Implementing SPHINCS with restricted memory

Joost Rijneveld
Master Thesis in CS
Radboud University

May 2015

What?

- Quantum computers break classic public-key crypto

What?

- Quantum computers break classic public-key crypto
- SPHINCS: a post-quantum signature scheme
- Implementation exists, uses several MBs of RAM

What?

- Quantum computers break classic public-key crypto
- SPHINCS: a post-quantum signature scheme
- Implementation exists, uses several MBs of RAM
- ..make it use less memory!

What?

- Quantum computers break classic public-key crypto
- SPHINCS: a post-quantum signature scheme
- Implementation exists, uses several MBs of RAM
- ..make it use less memory!
- This talk:
- Relevant crypto context
- SPHINCS
- Implementation details

What?

- Quantum computers break classic public-key crypto
- SPHINCS: a post-quantum signature scheme
- Implementation exists, uses several MBs of RAM
- ..make it use less memory!
- This talk:
- Relevant crypto context
- SPHINCS
- Implementation details
- Not this talk:
- Background on public key crypto / hashes in general
- Other post-quantum crypto
- Quantum computing / crypto

Cryptographic context

- SPHINCS ${ }^{1}$: Stateless, practical, hash-based, incredibly nice cryptographic signatures
- Hashes do not fall to Shor (but halved by Grover)
- Hash-based schemes: conservative choice post-quantum
- Fundamental building block

[^0]
Lamport signatures

- 'Classic example' of hash-based signatures

Lamport signatures

- 'Classic example' of hash-based signatures
- Private key: N pairs of random numbers

$s_{0,0}$	S $s_{1,0}$	$S_{2,0}$	$S^{\prime}+3,0$	$S_{N-2,0}$	1,0
$s_{0,1}$	s $s_{1,1}$	S ${ }_{2,1}$	$S^{\prime}{ }^{\prime}$	$S^{\prime}{ }^{\prime}$	${ }^{(}{ }_{N-1,1}$

Lamport signatures

- 'Classic example' of hash-based signatures
- Private key: N pairs of random numbers

- Public key: hashes of these random numbers

$$
\begin{aligned}
& \left.\mathrm{h}\left(s_{0,0}\right) \mathrm{h}\left(s_{1,0}\right) \mathrm{h}\left(s_{2,0}\right)\right) \\
& \mathrm{h}\left(s_{0,1}\right) \mathrm{h}\left(s_{1,1}\right) \mathrm{h}\left(s_{2,1}\right) \\
& \left.\left.\left.\mathrm{s}, s_{N-3,0}\right)\right) \mathrm{~h}\left(s_{N-2,0}\right) \mathrm{h}\left(s_{N-1,0}\right)\right) \\
& \left.\left.\mathrm{s}\left(s_{N-3,1}\right)\right) \mathrm{h}\left(s_{N-2,1}\right)\right) \mathrm{h}\left(s_{N-1,1}\right)
\end{aligned}
$$

Lamport signatures

- 'Classic example' of hash-based signatures
- Private key: N pairs of random numbers

- Public key: hashes of these random numbers

- Signature on N-bit value, e.g. 100... 110

$$
\begin{array}{lllll}
& s_{0,1} & s_{1,0} & s_{2,0} & \cdots
\end{array} s_{N-3,1} \quad s_{N-2,1} \quad s_{N-1,0}
$$

- Verification: hash, compare to public key

Lamport signatures

- 'Classic example' of hash-based signatures
- Private key: N pairs of random numbers

- Public key: hashes of these random numbers

- Signature on N-bit value, e.g. 100... 110

$$
\begin{array}{lllll}
& s_{0,1} & s_{1,0} & s_{2,0} & \cdots
\end{array} s_{N-3,1} \quad s_{N-2,1} \quad s_{N-1,0}
$$

- Verification: hash, compare to public key
- Can only do this once!

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys
- Merkle: build 'authentication tree' on top

- Leaf $h_{i}=\mathrm{h}$ (Public key i)

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys
- Merkle: build 'authentication tree' on top

- Leaf $h_{i}=\mathrm{h}$ (Public key i)
- Parent $=\mathrm{h}$ (LeftChild $\|$ RightChild)

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys
- Merkle: build 'authentication tree' on top

- Leaf $h_{i}=\mathrm{h}$ (Public key i)
- Parent $=\mathrm{h}($ LeftChild $\|$ RightChild $)$

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys
- Merkle: build 'authentication tree' on top

- Leaf $h_{i}=\mathrm{h}$ (Public key i)
- Parent $=\mathrm{h}($ LeftChild $\|$ RightChild $)$

Merkle trees

- One public key, multiple signatures?
- OTS, so multiple signatures \rightarrow multiple private keys
- Merkle: build 'authentication tree' on top

- Leaf $h_{i}=\mathrm{h}$ (Public key i)
- Parent $=\mathrm{h}$ (LeftChild $\|$ RightChild)
- New public key: root node

Merkle trees

- Signature must now include:
- Lamport signature σ
- Public key α
- Position in the Merkle tree, e.g. 5
- Nodes along the authentication path

Merkle trees

- Signature must now include:
- Lamport signature σ
- Public key α
- Position in the Merkle tree, e.g. 5
- Nodes along the authentication path

Merkle trees

- Signature must now include:
- Lamport signature σ
- Public key α
- Position in the Merkle tree, e.g. 5
- Nodes along the authentication path

- Verification: reconstruct root node

Why not?

- Hashes (256-bit) survive post-quantum
- Signing is fast
- Keys are small
- Private key generated from small seed
- Signatures are somewhat large..

Why not?

- Hashes (256-bit) survive post-quantum
- Signing is fast
- Keys are small
- Private key generated from small seed
- Signatures are somewhat large..
- Need to remember the last used index!
- Terribly inconvenient

SPHINCS

- Large Merkle tree, height h
- Every d-th layer signs child node using an OTS
- Effectively a hypertree of h / d Merkle trees
- Sign messages using leaf nodes

SPHINCS

- Large Merkle tree, height h
- Every d-th layer signs child node using an OTS
- Effectively a hypertree of h / d Merkle trees
- Sign messages using leaf nodes
- No need to remember index: stateless

Stateless?

- Large tree \rightarrow many leaf nodes \rightarrow small chance of duplicates

Stateless?

- Large tree \rightarrow many leaf nodes \rightarrow small chance of duplicates
- Layers of OTS: no need to compute entire tree
- Layers of hashing: acceptable signature size

Stateless?

- Large tree \rightarrow many leaf nodes \rightarrow small chance of duplicates
- Layers of OTS: no need to compute entire tree
- Layers of hashing: acceptable signature size
- 'Few time signature scheme' (FTS) for leaf nodes
- Chance of a break becomes negligible

Key generation

- Generate random values $S K_{1}$ and $S K_{2}$
- Use $S K_{1}$: generate OTS keys of top sub-tree
- Compute root node (recall: the sub-tree is a Merkle tree)
- PK: root node

Key generation

- Generate random values $S K_{1}$ and $S K_{2}$
- Use $S K_{1}$: generate OTS keys of top sub-tree
- Compute root node (recall: the sub-tree is a Merkle tree)
- PK: root node
- In general: $S K_{1}$ generates OTS and FTS keys deterministically

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$
- Sign FTS key using OTS, produce $\sigma_{O T S_{1}}$

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$
- Sign FTS key using OTS, produce $\sigma_{O T S_{1}}$
- Compute authentication path through Merkle tree

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$
- Sign FTS key using OTS, produce $\sigma_{O T S_{1}}$
- Compute authentication path through Merkle tree
- Sign root node of subtree using next OTS, produce $\sigma_{O T s_{2}}$

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$
- Sign FTS key using OTS, produce $\sigma_{O T S_{1}}$
- Compute authentication path through Merkle tree
- Sign root node of subtree using next OTS, produce $\sigma_{O T S_{2}}$
- Repeat.

Signing

- Pick an FTS leaf node
- But not randomly! $R=f\left(S K_{2}, M\right)$
- Deterministic signatures
- Sign digest of M, produce $\sigma_{F T S}$
- Sign FTS key using OTS, produce $\sigma_{O T S_{1}}$
- Compute authentication path through Merkle tree
- Sign root node of subtree using next OTS, produce $\sigma_{\mathrm{OTS}_{2}}$
- Repeat.. until root node
- Signature: $\Sigma=$ $\left(R, \sigma_{F T S},\left(\sigma_{O T S_{1}}\right.\right.$, Auth $\left._{1}\right),\left(\sigma_{O T S_{2}}\right.$, Auth $\left._{2}\right), \ldots,\left(\sigma_{O T S_{h / d}}\right.$, Auth $\left.\left._{h / d}\right)\right)$

SPHINCS-256

- 41KB signatures, 1 KB keys
- 256-bit hash functions
- 128-bit post-quantum security
- $h=60, d=5$: 12 layers of sub-trees
- 2^{60} leaf nodes

Building blocks

- OTS
- Hash functions
- Key expansion function
- FTS

Building blocks

- OTS: Winternitz OTS variant (WOTS+)
- Hash functions: BLAKE, $\pi_{\text {ChaCha }}$
- Key expansion function: ChaCha12
- FTS: HORST

Building blocks

- OTS: Winternitz OTS variant (WOTS+)
- Hash functions: BLAKE, $\pi_{\text {ChaCha }}$
- Key expansion function: ChaCha ${ }_{12}$
- FTS: HORST
- Contains 16 -layer Merkle tree (so 2^{16} leafs)
- Goal: 32 authentication paths, root node
- Complete tree takes approx. 2MB RAM..

Platform and implementation

- STM32L100C board with Cortex M3
- libopencm3 firmware
- $32 \mathrm{MHz}, 32$-bit architecture
- 16KB RAM

Platform and implementation

- STM32L100C board with Cortex M3
- libopencm3 firmware
- $32 \mathrm{MHz}, 32$-bit architecture
- 16KB RAM
- Based on SPHINCS-256 for Haswell
- Replaced asm with other implementations

Treehash

- HORST tree is too large: 2 MB !

Treehash

- HORST tree is too large: 2 MB !
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2 MB !
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2 MB !
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash

- HORST tree is too large: 2MB!
- Treehash: only remember relevant nodes
- Maintain a stack: max. 16 nodes

Treehash considerations

- Identify relevant nodes

Treehash considerations

- Identify relevant nodes
- Identify relevant rounds

Treehash considerations

- Identify relevant nodes
- Identify relevant rounds
- Identify relevant nodes in rounds (bitmasks)

Treehash considerations

- Identify relevant nodes
- Identify relevant rounds
- Identify relevant nodes in rounds (bitmasks)
- Key observation: sort masks by round index
- Simply maintain a pointer

Treehash considerations

- Identify relevant nodes
- Identify relevant rounds
- Identify relevant nodes in rounds (bitmasks)
- Key observation: sort masks by round index
- Simply maintain a pointer
- Output in the appropriate order..

Streaming

- Cannot store signature \rightarrow stream out immediately
- HORST not ordered properly!

Streaming

- Cannot store signature \rightarrow stream out immediately
- HORST not ordered properly!
- Tags (max. 832 bytes)
- Re-arrange on the host

Streaming

- Cannot store signature \rightarrow stream out immediately
- HORST not ordered properly!
- Tags (max. 832 bytes)
- Re-arrange on the host
- Cannot store expanded key material
- Interleave ChaCha12 and Treehash

Performance

- Works on 16KB RAM

Performance

- Works on 16KB RAM
- Signing: 1681333801 cycles
- Key generation: 73986826 cycles
- Recall 32 MHz , so roughly 52 seconds
- On 4-core Haswell:
"[..] signs hundreds of messages per second."

Performance

- Works on 16KB RAM
- Signing: 1681333801 cycles
- Key generation: 73986826 cycles
- Recall 32 MHz , so roughly 52 seconds
- On 4-core Haswell:
"[..] signs hundreds of messages per second."
- Hash-based? ChaCha cycles account for nearly 70\%!

TODO

- Implement verification
- Implement ChaCha in ARMv7-M asm
- Operate on messages of arbitrary size
- Cache (partial) authentication paths

Conclusions

- SPHINCS could replace RSA / ECC / ... for signing
- Stateless \rightarrow drop-in replacement
- Conservative security choice
- Feasible on limited platforms
- Hard memory limit: \checkmark
- Time efficiency: gradual optimisation

Lamport signatures

- 'Classic example' of hash-based signatures
- Private key: N pairs of random numbers

- Public key: hashes of these random numbers

- Signature on N-bit value, e.g. 100... 110

$$
\begin{array}{lllll}
& s_{0,1} & s_{1,0} & s_{2,0} & \cdots
\end{array} s_{N-3,1} \quad s_{N-2,1} \quad s_{N-1,0}
$$

- Verification: hash, compare to public key
- Can only do this once!

The Winternitz improvement

- Trade time for signature and public key size
- Idea: sign groups of m bits, let $w=2^{m}$

The Winternitz improvement

- Trade time for signature and public key size
- Idea: sign groups of m bits, let $w=2^{m}$
- Private key: N / m random numbers

$$
\text { (S } \quad S_{0} \quad s_{1} \quad S_{2} \quad \cdots \quad S_{N / m-3} \quad s_{N / m-2} \quad s_{N / m-1}
$$

The Winternitz improvement

- Trade time for signature and public key size
- Idea: sign groups of m bits, let $w=2^{m}$
- Private key: N / m random numbers

- Public key: hash w times

$$
h^{w}\left((S _ { 0 }) h ^ { w } \left(\left(S_{1}\right) h^{w}\left(S_{2}\right) \cdots h^{w}\left(S_{N / m-3}\right) h^{w}\left(S_{N / m-2}\right) h^{w}\left(S_{N / m-1}\right)\right.\right.
$$

The Winternitz improvement

- Trade time for signature and public key size
- Idea: sign groups of m bits, let $w=2^{m}$
- Private key: N / m random numbers
(50)

(S_{2}..

$S_{N / m-1}$
- Public key: hash w times

$$
h^{w}\left((S _ { 0 }) h ^ { w } \left(\left(S_{1}\right) h^{w}\left(S_{2}\right) \cdots h^{w}\left(S_{N / m-3}\right) h^{w}\left(S_{N / m-2}\right) h^{w}\left(S_{N / m-1}\right)\right.\right.
$$

- Signature on N-bit value, e.g. 1010011001011100
- For this example, assume $m=4$, so $w=16$
$h^{10}\left(s_{0}\right) h^{6}\left(\left(s_{1}\right) h^{5}\left(s_{2}\right) h^{12}\left(s_{3}\right)\right.$

The Winternitz improvement

- Trade time for signature and public key size
- Idea: sign groups of m bits, let $w=2^{m}$
- Private key: N / m random numbers

- Public key: hash w times

$$
h^{w}\left((S _ { 0 }) h ^ { w } \left(\left(S_{1}\right) h^{w}\left(S_{2}\right) \cdots h^{w}\left(S_{N / m-3}\right) h^{w}\left(s_{N / m-2}\right) h^{w}\left(s_{N / m-1}\right)\right.\right.
$$

- Signature on N-bit value, e.g. 1010011001011100
- For this example, assume $m=4$, so $w=16$

$$
h^{10}\left(s_{0}\right) \quad h^{6}\left(\left(s_{1}\right)\right) h^{5}\left(s_{2}\right) h^{12}\left(s_{3}\right)
$$

- Verification: complete hashes to w, check with public key

HORST

- Few-time signature scheme, two parameters k, t, (e.g. $k=32, t=2^{16}$)
- Private key: t random numbers $s_{0}, s_{1}, \ldots, s_{t-1}$
- Public key: $h\left(s_{0}\right), h\left(s_{1}\right), \ldots, h\left(s_{t-1}\right)$

HORST

- Few-time signature scheme, two parameters k, t, (e.g. $k=32, t=2^{16}$)
- Private key: t random numbers $s_{0}, s_{1}, \ldots, s_{t-1}$
- Public key: $h\left(s_{0}\right), h\left(s_{1}\right), \ldots, h\left(s_{t-1}\right)$
- Build a Merkle tree on top

HORST

- Few-time signature scheme, two parameters k, t, (e.g. $k=32, t=2^{16}$)
- Private key: t random numbers $s_{0}, s_{1}, \ldots, s_{t-1}$
- Public key: $h\left(s_{0}\right), h\left(s_{1}\right), \ldots, h\left(s_{t-1}\right)$
- Build a Merkle tree on top
- Signature on N-bit value (e.g. $N=512$)
- Split message (digest!) into k parts
- Interpret message parts as integers $m_{0}, m_{1}, \ldots, m_{k-1}$
- Reveal $s_{m_{0}}, s_{m_{1}}, \ldots, s_{m_{k-1}}$
- Include authentication paths

HORST

- Few-time signature scheme, two parameters k, t, (e.g. $k=32, t=2^{16}$)
- Private key: t random numbers $s_{0}, s_{1}, \ldots, s_{t-1}$
- Public key: $h\left(s_{0}\right), h\left(s_{1}\right), \ldots, h\left(s_{t-1}\right)$
- Build a Merkle tree on top
- Signature on N-bit value (e.g. $N=512$)
- Split message (digest!) into k parts
- Interpret message parts as integers $m_{0}, m_{1}, \ldots, m_{k-1}$
- Reveal $s_{m_{0}}, s_{m_{1}}, \ldots, s_{m_{k-1}}$
- Include authentication paths
- Very small chance of re-use

[^0]: ${ }^{1}$ Daniel J. Bernstein, Diana Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Peter Schwabe and Zooko Wilcox O'Hearn, 2015

