High-speed key encapsulation from NTRU

Andreas Hülsing¹, **Joost Rijneveld**², John Schanck^{3,4}, Peter Schwabe²

¹ Eindhoven University of Technology, The Netherlands
 ² Radboud University, Nijmegen, The Netherlands
 ³ Institute for Quantum Computing, University of Waterloo, Canada
 ⁴ Security Innovation, Wilmington, MA, USA

2017-09-26 CHES 2017

Want to securely exchange a key ..

Want to securely exchange a key ..

.. while the adversary has a quantum computer

Want to securely exchange a key ...

- .. while the adversary has a quantum computer
- Lattice-based schemes seem most promising
 - High speed, reasonable size
- Many schemes proposed, e.g.: [BCNS15], NewHope [ADPS16], Frodo [BCD+16], Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17], spLWE-KEM [CHK+17], Kyber [BDK+17]

Typically with real-world parameters and implementations

Want to securely exchange a key ...

- .. while the adversary has a quantum computer
- Lattice-based schemes seem most promising
 - High speed, reasonable size
- Many schemes proposed, e.g.: [BCNS15], NewHope [ADPS16], Frodo [BCD+16], Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17], spLWE-KEM [CHK+17], Kyber [BDK+17]
 - ► Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]

- Now without NTRUEncrypt patents!
- ► Faster & more secure parameters

This talk

- Describe parameter choices (and KEM)
 - Modulo some hand-waving
- Discuss implementation

This talk

- Describe parameter choices (and KEM)
 - Modulo some hand-waving
- Discuss implementation
 - Polynomial multiplications
 - Polynomial inversions
 - Show that it can be fast and constant time

This talk

- Describe parameter choices (and KEM)
 - Modulo some hand-waving
- Discuss implementation
 - Polynomial multiplications
 - Polynomial inversions
 - Show that it can be fast and constant time

Not this talk (see the paper!):

- Fast and constant time sampling routine
- History of NTRU
- Security analysis of parameters
- Discussion of alternatives
 - ▶ Ring-LWE, NTRU Prime, ..
- OW-CPA to OW-CCA2 transform [Den03] in QROM
 - 'Fusijaki-Okamoto transform for KEMs'

▶ Three parameters: prime *n*, coprime integers *p* and *q*

Three parameters: prime n, coprime integers p and q
 n = 701, p = 3, q = 8192

► Three parameters: prime n, coprime integers p and q
► n = 701, p = 3, q = 8192
► Define R = Z[x]/(xⁿ - 1) (i.e. polys of deg. n)

Three parameters: prime n, coprime integers p and q
n = 701, p = 3, q = 8192
Define R = Z[x]/(xⁿ - 1) (i.e. polys of deg. n)
Define S = Z[x]/Φ_n (i.e. polys of deg. n-1)
Φ_n = xⁿ⁻¹ + ... + x² + x + 1
xⁿ - 1 = (x - 1) • Φ_n

• Three parameters: prime n , coprime integers p and q	
▶ $n = 701, p = 3, q = 8192$	
• Define $R = \mathbb{Z}[x]/(x^n - 1)$	(i.e. polys of deg. n)
• Define $S = \mathbb{Z}[x]/\Phi_n$	(i.e. polys of deg. n-1)
• $\Phi_n = x^{n-1} + \ldots + x^2 + x + 1$	
$\blacktriangleright x^n - 1 = (x - 1) \cdot \Phi_n$	

- ▶ sample $f, g \in S/3$
- lift f and g to f and g in R/q
- (i.e. coeffs. mod 3) (i.e. coeffs. mod 8192)

- Private key: f
- Public key: $h = f^{-1} \cdot g \cdot (x 1)$

 Three parameters: prime n, coprime integers p and q n = 701, p = 3, q = 8192 	
► $n = 701$, $p = 3$, $q = 0192$ ► Define $R = \mathbb{Z}[x]/(x^n - 1)$ ► Define $S = \mathbb{Z}[x]/\Phi_n$ ► $\Phi_n = x^{n-1} + \ldots + x^2 + x + 1$ ► $x^n - 1 = (x - 1) \cdot \Phi_n$	(i.e. polys of deg. n) (i.e. polys of deg. n-1)
▶ sample $f, g \in S/3$	(i.e. coeffs. mod 3)
 lift f and g to f and g in R/q Private key: f 	(i.e. coeffs. mod 8192)
• Public key: $h = f^{-1} \cdot g \cdot (x - 1)$	
• Encrypt: $e = 3 \cdot r \cdot h + \text{lift}(m)$	
• Decrypt : $m' = e \cdot f \cdot f^{-1}$	(reduce $R/q \rightarrow S/3$)

Parameter choices

•
$$n = 701$$
, $p = 3$, and $q = 8192$

•
$$R = \mathbb{Z}[x]/(x^n - 1)$$
, and $S = \mathbb{Z}[x]/\Phi_n$

- No decryption failures
 - Mild assumptions¹ on distribution for f, g
 - ▶ No assumptions on distribution for *r*, *m*

¹Must be 'non-negatively correlated'; can be fast and constant time

Parameter choices

•
$$n = 701$$
, $p = 3$, and $q = 8192$

•
$$R = \mathbb{Z}[x]/(x^n - 1)$$
, and $S = \mathbb{Z}[x]/\Phi_n$

- No decryption failures
 - Mild assumptions¹ on distribution for f, g
 - ▶ No assumptions on distribution for *r*, *m*

•
$$\Phi_1 = (x - 1)$$
 as factor of h
 $\Rightarrow h \equiv 0 \mod (q, \Phi_1)$
 $\Rightarrow \text{No need for fixed Hamming-weight } f \text{ and } g$
 $\Rightarrow \text{No sorting or rejection sampling}$

¹Must be 'non-negatively correlated'; can be fast and constant time

Parameter choices

•
$$n = 701$$
, $p = 3$, and $q = 8192$

•
$$R = \mathbb{Z}[x]/(x^n - 1)$$
, and $S = \mathbb{Z}[x]/\Phi_n$

- No decryption failures
 - Mild assumptions¹ on distribution for f, g
 - ▶ No assumptions on distribution for *r*, *m*

•
$$\Phi_1 = (x - 1)$$
 as factor of h
 $\Rightarrow h \equiv 0 \mod (q, \Phi_1)$
 $\Rightarrow \text{No need for fixed Hamming-weight } f \text{ and } g$
 $\Rightarrow \text{No sorting or rejection sampling}$

- ▶ Φ₇₀₁ irreducible modulo 3 and q ⇒ Every candidate f is invertible
 - \Rightarrow Easier constant time

¹Must be 'non-negatively correlated'; can be fast and constant time

Transform OW-CPA to OW-CCA2 [Den03], in QROM

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

- Generate NTRU keypair
- Encapsulate:
 - 1. Encrypt *m* to randomized ciphertext
- Decapsulate:
 - 1. Decrypt to obtain m
 - 2. Re-encrypt *m* to verify correctness

NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

- Generate NTRU keypair
- Encapsulate:
 - 1. Encrypt *m* to randomized ciphertext
- Decapsulate:
 - 1. Decrypt to obtain m
 - 2. Re-encrypt *m* to verify correctness

Some XOF calls, some additional data for QROM

► Sampling in *S*/3 (**K**, **E**)

- ► Sampling in S/3 (K, E)
- Multiplication in R/q (K, E, D)
- Multiplication in S/3 (D)
- Inversion in R/q (K)
- Inversion in S/3 (K)

- ► Sampling in S/3 (K, E)
- Multiplication in R/q (K, E, D)
- Multiplication in S/3 (D)
- Inversion in R/q (K)
- Inversion in S/3 (K)
- Lift from S/3 to R/q (K, E)
- Modular arithmetic (K, E, D)

► Sampling in S/3 (K, E)

• Multiplication in R/q (K, E, D) \triangleleft

 \triangleleft

- Multiplication in S/3 (D)
- Inversion in R/q (**K**)
- Inversion in S/3 (K)
- Lift from S/3 to R/q (**K**, **E**)
- Modular arithmetic (K, E, D)

► Sampling in *S*/3 (**K**, **E**)

• Multiplication in R/q (K, E, D) \triangleleft

 \triangleleft

- Multiplication in S/3 (D)
- Inversion in R/q (K)
- Inversion in S/3 (K)
- Lift from S/3 to R/q (K, E)
- Modular arithmetic (K, E, D)
- Target platform: Intel Haswell, AVX2

Goal: multiply polynomials with 701, coeffs. in $\mathbb{Z}/8192$

▶ 16× 16-bit words per vector register

$Multiplication \ in \ R/q$

- ▶ 16× 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication

$Multiplication \ in \ R/q$

- ▶ 16× 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16

$Multiplication \ in \ R/q$

- ▶ 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- ▶ Get dimensions close to (multiples of) 16
- ► Toom-4: 7 mults, 176 coeffs.

- ▶ 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ► Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.

- ▶ 16× 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ► Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3 = 63$ mults, 44 coeffs.

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ▶ Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3 = 63$ mults, 44 coeffs.
- Transpose. $63 \approx 64 = 4 \cdot 16$ multiplications in parallel

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ► Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3 = 63$ mults, 44 coeffs.
- Transpose. $63 \approx 64 = 4 \cdot 16$ multiplications in parallel
- ▶ 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Goal: multiply polynomials with 701, coeffs. in $\mathbb{Z}/8192$

- 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ▶ Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3 = 63$ mults, 44 coeffs.
- Transpose. $63 \approx 64 = 4 \cdot 16$ multiplications in parallel
- ▶ 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles

Goal: multiply polynomials with 701, coeffs. in $\mathbb{Z}/8192$

- ▶ 16x 16-bit words per vector register
- Toom-Cook and Karatsuba multiplication
- Get dimensions close to (multiples of) 16
- ► Toom-4: 7 mults, 176 coeffs.
- Karatsuba: $7 \cdot 3 = 21$ mults, 88 coeffs.
- Karatsuba: $21 \cdot 3 = 63$ mults, 44 coeffs.
- Transpose. $63 \approx 64 = 4 \cdot 16$ multiplications in parallel
- ▶ 3x Karatsuba: 22, 11 and 5/6 coeffs.
- Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11722 cycles

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

- ▶ Newton iteration: invert in R/2, scale to $R/q = R/2^{13}$
 - At the cost of 8 multiplications in R/q [Sil99]

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

- Newton iteration: invert in R/2, scale to $R/q = R/2^{13}$
 - At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/2$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/2$

• Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/2$

- Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$
- Itoh-Tsujii inversion
 - ▶ 12 multiplications in R/2
 - ▶ 13 multi-squarings (i.e. to the power 2^m) in R/2

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/2$

- Fermat's little theorem: $f^{2^{n-1}-1} \equiv 1$, so $f^{-1} \equiv f^{2^{700}-2}$
- Itoh-Tsujii inversion
 - ▶ 12 multiplications in R/2
 - ▶ 13 multi-squarings (i.e. to the power 2^m) in R/2

New goal: multiply polynomials with 701 coeffs. in $\mathbb{Z}/2$ **New goal:** (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3 = 18$ mults, 117 coeffs.

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3 = 18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4 = 72$ mults, $59 \approx 64$ coeffs.

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z}/2$

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3 = 18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4 = 72$ mults, $59 \approx 64$ coeffs.

Optimized AVX2 assembly: 244 cycles

Careful interleaving: no register spills

Goal: multiply polynomials with 701 coeffs. in $\mathbb{Z}/2$

- Modern Intel CPUs: CLMUL instructions
 - ▶ vpclmulqdq: Multiply 64-coeffs. polynomials over $\mathbb{Z}/2$
- Degree-3 Karatsuba: 6 mults, 234 coeffs.
- Karatsuba: $6 \cdot 3 = 18$ mults, 117 coeffs.
- Schoolbook: $18 \cdot 4 = 72$ mults, $59 \approx 64$ coeffs.

Optimized AVX2 assembly: 244 cycles

Careful interleaving: no register spills

- It's actually about permuting bits!
- Example: binary polynomials mod $(x^7 1)$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

- It's actually about permuting bits!
- Example: binary polynomials mod $(x^7 1)$

 $f = x^6 + x^5 + x^3 + x + 1 \qquad 0000\ 0000\ 0110\ 1011$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$ $\equiv x^{12} + x^{10} + x^{6} + x^{2} + 1$ $0001 \ 0100 \ 0100 \ 0101$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$ $\equiv x^{12} + x^{10} + x^{6} + x^{2} + 1$ $0001 \ 0100 \ 0100 \ 0101$ $\dots \rightarrow 0 \ 0010 \ 1000$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$ $\equiv x^{12} + x^{10} + x^{6} + x^{2} + 1$ $0001 \ 0100 \ 0100 \ 0101$ $\dots \rightarrow 0 \ 0010 \ 1000$ $\equiv x^{6} + x^{5} + x^{3} + x^{2} + 1$ $0000 \ 0000 \ 0110 \ 1101$

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$ $\equiv x^{12} + x^{10} + x^{6} + x^{2} + 1$ $0001 \ 0100 \ 0100 \ 0101$ $\dots \rightarrow 0 \ 0010 \ 1000$ $\equiv x^{6} + x^{5} + x^{3} + x^{2} + 1$ $0000 \ 0000 \ 0110 \ 1101$

Observation: multi-squarings are composed permutations

Goal: (multi-)square polynomials with 701 coeffs. in $\mathbb{Z}/2$

It's actually about permuting bits!

• Example: binary polynomials mod $(x^7 - 1)$

 $f = x^{6} + x^{5} + x^{3} + x + 1$ $f^{2} = x^{12} + 2x^{11} + x^{10} + 2x^{9} + 2x^{8} + 2x^{7} + 5x^{6} + 2x^{5} + 2x^{4} + 2x^{3} + x^{2} + 2x + 1$ $\equiv x^{12} + x^{10} + x^{6} + x^{2} + 1$ $0001 \ 0100 \ 0100 \ 0101$ $\dots \rightarrow 0 \ 0010 \ 1000$ $\equiv x^{6} + x^{5} + x^{3} + x^{2} + 1$ $0000 \ 0000 \ 0110 \ 1101$

Observation: multi-squarings are composed permutations

 \blacktriangleright \Rightarrow Still 'just' permutations

New Goal: permutations on 701 bits

Dedicated routines.. or generated assembly

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
 - Show bits by index, not by value
 - Interactively create permutations, or generate

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
 - Show bits by index, not by value
 - Interactively create permutations, or generate
- 1. Using pext and pdep (BMI2 instructions)
 - Based on patience-sort
 - Relabel, find longest increasing sequences
 - More efficient for structured permutations

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
 - Show bits by index, not by value
 - Interactively create permutations, or generate
- 1. Using pext and pdep (BMI2 instructions)
 - Based on patience-sort
 - Relabel, find longest increasing sequences
 - More efficient for structured permutations
- 2. Using vpshufb and vpermq
 - Bytewise shuffling, masking
 - Fairly uniform performance

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
 - Show bits by index, not by value
 - Interactively create permutations, or generate
- 1. Using pext and pdep (BMI2 instructions)
 - Based on patience-sort
 - Relabel, find longest increasing sequences
 - More efficient for structured permutations
- 2. Using vpshufb and vpermq
 - Bytewise shuffling, masking
 - Fairly uniform performance

Single squaring:58 cyclesAverage multi-squaring:235 cycles

- Dedicated routines.. or generated assembly
- Python tool: simulate relevant subset of AVX2
 - Show bits by index, not by value
 - Interactively create permutations, or generate
- 1. Using pext and pdep (BMI2 instructions)
 - Based on patience-sort
 - Relabel, find longest increasing sequences
 - More efficient for structured permutations
- 2. Using vpshufb and vpermq
 - Bytewise shuffling, masking
 - Fairly uniform performance

Single squaring:58 cyclesAverage multi-squaring:235 cycles

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

= 8x mult. in R/q + inversion in R/2

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

- = 8x mult. in R/q + inversion in R/2
- = 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

- = 8x mult. in R/q + inversion in R/2
- = 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
- = 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

= 8x mult. in R/q + inversion in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles Inversion in R/2: 10322 cycles

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

= 8x mult. in R/q + inversion in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles Inversion in R/2: 10322 cycles

Inversion in R/q: 107726 cycles

Includes some cost for conversions

Goal: invert polynomials with 701 coeffs. in $\mathbb{Z}/8192$

= 8x mult. in R/q + inversion in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11722 cycles Inversion in R/2: 10322 cycles

Inversion in R/q: 107726 cycles

Includes some cost for conversions

- Encapsulation: <u>48646</u> cycles
 - R/q multiplication (11722)
 - sampling, conversions, SHAKE128

- Encapsulation: <u>48646</u> cycles
 - R/q multiplication (11722)
 - sampling, conversions, SHAKE128
- Decapsulation: <u>67 338</u> cycles
 - ► *S*/3 & *R*/*q* multiplication (2x 11722)
 - encrypt (R/q multiplication, sampling)
 - conversions, SHAKE128

- Encapsulation: <u>48646</u> cycles
 - R/q multiplication (11722)
 - sampling, conversions, SHAKE128
- Decapsulation: <u>67 338</u> cycles
 - ▶ *S*/3 & *R*/*q* multiplication (2x 11722)
 - encrypt (R/q multiplication, sampling)
 - conversions, SHAKE128
- Key generation: <u>307 914</u> cycles
 - ► *S*/3 inversion (159606)
 - *R*/*q* inversion (107726)
 - R/q multiplication (11722)
 - sampling, conversions

- Encapsulation: <u>48646</u> cycles
 - R/q multiplication (11722)
 - sampling, conversions, SHAKE128
- Decapsulation: <u>67 338</u> cycles
 - ▶ *S*/3 & *R*/*q* multiplication (2x 11722)
 - encrypt (R/q multiplication, sampling)
 - conversions, SHAKE128
- Key generation: <u>307 914</u> cycles
 - ► *S*/3 inversion (159606)
 - *R*/*q* inversion (107726)
 - ▶ *R*/*q* multiplication (11722)
 - sampling, conversions
- Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
 - ► Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

Comparison

Comparison is hard: assumptions and optimizations vary

See paper for footnotes

	K	Е	D	pk	sk	ct
Passively secure KEMs						
BCNS	2.5 <i>m</i>	4.0 <i>m</i>	482 <i>k</i>	4096	4096	4224
NewHope	89 <i>k</i>	111k	19 <i>k</i>	1792	1824	2048
Frodo	2.9 <i>m</i>	3.5 <i>m</i>	338 <i>k</i>	11.3 <i>k</i>	11.3 <i>k</i>	11.3k
CCA2-secure KEMs						
Streamlined NTRU Prime 4591 ⁷⁶¹	6.1 <i>m</i>	60 <i>k</i>	97 <i>k</i>	1600	1218	1047
spLWE-KEM	337 <i>k</i>	814 <i>k</i>	785 <i>k</i>	?	?	804
Kyber	78 <i>k</i>	120 <i>k</i>	126 <i>k</i>	2400	1088	1184
NTRU-KEM (this work)	308k	49k	67k	1422	1140	1281
CCA2-secure public-key encryption						
NTRU ees743ep1	1.2 <i>m</i>	57 <i>k</i>	111k	1120	1027	980
Lizard	98 <i>m</i>	35 <i>k</i>	81 <i>k</i>	467 <i>k</i>	2.0 <i>m</i>	1072

Takeaway

- When choosing the right parameters ..
- ... constant time key generation can be fast
 - ... not just encryption / decryption;
- .. and constant time sampling can be fast
- ... without decryption failures
- NTRU can be a fast ephemeral CCA2-secure KEM

Takeaway

- When choosing the right parameters ..
- ... constant time key generation can be fast
 - ... not just encryption / decryption;
- ... and constant time sampling can be fast
- ... without decryption failures
- NTRU can be a fast ephemeral CCA2-secure KEM
- Code is available (CC0 Public Domain): https://joostrijneveld.nl/papers/ntrukem
- Bit permutations tool included (CC0 Public Domain): https://joostrijneveld.nl/code/bitpermutations

References I

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.

Post-quantum key exchange – a new hope.

In Thorsten Holz and Stefan Savage, editors, *Proceedings of the 25th USENIX Security Symposium*. USENIX Association, 2016.

https://cryptojedi.org/papers/#newhope.

Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE.

In Christopher Kruegel, Andrew Myers, and Shai Halevi, editors, *Conference on Computer and Communications Security – CCS '16*, pages 1006–1018. ACM, 2016.

https://doi.org/10.1145/2976749.2978425.

References II

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal.

NTRU Prime.

In Jan Camenisch and Carlisle Adams, editors, *Selected Areas in Cryptography – SAC 2017*, LNCS, to appear. Springer, 2017. http://ntruprime.cr.yp.to/papers.html.

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for the TLS protocol from the ring learning with errors problem.

In Lujo Bauer and Vitaly Shmatikov, editors, *2015 IEEE Symposium on Security and Privacy*, pages 553–570. IEEE, 2015.

https://eprint.iacr.org/2014/599.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/634.

References III

Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha Son.

A practical post-quantum public-key cryptosystem based on spLWE.

In Seokhie Hong and Jong Hwan Park, editors, *Information Security and Cryptology – ICISC 2016*, volume 10157 of *LNCS*, pages 51–74. Springer, 2017.

https://eprint.iacr.org/2016/1055.

Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off the tail! Practical post-quantum public-key encryption from LWE and LWR.

IACR Cryptology ePrint Archive report 2016/1126, 2016.

https://eprint.iacr.org/2016/1126.

Alexander W. Dent.

A designer's guide to KEMs.

In Kenneth G. Paterson, editor, *Cryptography and Coding*, volume 2898 of *LNCS*, pages 133–151. Springer, 2003.

http://www.cogentcryptography.com/papers/designer.pdf.

References IV

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
 NTRU: A ring-based public key cryptosystem.
 In Joe P. Buhler, editor, *Algorithmic Number Theory – ANTS-III*, volume 1423 of *LNCS*, pages 267–288. Springer, 1998.
 http://dx.doi.org/10.1007/BFb0054868.

Joseph H. Silverman.

Almost inverses and fast NTRU key creation.

Technical Report #014, NTRU Cryptosystems, 1999.

Version 1. https://assets.onboardsecurity.com/static/downloads/ NTRU/resources/NTRUTech014.pdf.

- Bitslice 2-bit coefficients
- Get dimensions close to (multiples of) 256

- Bitslice 2-bit coefficients
- Get dimensions close to (multiples of) 256
- ▶ 5x Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?

- Bitslice 2-bit coefficients
- Get dimensions close to (multiples of) 256
- ▶ 5x Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R/q
- Each product term stays well below q = 8192

- Bitslice 2-bit coefficients
- Get dimensions close to (multiples of) 256
- ▶ 5x Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R/q
- Each product term stays well below q = 8192
- Not optimal, but close enough and easier

- Bitslice 2-bit coefficients
- Get dimensions close to (multiples of) 256
- ▶ 5x Karatsuba, 253 mults of 22 coeffs.?
- Then 256x parallel schoolbook? Or more Karatsuba?
- Re-use multiplication in R/q
- Each product term stays well below q = 8192
- Not optimal, but close enough and easier

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2
- Make constant time!

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2
- Make constant time!
- Divide by x, multiply, add for every coefficient
 - ▶ 1400 iterations (as opposed to average ~933)
 - Always swap f and g

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2
- Make constant time!
- Divide by x, multiply, add for every coefficient
 - ▶ 1400 iterations (as opposed to average ~933)
 - Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z}/3$

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2
- Make constant time!
- Divide by x, multiply, add for every coefficient
 - ▶ 1400 iterations (as opposed to average ~933)
 - Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159606 cycles

Goal: invert polynomials with 700 coeffs. in $\mathbb{Z}/3$

- Use 'almost inverse' algorithm [Sil99]
 - Can be seen as EGCD for S/3
 - Inherently not constant time
 - Ref. C code: also use this for R/2
- Make constant time!
- Divide by x, multiply, add for every coefficient
 - ▶ 1400 iterations (as opposed to average ~933)
 - Always swap f and g
- Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

Encapsulate and decapsulate

Encaps(h)

1: $c_0 \leftarrow \{0, 1\}^{\mu}$ 2: $m = \text{Sample}\mathcal{T}(c_0)$ 3: $c_1 = \text{XOF}(m, \mu, \text{coins})$ 4: $k = \text{XOF}(m, \mu, \text{key})$ 5: $e_1 = \mathcal{E}(m, c_1, h)$ 6: $e_2 = \text{XOF}(m, \text{len}(m), \text{qrom})$ **Output:** Ciphertext (e_1, e_2) , session key k.

$\mathsf{Decaps}\left((e_1,e_2),(f,h)\right)$

1:
$$m = \mathcal{D}(e, f)$$

2:
$$c_1 = XOF(m, \mu, \texttt{coins})$$

3:
$$k = XOF(m, \mu, \text{key})$$

4:
$$e'_1 = \mathcal{E}(m, c_1, h)$$

5:
$$e'_2 = XOF(m, len(m), qrom)$$

6: if
$$(e'_1, e'_2) \neq (e_1, e_2)$$
 then

7:
$$k = \bot$$

Output: Session key k