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» High speed, reasonable size

» Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD'16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK"17], Kyber [BDK"17]

» Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
» Now without NTRUEncrypt patents!

» Faster & more secure parameters
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This talk

» Describe parameter choices (and KEM)
» Modulo some hand-waving
» Discuss implementation

» Polynomial multiplications
» Polynomial inversions
» Show that it can be fast and constant time

Not this talk (see the paper!):

v

Fast and constant time sampling routine
History of NTRU

Security analysis of parameters

v

v

Discussion of alternatives
» Ring-LWE, NTRU Prime, ..

OW-CPA to OW-CCA2 transform [Den03] in QROM
» ‘Fusijaki-Okamoto transform for KEMs’

v

v

3/17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

4 /17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192

4 /17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)

4/17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢
» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)
> O, =x""14+ x4+ x+1
» x"—1=(x—-1) o,

4 /17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)

> b, =x" X x
» x"—1=(x—-1) o,

» sample f,g € 5/3 (i.e. coeffs. mod 3)

» lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
> Private key: f

» Publickey: h=f"1.g.-(x—1)

4 /17



NTRU & parameters

> Three parameters: prime n, coprime integers p and ¢

» n=701, p=3, g =28192
» Define R = Z[x]/(x" — 1) (i.e. polys of deg. n)
> Define S = Z[x]|/®, (i.e. polys of deg. n-1)

> b, =x" X x
> x”—lz(X—l)-q),,

» sample f,g € 5/3 (i.e. coeffs. mod 3)

» lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
> Private key: f

» Publickey: h=f"1.g.-(x—1)

» Encrypt: e =3-r- h+lift(m)

» Decrypt: m' =e-f-f! (reduce R/q — S/3)
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Parameter choices

» n=701, p=23, and g = 8192
» R=17Z[x]/(x" —1), and S = Z[x]|/®,

» No decryption failures

» Mild assumptions! on distribution for f, g
» No assumptions on distribution for r, m

"Must be ‘non-negatively correlated’; can be fast and constant time
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» Mild assumptions! on distribution for f, g
» No assumptions on distribution for r, m

» ®; = (x — 1) as factor of h
= h=0 mod (q, ;)
= No need for fixed Hamming-weight f and g

= No sorting or rejection sampling

» &1 irreducible modulo 3 and g
= Every candidate f is invertible
= Easier constant time

!Must be ‘non-negatively correlated’; can be fast and constant time
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NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

> Generate NTRU keypair
» Encapsulate:

1. Encrypt m to randomized ciphertext
» Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM
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Operations of interest

» Sampling in 5/3 (K, E)

» Multiplication in R/q (K, E, D) N
» Multiplication in S/3 (D)
» Inversion in R/q (K) q

> Inversion in S/3 (K)

» Lift from S/3 to R/q (K, E)
» Modular arithmetic (K, E, D)

» Target platform: Intel Haswell, AVX2
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Goal: (multi-)square polynomials with 701 coeffs. in Z/2

> It's actually about permuting bits!

» Example: binary polynomials mod (x” — 1)

F=x54+x>+x3+x+1 01101011
f2:X12—|—2X11—I—Xlo+2X9—|—2X8—|—2X7+5X6+2X5—|—2X4+2X3+X2—|—2X—|—1

=x12 4 x10 4 6 4 2 4+ 1 001010001000101

...— 00010100

=x0+ x5+ x3+x2+1 01101101

» Observation: multi-squarings are composed permutations
» = Still ‘just’ permutations

New Goal: permutations on 701 bits
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» sampling, conversions, SHAKE128

> Decapsulation: 67 338 cycles
» 5/3 & R/q multiplication (2x 11722)
» encrypt (R/g multiplication, sampling)
» conversions, SHAKE128

> Key generation: 307914 cycles
5/3 inversion (159 606)
R/q inversion (107 726)
R/q multiplication (11722)
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v

v vy

» Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
» Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms
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Comparison

» Comparison is hard: assumptions and optimizations vary

» See paper for footnotes

| K E D | pk sk ct
Passively secure KEMs
BCNS 25m 4.0m 482k | 4096 4096 4224
NewHope 89k 111k 19k | 1792 1824 2048
Frodo 29m 3.5m 338k |11.3k 113k 11.3k
CCA2-secure KEMs
Streamlined NTRU Prime 45017° [ 6.1m 60k 97k | 1600 1218 1047
spLWE-KEM 337k 8l4k 785k ? ? 804
Kyber 78k 120k 126k | 2400 1088 1184
NTRU-KEM (this work) 308k 49k 67k | 1422 1140 1281
CCA2-secure public-key encryption
NTRU ees743epl 1.2m 57k 111k | 1120 1027 980
Lizard 98m 35k 8lk | 467k 2.0m 1072
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Takeaway

> When choosing the right parameters ..
> .. constant time key generation can be fast
» .. not just encryption / decryption;

> .. and constant time sampling can be fast

> .. without decryption failures

» NTRU can be a fast ephemeral CCA2-secure KEM
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Code is available (CCO Public Domain):
https://joostrijneveld.nl/papers/ntrukem

» Bit permutations tool included (CCO Public Domain):
https://joostrijneveld.nl/code/bitpermutations
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Encapsulate and decapsulate

Encaps (h) Decaps ((e1, &), (f, h))

1: q+{0,1}# 1: m="D(e,f)

2: m = SampleT () 2: ¢ = XOF(m, i, coins)

3: ¢ = XOF(m, p1, coins) 3: k = XOF(m, p, key)

4: k = XOF(m, u1, key) 4; ef =&(m, e, h)

5. e =&(m, ¢, h) 5: e, = XOF(m, len(m), qrom)

6: e = XOF(m, len(m), qrom) 6: if (ef,€}) # (e, e2) then
Output: Ciphertext (eg, ), 7. k=1

session key k. 8: end if

Output: Session key k
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