& \equiv x^{6}+x^{5}+x^{3}+x^{2}+1 & \ldots \rightarrow 000101000 \\
& 0000000001101101
\end{array}
$$

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{array}{rlr}
f & =x^{6}+x^{5}+x^{3}+x+1 & 0000000001101011 \\
f^{2} & =x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1 \\
& \equiv x^{12}+x^{10}+x^{6}+x^{2}+1 & 0001010001000101 \\
& \equiv x^{6}+x^{5}+x^{3}+x^{2}+1 & \ldots 000101000 \\
& 0000000001101101
\end{array}
$$

- Observation: multi-squarings are composed permutations

Multi-squaring in $R / 2$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z} / 2$

- It's actually about permuting bits!
- Example: binary polynomials mod $\left(x^{7}-1\right)$

$$
\begin{array}{rlr}
f & =x^{6}+x^{5}+x^{3}+x+1 & 0000000001101011 \\
f^{2} & =x^{12}+2 x^{11}+x^{10}+2 x^{9}+2 x^{8}+2 x^{7}+5 x^{6}+2 x^{5}+2 x^{4}+2 x^{3}+x^{2}+2 x+1 \\
& \equiv x^{12}+x^{10}+x^{6}+x^{2}+1 & 0001010001000101 \\
& \equiv x^{6}+x^{5}+x^{3}+x^{2}+1 & \ldots \rightarrow 000101000 \\
& 0000000001101101
\end{array}
$$

- Observation: multi-squarings are composed permutations
- \Rightarrow Still 'just' permutations

New Goal: permutations on 701 bits

Permuting bits with AVX2

- Dedicated routines.. or generated assembly

Permuting bits with AVX2

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
- Show bits by index, not by value
- Interactively create permutations, or generate

Permuting bits with AVX2

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
- Show bits by index, not by value
- Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)

- Based on patience-sort
- Relabel, find longest increasing sequences
- More efficient for structured permutations

Permuting bits with AVX2

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
- Show bits by index, not by value
- Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)

- Based on patience-sort
- Relabel, find longest increasing sequences
- More efficient for structured permutations

2. Using vpshufb and vpermq

- Bytewise shuffling, masking
- Fairly uniform performance

Permuting bits with AVX2

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
- Show bits by index, not by value
- Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)

- Based on patience-sort
- Relabel, find longest increasing sequences
- More efficient for structured permutations

2. Using vpshufb and vpermq

- Bytewise shuffling, masking
- Fairly uniform performance

Single squaring:
58 cycles
Average multi-squaring: 235 cycles

Permuting bits with AVX2

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
- Show bits by index, not by value
- Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)

- Based on patience-sort
- Relabel, find longest increasing sequences
- More efficient for structured permutations

2. Using vpshufb and vpermq

- Bytewise shuffling, masking
- Fairly uniform performance

Single squaring:
58 cycles
Average multi-squaring: 235 cycles

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \mathrm{x}$ mult. in $R / q+$ inversion in $R / 2$

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \mathrm{x}$ mult. in $R / q+$ inversion in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ m.-squaring in $R / 2$

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \times$ mult. in $R / q+$ inversion in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ m.-squaring in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ bit permutations

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \times$ mult. in $R / q+$ inversion in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ m.-squaring in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ bit permutations
Multiplication in R / q : 11722 cycles
Inversion in $R / 2$:
10322 cycles

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \times$ mult. in $R / q+$ inversion in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ m.-squaring in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ bit permutations
Multiplication in R / q : 11722 cycles
Inversion in $R / 2$:
10322 cycles
Inversion in R / q : 107726 cycles

- Includes some cost for conversions

Inversion in R / q (cont.)

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z} / 8192$
$=8 \times$ mult. in $R / q+$ inversion in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ m.-squaring in $R / 2$
$=8 \mathrm{x}$ mult. in $R / q+12 \mathrm{x}$ mult. in $R / 2+13 \mathrm{x}$ bit permutations
Multiplication in R / q : 11722 cycles
Inversion in $R / 2$:
10322 cycles
Inversion in R / q : 107726 cycles

- Includes some cost for conversions

Results

- Encapsulation: 48646 cycles
- R / q multiplication (11722)
- sampling, conversions, SHAKE128

Results

- Encapsulation: 48646 cycles
- R / q multiplication (11722)
- sampling, conversions, SHAKE128
- Decapsulation: 67338 cycles
- $S / 3 \& R / q$ multiplication (2×11722)
- encrypt (R / q multiplication, sampling)
- conversions, SHAKE128

Results

- Encapsulation: 48646 cycles
- R / q multiplication (11722)
- sampling, conversions, SHAKE128
- Decapsulation: 67338 cycles
- $S / 3 \& R / q$ multiplication (2×11722)
- encrypt (R / q multiplication, sampling)
- conversions, SHAKE128
- Key generation: $\underline{307914}$ cycles
- S/3 inversion (159 606)
- R / q inversion (107726)
- R / q multiplication (11722)
- sampling, conversions

Results

- Encapsulation: 48646 cycles
- R / q multiplication (11722)
- sampling, conversions, SHAKE128
- Decapsulation: 67338 cycles
- $S / 3 \& R / q$ multiplication (2×11722)
- encrypt (R / q multiplication, sampling)
- conversions, SHAKE128
- Key generation: $\underline{307914}$ cycles
- S/3 inversion (159606)
- R / q inversion (107726)
- R / q multiplication (11722)
- sampling, conversions
- Benchmarks on Intel Core i7-4770K (Haswell) at 3.5 GHz
- Keygen: $\sim 0.1 \mathrm{~ms}$, Encaps/Decaps: $\sim 0.02 \mathrm{~ms}$

Comparison

- Comparison is hard: assumptions and optimizations vary
- See paper for footnotes

	K	E	D	pk	sk	ct
Passively secure KEMs						
BCNS	2.5 m	4.0m	482k	4096	4096	4224
NewHope	89k	111k	19k	1792	1824	2048
Frodo	2.9 m	3.5 m	$338 k$	11.3k	11.3k	11.3k
CCA2-secure KEMs						
Streamlined NTRU Prime 4591 ${ }^{\text {701 }}$	6.1m	60k	97k	1600	1218	1047
spLWE-KEM	337k	814k	785k	?	?	804
Kyber	78k	120k	126k	2400	1088	1184
NTRU-KEM (this work)	308k	49k	67k	1422	1140	1281
CCA2-secure public-key encryption						
NTRU ees743ep1	1.2 m	57k	111k	1120	1027	980
Lizard	98m	35k	81k	467k	2.0 m	1072

Takeaway

- When choosing the right parameters ..
- .. constant time key generation can be fast
- .. not just encryption / decryption;
- .. and constant time sampling can be fast
- .. without decryption failures
- NTRU can be a fast ephemeral CCA2-secure KEM

Takeaway

- When choosing the right parameters ..
- .. constant time key generation can be fast
- .. not just encryption / decryption;
- .. and constant time sampling can be fast
- .. without decryption failures
- NTRU can be a fast ephemeral CCA2-secure KEM
- Code is available (CCO Public Domain): https://joostrijneveld.nl/papers/ntrukem
- Bit permutations tool included (CC0 Public Domain): https://joostrijneveld.nl/code/bitpermutations

References I

E
Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - a new hope.
In Thorsten Holz and Stefan Savage, editors, Proceedings of the 25th USENIX Security Symposium. USENIX Association, 2016.
https://cryptojedi.org/papers/\#newhope.

- Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila.
Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE.
In Christopher Kruegel, Andrew Myers, and Shai Halevi, editors, Conference on Computer and Communications Security - CCS '16, pages 1006-1018. ACM, 2016.
https://doi.org/10.1145/2976749.2978425.

References II

圊 Daniel J．Bernstein，Chitchanok Chuengsatiansup，Tanja Lange，and Christine van Vredendaal．

NTRU Prime．

In Jan Camenisch and Carlisle Adams，editors，Selected Areas in
Cryptography－SAC 2017，LNCS，to appear．Springer， 2017.
http：／／ntruprime．cr．yp．to／papers．html．
眚 Joppe W．Bos，Craig Costello，Michael Naehrig，and Douglas Stebila．
Post－quantum key exchange for the TLS protocol from the ring learning with errors problem．
In Lujo Bauer and Vitaly Shmatikov，editors， 2015 IEEE Symposium on Security and Privacy，pages 553－570．IEEE， 2015.
https：／／eprint．iacr．org／2014／599．
國 Joppe Bos，Léo Ducas，Eike Kiltz，Tancrède Lepoint，Vadim
Lyubashevsky，John M．Schanck，Peter Schwabe，and Damien Stehlé．
CRYSTALS－Kyber：a CCA－secure module－lattice－based KEM．
Cryptology ePrint Archive，Report 2017／634， 2017.
http：／／eprint．iacr．org／2017／634．

References III

R Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha Son.
A practical post-quantum public-key cryptosystem based on spLWE.
In Seokhie Hong and Jong Hwan Park, editors, Information Security and Cryptology - ICISC 2016, volume 10157 of LNCS, pages 51-74. Springer, 2017.
https://eprint.iacr.org/2016/1055.
國 Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off the tail! Practical post-quantum public-key encryption from LWE and LWR.
IACR Cryptology ePrint Archive report 2016/1126, 2016.
https://eprint.iacr.org/2016/1126.
圊
Alexander W. Dent.
A designer's guide to KEMs.
In Kenneth G. Paterson, editor, Cryptography and Coding, volume 2898 of LNCS, pages 133-151. Springer, 2003.
http://www.cogentcryptography.com/papers/designer.pdf.

References IV

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
NTRU: A ring-based public key cryptosystem.
In Joe P. Buhler, editor, Algorithmic Number Theory - ANTS-III, volume 1423 of LNCS, pages 267-288. Springer, 1998.
http://dx.doi.org/10.1007/BFb0054868.
Joseph H. Silverman.
Almost inverses and fast NTRU key creation.
Technical Report \#014, NTRU Cryptosystems, 1999.
Version 1. https://assets.onboardsecurity.com/static/downloads/ NTRU/resources/NTRUTech014.pdf.

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Bitslice 2-bit coeffients
- Get dimensions close to (multiples of) 256

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Bitslice 2-bit coeffients
- Get dimensions close to (multiples of) 256
- $5 \times$ Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Bitslice 2-bit coeffients
- Get dimensions close to (multiples of) 256
- $5 \times$ Karatsuba, 253 mults of 22 coeffs.?
- Then $256 x$ parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R / q
- Each product term stays well below $q=8192$

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Bitslice 2-bit coeffients
- Get dimensions close to (multiples of) 256
- $5 \times$ Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R / q
- Each product term stays well below $q=8192$
- Not optimal, but close enough and easier

Multiplication in $S / 3$

Goal: multiply polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Bitslice 2-bit coeffients
- Get dimensions close to (multiples of) 256
- $5 \times$ Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R / q
- Each product term stays well below $q=8192$
- Not optimal, but close enough and easier

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for $S / 3$
- Inherently not constant time
- Ref. C code: also use this for $R / 2$

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for $S / 3$
- Inherently not constant time
- Ref. C code: also use this for $R / 2$
- Make constant time!

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for $S / 3$
- Inherently not constant time
- Ref. C code: also use this for $R / 2$
- Make constant time!
- Divide by x, multiply, add - for every coefficient
- 1400 iterations (as opposed to average ~933)
- Always swap f and g

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for $S / 3$
- Inherently not constant time
- Ref. C code: also use this for $R / 2$
- Make constant time!
- Divide by x, multiply, add - for every coefficient
- 1400 iterations (as opposed to average ~933)
- Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for S/3
- Inherently not constant time
- Ref. C code: also use this for $R / 2$
- Make constant time!
- Divide by x, multiply, add - for every coefficient
- 1400 iterations (as opposed to average ~933)
- Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159606 cycles

Inversion in $S / 3$

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z} / 3$

- Use 'almost inverse' algorithm [Sil99]
- Can be seen as EGCD for S/3
- Inherently not constant time
- Ref. C code: also use this for $R / 2$
- Make constant time!
- Divide by x, multiply, add - for every coefficient
- 1400 iterations (as opposed to average ~933)
- Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159606 cycles

Encapsulate and decapsulate

Encaps (h)
1: $c_{0} \leftarrow\{0,1\}^{\mu}$
2: $m=\operatorname{Sample} \mathcal{T}\left(c_{0}\right)$
3: $c_{1}=\operatorname{XOF}(m, \mu$, coins $)$
4: $k=\operatorname{XOF}(m, \mu$, key $)$
5: $\quad e_{1}=\mathcal{E}\left(m, c_{1}, h\right)$
6: $e_{2}=\operatorname{XOF}(m$, len (m), qrom $)$
Output: Ciphertext $\left(e_{1}, e_{2}\right)$,
session key k.

```
Decaps \(\left(\left(e_{1}, e_{2}\right),(f, h)\right)\)
    1: \(m=\mathcal{D}(e, f)\)
    2: \(c_{1}=\operatorname{XOF}(m, \mu\), coins \()\)
    3: \(k=\operatorname{XOF}(m, \mu\), key \()\)
    4: \(e_{1}^{\prime}=\mathcal{E}\left(m, c_{1}, h\right)\)
    5: \(e_{2}^{\prime}=\operatorname{XOF}(m, \operatorname{len}(m)\), qrom)
    6: if \(\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \neq\left(e_{1}, e_{2}\right)\) then
    7: \(\quad k=\perp\)
    8: end if
```

Output: Session key k

