
High-speed key encapsulation from NTRU

Andreas Hülsing1, Joost Rijneveld2, John Schanck3,4,
Peter Schwabe2

1 Eindhoven University of Technology, The Netherlands
2 Radboud University, Nijmegen, The Netherlands

3 Institute for Quantum Computing, University of Waterloo, Canada
4 Security Innovation, Wilmington, MA, USA

2017-09-26
CHES 2017

1 / 17



Post-quantum key exchange

Want to securely exchange a key ..

.. while the adversary has a quantum computer

I Lattice-based schemes seem most promising
I High speed, reasonable size

I Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD+16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK+17], Kyber [BDK+17]

I Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
I Now without NTRUEncrypt patents!
I Faster & more secure parameters

2 / 17



Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

I Lattice-based schemes seem most promising
I High speed, reasonable size

I Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD+16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK+17], Kyber [BDK+17]

I Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
I Now without NTRUEncrypt patents!
I Faster & more secure parameters

2 / 17



Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

I Lattice-based schemes seem most promising
I High speed, reasonable size

I Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD+16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK+17], Kyber [BDK+17]

I Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
I Now without NTRUEncrypt patents!
I Faster & more secure parameters

2 / 17



Post-quantum key exchange

Want to securely exchange a key ..
.. while the adversary has a quantum computer

I Lattice-based schemes seem most promising
I High speed, reasonable size

I Many schemes proposed, e.g.:
[BCNS15], NewHope [ADPS16], Frodo [BCD+16],
Lizard [CKLS16], Streamlined NTRU Prime [BCLvV17],
spLWE-KEM [CHK+17], Kyber [BDK+17]

I Typically with real-world parameters and implementations

This talk: back to the basics. NTRU [HPS98]
I Now without NTRUEncrypt patents!
I Faster & more secure parameters

2 / 17



This talk
I Describe parameter choices (and KEM)

I Modulo some hand-waving
I Discuss implementation

I Polynomial multiplications
I Polynomial inversions
I Show that it can be fast and constant time

Not this talk (see the paper!):
I Fast and constant time sampling routine
I History of NTRU
I Security analysis of parameters
I Discussion of alternatives

I Ring-LWE, NTRU Prime, ..
I OW-CPA to OW-CCA2 transform [Den03] in QROM

I ‘Fusijaki-Okamoto transform for KEMs’

3 / 17



This talk
I Describe parameter choices (and KEM)

I Modulo some hand-waving
I Discuss implementation

I Polynomial multiplications
I Polynomial inversions
I Show that it can be fast and constant time

Not this talk (see the paper!):
I Fast and constant time sampling routine
I History of NTRU
I Security analysis of parameters
I Discussion of alternatives

I Ring-LWE, NTRU Prime, ..
I OW-CPA to OW-CCA2 transform [Den03] in QROM

I ‘Fusijaki-Okamoto transform for KEMs’

3 / 17



This talk
I Describe parameter choices (and KEM)

I Modulo some hand-waving
I Discuss implementation

I Polynomial multiplications
I Polynomial inversions
I Show that it can be fast and constant time

Not this talk (see the paper!):
I Fast and constant time sampling routine
I History of NTRU
I Security analysis of parameters
I Discussion of alternatives

I Ring-LWE, NTRU Prime, ..
I OW-CPA to OW-CCA2 transform [Den03] in QROM

I ‘Fusijaki-Okamoto transform for KEMs’

3 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q

I n = 701, p = 3, q = 8192
I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q
I n = 701, p = 3, q = 8192

I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q
I n = 701, p = 3, q = 8192

I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)

I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)
I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q
I n = 701, p = 3, q = 8192

I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q
I n = 701, p = 3, q = 8192

I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)

I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



NTRU & parameters

I Three parameters: prime n, coprime integers p and q
I n = 701, p = 3, q = 8192

I Define R = Z[x ]/(xn − 1) (i.e. polys of deg. n)
I Define S = Z[x ]/Φn (i.e. polys of deg. n-1)

I Φn = xn−1 + . . .+ x2 + x + 1
I xn − 1 = (x − 1) · Φn

I sample f , g ∈ S/3 (i.e. coeffs. mod 3)
I lift f and g to f and g in R/q (i.e. coeffs. mod 8192)
I Private key: f
I Public key: h = f −1 · g · (x − 1)
I Encrypt: e = 3 · r · h + lift(m)
I Decrypt: m′ = e · f · f −1 (reduce R/q → S/3)

4 / 17



Parameter choices

I n = 701, p = 3, and q = 8192
I R = Z[x ]/(xn − 1), and S = Z[x ]/Φn

I No decryption failures
I Mild assumptions1 on distribution for f , g
I No assumptions on distribution for r ,m

I Φ1 = (x − 1) as factor of h
⇒ h ≡ 0 mod (q,Φ1)
⇒ No need for fixed Hamming-weight f and g
⇒ No sorting or rejection sampling

I Φ701 irreducible modulo 3 and q
⇒ Every candidate f is invertible
⇒ Easier constant time

1Must be ‘non-negatively correlated’; can be fast and constant time
5 / 17



Parameter choices

I n = 701, p = 3, and q = 8192
I R = Z[x ]/(xn − 1), and S = Z[x ]/Φn

I No decryption failures
I Mild assumptions1 on distribution for f , g
I No assumptions on distribution for r ,m

I Φ1 = (x − 1) as factor of h
⇒ h ≡ 0 mod (q,Φ1)
⇒ No need for fixed Hamming-weight f and g
⇒ No sorting or rejection sampling

I Φ701 irreducible modulo 3 and q
⇒ Every candidate f is invertible
⇒ Easier constant time

1Must be ‘non-negatively correlated’; can be fast and constant time
5 / 17



Parameter choices

I n = 701, p = 3, and q = 8192
I R = Z[x ]/(xn − 1), and S = Z[x ]/Φn

I No decryption failures
I Mild assumptions1 on distribution for f , g
I No assumptions on distribution for r ,m

I Φ1 = (x − 1) as factor of h
⇒ h ≡ 0 mod (q,Φ1)
⇒ No need for fixed Hamming-weight f and g
⇒ No sorting or rejection sampling

I Φ701 irreducible modulo 3 and q
⇒ Every candidate f is invertible
⇒ Easier constant time

1Must be ‘non-negatively correlated’; can be fast and constant time
5 / 17



NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

I Generate NTRU keypair
I Encapsulate:

1. Encrypt m to randomized ciphertext
I Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM

6 / 17



NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

I Generate NTRU keypair
I Encapsulate:

1. Encrypt m to randomized ciphertext
I Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM

6 / 17



NTRU KEM

Transform OW-CPA to OW-CCA2 [Den03], in QROM

I Generate NTRU keypair
I Encapsulate:

1. Encrypt m to randomized ciphertext
I Decapsulate:

1. Decrypt to obtain m
2. Re-encrypt m to verify correctness

Some XOF calls, some additional data for QROM

6 / 17



Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D)
I Multiplication in S/3 (D)
I Inversion in R/q (K)
I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2

7 / 17



Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D)
I Multiplication in S/3 (D)
I Inversion in R/q (K)
I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2

7 / 17



Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D)
I Multiplication in S/3 (D)
I Inversion in R/q (K)
I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2

7 / 17



Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D) /

I Multiplication in S/3 (D)
I Inversion in R/q (K) /

I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2

7 / 17



Operations of interest

I Sampling in S/3 (K, E)

I Multiplication in R/q (K, E, D) /

I Multiplication in S/3 (D)
I Inversion in R/q (K) /

I Inversion in S/3 (K)

I Lift from S/3 to R/q (K, E)
I Modular arithmetic (K, E, D)

I Target platform: Intel Haswell, AVX2

7 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192

I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register

I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication

I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.

I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.

I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.

I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel

I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles

X

8 / 17



Multiplication in R/q

Goal: multiply polynomials with 701, coeffs. in Z/8192
I 16x 16-bit words per vector register
I Toom-Cook and Karatsuba multiplication
I Get dimensions close to (multiples of) 16

I Toom-4: 7 mults, 176 coeffs.
I Karatsuba: 7 · 3 = 21 mults, 88 coeffs.
I Karatsuba: 21 · 3 = 63 mults, 44 coeffs.
I Transpose. 63 ≈ 64 = 4 · 16 multiplications in parallel
I 3x Karatsuba: 22, 11 and 5/6 coeffs.
I Schoolbook multiplication fits in registers (16x parallel)

Optimized AVX2 assembly: 11 722 cycles X

8 / 17



Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

I Newton iteration: invert in R/2, scale to R/q = R/213

I At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in Z/2

9 / 17



Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

I Newton iteration: invert in R/2, scale to R/q = R/213

I At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in Z/2

9 / 17



Inversion in R/q

Goal: invert polynomials with 701 coeffs. in Z/8192

I Newton iteration: invert in R/2, scale to R/q = R/213

I At the cost of 8 multiplications in R/q [Sil99]

New goal: invert polynomials with 701 coeffs. in Z/2

9 / 17



Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

I Fermat’s little theorem: f 2n−1−1 ≡ 1, so f −1 ≡ f 2700−2

I Itoh-Tsujii inversion
I 12 multiplications in R/2
I 13 multi-squarings (i.e. to the power 2m) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2

10 / 17



Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

I Fermat’s little theorem: f 2n−1−1 ≡ 1, so f −1 ≡ f 2700−2

I Itoh-Tsujii inversion
I 12 multiplications in R/2
I 13 multi-squarings (i.e. to the power 2m) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2

10 / 17



Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

I Fermat’s little theorem: f 2n−1−1 ≡ 1, so f −1 ≡ f 2700−2

I Itoh-Tsujii inversion
I 12 multiplications in R/2
I 13 multi-squarings (i.e. to the power 2m) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2

10 / 17



Inversion in R/2

Goal: invert polynomials with 701 coeffs. in Z/2

I Fermat’s little theorem: f 2n−1−1 ≡ 1, so f −1 ≡ f 2700−2

I Itoh-Tsujii inversion
I 12 multiplications in R/2
I 13 multi-squarings (i.e. to the power 2m) in R/2

New goal: multiply polynomials with 701 coeffs. in Z/2
New goal: (multi-)square polynomials with 701 coeffs. in Z/2

10 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.

I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.

I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multiplication in R/2

Goal: multiply polynomials with 701 coeffs. in Z/2

I Modern Intel CPUs: CLMUL instructions
I vpclmulqdq: Multiply 64-coeffs. polynomials over Z/2

I Degree-3 Karatsuba: 6 mults, 234 coeffs.
I Karatsuba: 6 · 3 = 18 mults, 117 coeffs.
I Schoolbook: 18 · 4 = 72 mults, 59 ≈ 64 coeffs.

Optimized AVX2 assembly: 244 cycles
I Careful interleaving: no register spills

X

11 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011

f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101

. . .→ 0 0010 1000
≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations

I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Multi-squaring in R/2

Goal: (multi-)square polynomials with 701 coeffs. in Z/2

I It’s actually about permuting bits!
I Example: binary polynomials mod (x7 − 1)

f = x6 + x5 + x3 + x + 1 0000 0000 0110 1011
f 2 = x12 + 2x11 + x10 + 2x9 + 2x8 + 2x7 + 5x6 + 2x5 + 2x4 + 2x3 + x2 + 2x + 1

≡ x12 + x10 + x6 + x2 + 1 0001 0100 0100 0101
. . .→ 0 0010 1000

≡ x6 + x5 + x3 + x2 + 1 0000 0000 0110 1101

I Observation: multi-squarings are composed permutations
I ⇒ Still ‘just’ permutations

New Goal: permutations on 701 bits

12 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X

13 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X

13 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X

13 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X

13 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles

X

13 / 17



Permuting bits with AVX2

I Dedicated routines.. or generated assembly

I Python tool: simulate relevant subset of AVX2
I Show bits by index, not by value
I Interactively create permutations, or generate

1. Using pext and pdep (BMI2 instructions)
I Based on patience-sort
I Relabel, find longest increasing sequences
I More efficient for structured permutations

2. Using vpshufb and vpermq
I Bytewise shuffling, masking
I Fairly uniform performance

Single squaring: 58 cycles
Average multi-squaring: 235 cycles X

13 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2

= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2

= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Inversion in R/q (cont.)

Goal: invert polynomials with 701 coeffs. in Z/8192

= 8x mult. in R/q + inversion in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x m.-squaring in R/2
= 8x mult. in R/q + 12x mult. in R/2 + 13x bit permutations

Multiplication in R/q: 11 722 cycles
Inversion in R/2: 10 322 cycles

Inversion in R/q: 107 726 cycles
I Includes some cost for conversions

X

14 / 17



Results
I Encapsulation: 48 646 cycles

I R/q multiplication (11 722)
I sampling, conversions, SHAKE128

I Decapsulation: 67 338 cycles
I S/3 & R/q multiplication (2x 11 722)
I encrypt (R/q multiplication, sampling)
I conversions, SHAKE128

I Key generation: 307 914 cycles
I S/3 inversion (159 606)
I R/q inversion (107 726)
I R/q multiplication (11 722)
I sampling, conversions

I Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
I Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

15 / 17



Results
I Encapsulation: 48 646 cycles

I R/q multiplication (11 722)
I sampling, conversions, SHAKE128

I Decapsulation: 67 338 cycles
I S/3 & R/q multiplication (2x 11 722)
I encrypt (R/q multiplication, sampling)
I conversions, SHAKE128

I Key generation: 307 914 cycles
I S/3 inversion (159 606)
I R/q inversion (107 726)
I R/q multiplication (11 722)
I sampling, conversions

I Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
I Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

15 / 17



Results
I Encapsulation: 48 646 cycles

I R/q multiplication (11 722)
I sampling, conversions, SHAKE128

I Decapsulation: 67 338 cycles
I S/3 & R/q multiplication (2x 11 722)
I encrypt (R/q multiplication, sampling)
I conversions, SHAKE128

I Key generation: 307 914 cycles
I S/3 inversion (159 606)
I R/q inversion (107 726)
I R/q multiplication (11 722)
I sampling, conversions

I Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
I Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

15 / 17



Results
I Encapsulation: 48 646 cycles

I R/q multiplication (11 722)
I sampling, conversions, SHAKE128

I Decapsulation: 67 338 cycles
I S/3 & R/q multiplication (2x 11 722)
I encrypt (R/q multiplication, sampling)
I conversions, SHAKE128

I Key generation: 307 914 cycles
I S/3 inversion (159 606)
I R/q inversion (107 726)
I R/q multiplication (11 722)
I sampling, conversions

I Benchmarks on Intel Core i7-4770K (Haswell) at 3.5GHz
I Keygen: ~0.1ms, Encaps/Decaps: ~0.02ms

15 / 17



Comparison

I Comparison is hard: assumptions and optimizations vary
I See paper for footnotes

K E D pk sk ct
Passively secure KEMs

BCNS 2.5m 4.0m 482k 4096 4096 4224
NewHope 89k 111k 19k 1792 1824 2048
Frodo 2.9m 3.5m 338k 11.3k 11.3k 11.3k

CCA2-secure KEMs
Streamlined NTRU Prime 4591761 6.1m 60k 97k 1600 1218 1047
spLWE-KEM 337k 814k 785k ? ? 804
Kyber 78k 120k 126k 2400 1088 1184
NTRU-KEM (this work) 308k 49k 67k 1422 1140 1281

CCA2-secure public-key encryption
NTRU ees743ep1 1.2m 57k 111k 1120 1027 980
Lizard 98m 35k 81k 467k 2.0m 1072

16 / 17



Takeaway

I When choosing the right parameters ..
I .. constant time key generation can be fast

I .. not just encryption / decryption;
I .. and constant time sampling can be fast
I .. without decryption failures

I NTRU can be a fast ephemeral CCA2-secure KEM

I Code is available (CC0 Public Domain):
https://joostrijneveld.nl/papers/ntrukem

I Bit permutations tool included (CC0 Public Domain):
https://joostrijneveld.nl/code/bitpermutations

17 / 17

https://joostrijneveld.nl/papers/ntrukem
https://joostrijneveld.nl/code/bitpermutations


Takeaway

I When choosing the right parameters ..
I .. constant time key generation can be fast

I .. not just encryption / decryption;
I .. and constant time sampling can be fast
I .. without decryption failures

I NTRU can be a fast ephemeral CCA2-secure KEM

I Code is available (CC0 Public Domain):
https://joostrijneveld.nl/papers/ntrukem

I Bit permutations tool included (CC0 Public Domain):
https://joostrijneveld.nl/code/bitpermutations

17 / 17

https://joostrijneveld.nl/papers/ntrukem
https://joostrijneveld.nl/code/bitpermutations


References I

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange – a new hope.
In Thorsten Holz and Stefan Savage, editors, Proceedings of the 25th
USENIX Security Symposium. USENIX Association, 2016.
https://cryptojedi.org/papers/#newhope.

Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila.
Frodo: Take off the ring! Practical, quantum-secure key exchange from
LWE.
In Christopher Kruegel, Andrew Myers, and Shai Halevi, editors,
Conference on Computer and Communications Security – CCS ‘16, pages
1006–1018. ACM, 2016.
https://doi.org/10.1145/2976749.2978425.

18 / 17

https://cryptojedi.org/papers/#newhope
https://doi.org/10.1145/2976749.2978425


References II
Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal.
NTRU Prime.
In Jan Camenisch and Carlisle Adams, editors, Selected Areas in
Cryptography – SAC 2017, LNCS, to appear. Springer, 2017.
http://ntruprime.cr.yp.to/papers.html.

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
Post-quantum key exchange for the TLS protocol from the ring learning
with errors problem.
In Lujo Bauer and Vitaly Shmatikov, editors, 2015 IEEE Symposium on
Security and Privacy, pages 553–570. IEEE, 2015.
https://eprint.iacr.org/2014/599.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé.
CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634, 2017.
http://eprint.iacr.org/2017/634.

19 / 17

http://ntruprime.cr.yp.to/papers.html
https://eprint.iacr.org/2014/599
http://eprint.iacr.org/2017/634


References III
Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha
Son.
A practical post-quantum public-key cryptosystem based on spLWE.
In Seokhie Hong and Jong Hwan Park, editors, Information Security and
Cryptology – ICISC 2016, volume 10157 of LNCS, pages 51–74. Springer,
2017.
https://eprint.iacr.org/2016/1055.

Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song.
Lizard: Cut off the tail! Practical post-quantum public-key encryption
from LWE and LWR.
IACR Cryptology ePrint Archive report 2016/1126, 2016.
https://eprint.iacr.org/2016/1126.

Alexander W. Dent.
A designer’s guide to KEMs.
In Kenneth G. Paterson, editor, Cryptography and Coding, volume 2898 of
LNCS, pages 133–151. Springer, 2003.
http://www.cogentcryptography.com/papers/designer.pdf.

20 / 17

https://eprint.iacr.org/2016/1055
https://eprint.iacr.org/2016/1126
http://www.cogentcryptography.com/papers/designer.pdf


References IV

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.
NTRU: A ring-based public key cryptosystem.
In Joe P. Buhler, editor, Algorithmic Number Theory – ANTS-III, volume
1423 of LNCS, pages 267–288. Springer, 1998.
http://dx.doi.org/10.1007/BFb0054868.

Joseph H. Silverman.
Almost inverses and fast NTRU key creation.
Technical Report #014, NTRU Cryptosystems, 1999.
Version 1. https://assets.onboardsecurity.com/static/downloads/
NTRU/resources/NTRUTech014.pdf.

21 / 17

http://dx.doi.org/10.1007/BFb0054868
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf


Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3

I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier

X

22 / 17



Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3
I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier

X

22 / 17



Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3
I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier

X

22 / 17



Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3
I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192

I Not optimal, but close enough and easier

X

22 / 17



Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3
I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier

X

22 / 17



Multiplication in S/3

Goal: multiply polynomials with 700 coeffs. in Z/3
I Bitslice 2-bit coeffients
I Get dimensions close to (multiples of) 256

I 5x Karatsuba, 253 mults of 22 coeffs.?
I Then 256x parallel schoolbook? Or more Karatsuba?

I Re-use multiplication in R/q
I Each product term stays well below q = 8192
I Not optimal, but close enough and easier

X

22 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!

I Divide by x , multiply, add — for every coefficient
I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Inversion in S/3

Goal: invert polynomials with 700 coeffs. in Z/3
I Use ‘almost inverse’ algorithm [Sil99]

I Can be seen as EGCD for S/3
I Inherently not constant time
I Ref. C code: also use this for R/2

I Make constant time!
I Divide by x , multiply, add — for every coefficient

I 1400 iterations (as opposed to average ~933)
I Always swap f and g

I Truncated, bit-sliced vectors of coefficients

Inversion in S/3: 159 606 cycles

X

23 / 17



Encapsulate and decapsulate

Encaps (h)

1: c0←{0, 1}µ

2: m = SampleT (c0)
3: c1 = XOF(m, µ, coins)
4: k = XOF(m, µ, key)
5: e1 = E(m, c1, h)
6: e2 = XOF(m, len(m), qrom)

Output: Ciphertext (e1, e2),
session key k.

Decaps ((e1, e2), (f , h))

1: m = D(e, f )
2: c1 = XOF(m, µ, coins)
3: k = XOF(m, µ, key)
4: e′1 = E(m, c1, h)
5: e′2 = XOF(m, len(m), qrom)
6: if (e′1, e′2) 6= (e1, e2) then
7: k = ⊥
8: end if

Output: Session key k

24 / 17


	Overview

