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Post-quantum key exchange

Want to securely exchange a key ..

.. while the adversary has a quantum computer

I Lattice-based schemes seem most promising
I High speed, reasonable size

I Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD+16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK+17], Kyber [BDK+17]

I Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
I Now without NTRUEncrypt patents!
I Faster & more secure parameters
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This talk
I Describe parameter choices (and KEM)

I Modulo some hand-waving
I Discuss implementation

I Polynomial multiplications
I Polynomial inversions
I Show that it can be fast and constant time

Not this talk (see the paper!):
I Fast and constant time sampling routine
I History of NTRU
I Security analysis of parameters
I Discussion of alternatives

I Ring-LWE, NTRU Prime, ..
I OW-CPA to OW-CCA2 transform [Den03] in QROM

I ‘Fusijaki-Okamoto transform for KEMs’
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NTRU & parameters

I Three parameters: prime n, coprime integers p and q

I n = 701, p = 3, q = 8192
I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)
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Parameter choices

I n = 701, p = 3, and q = 8192
I R = Z[x ]/(xn − 1), and S = Z[x ]/Φn

I No decryption failures
I Mild assumptions1 on distribution for f , g
I No assumptions on distribution for r ,m

I Φ1 = (x − 1) as factor of h
⇒ h ≡ 0 mod (q,Φ1)
⇒ No need for fixed Hamming-weight f and g
⇒ No sorting or rejection sampling

I Φ701 irreducible modulo 3 and q
⇒ Every candidate f is invertible
⇒ Easier constant time

1Must be ‘non-negatively correlated’; can be fast and constant time
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NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

I Generate NTRU keypair
I Encapsulate:

1. Encrypt m to randomized ciphertext
I Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM
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Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D)
I Multiplication in S/3 (D)
I Inversion in R/q (K)
I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2
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Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X
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Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

I Newton iteration: invert in R/2, scale to R/q = R/213

I At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in Z/2
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Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

I Fermat’s little theorem: f 2n−1−1 ≡ 1, so f −1 ≡ f 2700−2

I Itoh-Tsujii inversion
I 12 multiplications in R/2
I 13 multi-squarings (i.e. to the power 2m) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2
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Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X
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I Careful interleaving: no register spills

X
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Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits
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Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X
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Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X
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Results
I Encapsulation: 48 646 cycles

I R/q multiplication (11 722)
I sampling, conversions, SHAKE128

I Decapsulation: 67 338 cycles
I S/3 & R/q multiplication (2x 11 722)
I encrypt (R/q multiplication, sampling)
I conversions, SHAKE128

I Key generation: 307 914 cycles
I S/3 inversion (159 606)
I R/q inversion (107 726)
I R/q multiplication (11 722)
I sampling, conversions

I Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
I Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms
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Comparison

I Comparison is hard: assumptions and optimizations vary
I See paper for footnotes

K E D pk sk ct
Passively secure KEMs

BCNS 2.5m 4.0m 482k 4096 4096 4224
NewHope 89k 111k 19k 1792 1824 2048
Frodo 2.9m 3.5m 338k 11.3k 11.3k 11.3k

CCA2-secure KEMs
Streamlined NTRU Prime 4591761 6.1m 60k 97k 1600 1218 1047
spLWE-KEM 337k 814k 785k ? ? 804
Kyber 78k 120k 126k 2400 1088 1184
NTRU-KEM (this work) 308k 49k 67k 1422 1140 1281

CCA2-secure public-key encryption
NTRU ees743ep1 1.2m 57k 111k 1120 1027 980
Lizard 98m 35k 81k 467k 2.0m 1072
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Takeaway

I When choosing the right parameters ..
I .. constant time key generation can be fast

I .. not just encryption / decryption;
I .. and constant time sampling can be fast
I .. without decryption failures

I NTRU can be a fast ephemeral CCA2-secure KEM

I Code is available (CC0 Public Domain):
https://joostrijneveld.nl/papers/ntrukem

I Bit permutations tool included (CC0 Public Domain):
https://joostrijneveld.nl/code/bitpermutations
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Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier
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Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles
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I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients
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Encapsulate and decapsulate

Encaps (h)

1: c0←{0, 1}µ

2: m = SampleT (c0)
3: c1 = XOF(m, µ, coins)
4: k = XOF(m, µ, key)
5: e1 = E(m, c1, h)
6: e2 = XOF(m, len(m), qrom)

Output: Ciphertext (e1, e2),
session key k.

Decaps ((e1, e2), (f , h))

1: m = D(e, f )
2: c1 = XOF(m, µ, coins)
3: k = XOF(m, µ, key)
4: e′1 = E(m, c1, h)
5: e′2 = XOF(m, len(m), qrom)
6: if (e′1, e′2) 6= (e1, e2) then
7: k = ⊥
8: end if

Output: Session key k
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