
Implementing Prøst on the Cortex A8

using Internal Parallelisation

Joost Rijneveld, s4048911

joostrijneveld@gmail.com

January 2015

Abstract

�e CAESAR competition is looking for ciphers that are able to provide au-

thentication and o�er advantages over the currently popular AES-GCM. �e Prøst

permutation provides the basis for a family of AEAD cipher schemes that have

been submi�ed as candidates to this competition. In this paper, an implemen-

tation of the Prøst permutation on the Cortex A8 is discussed. �e main focus

of this implementation is on internal parallelisation, using the NEON vector in-

struction set included in the ARMv7 architecture. At just under 200 cycles per

byte, the implementation is hindered by a suboptimal MixSlices function that has

proven di�cult to vectorise e�ciently.

1 Introduction

In cryptography, block ciphers are encryption algorithms that operate on a block of

data of a �xed length, using the same key for both encryption and decryption. �is is

typically referred to as a ‘symmetric key’. Block ciphers are among the fundamental

building blocks of larger cryptographic algorithms and protocols, and are used in

very diverse applications. In order to provide di�erent features and properties, such a

cipher is used in a speci�c mode of operation. �ese modes make it possible to apply

a block cipher to a bigger amount of data.

Traditionally, block ciphers are used in modes of operation that provide either con�-

dentiality or authenticity of data
1
. Some modes provide an e�cient way of concealing

the contents of messages, while other modes provide strong guarantees with respect

to the authenticity of the data. Modes such as cipher block chaining (CBC), counter

(CTR), cipher feedback (CFB) and output feedback (OFB) fall in the former category,

while authentication is typically done by using message authentication codes. For

various needs and purposes, however, people have sought to establish both of these

properties at the same time in a secure manner. �is category of modes of operation is

called Authenticated Encryption with Associated Data (AEAD). In Section 2, we will

examine this in more detail.

1
Note that block ciphers are used for a variety of other purposes as well (such as random number

generation), but those uses are not immediately relevant in this particular context.

1



In the past, cryptographic research has greatly bene�ted from so-called “crypto com-

petitions”. �e AES competition, won by the Rijndael algorithm [1], is the best known

example of this. In order to stimulate research towards AEAD schemes, the CAESAR

competition has been set up. CAESAR will be discussed in more detail in Section 3.

�e Prøst [2] algorithm is one of the candidates submi�ed to CAESAR. E�ciently im-

plementing Prøst on the widely used ARM Cortex A8 microarchitecture is the topic

of this paper.

In Section 4, we will go into the basic workings of internal parallelisation and vector

instructions. In particular, the vector instruction set provided as part of the ARMv7

architecture, ARM NEON, will be discussed.

As mentioned above, the main contribution of this research consists of an implemen-

tation of the Prøst algorithm using the vector instructions provided by the ARMv7

architecture. Section 5 contains a description of the Prøst permutation, and in Sec-

tion 6, the implementation is discussed. In these sections, the distinct operations that

make up the permutation are discussed one by one.

2 AEAD

As mentioned above, Authenticated Encryption with Associated Data (AEAD) is a

class of cryptographic algorithms or modes of operations that is able to provide both

authentication and encryption of data. While the demand for a combination of au-

thentication and encryption is not particularly new, solutions traditionally relied on a

mixture of a scheme for authentication and a di�erent scheme for encryption. A typ-

ical solution is achieved by combining cipher block chaining with message authen-

tication codes (CBC-MAC). Combining di�erent schemes to obtain multiple security

goals has been done successfully in the past, but has invariably come with inconve-

nient trade-o�s. �e user o�en pays a large penalty in terms of computational e�-

ciency or memory footprint, but may also run risks with respect to the security of the

system. �e mix of di�erent schemes has proven to be quite delicate to use, and may

break down altogether when it is implemented in the wrong conditions or situation.

For example, the CBC-MAC construction is only secure when used with �xed-length

messages [3]. Further �xes have been suggested that overcome this particular nui-

sance (such as CBC-MAC-ELB, where the last block is encrypted with a secondary

key), but one can imagine that this adds further complications and restrictions. �e

aim of AEAD is to fundamentally merge both encryption and authentication into a

single mode of operation, rather than combine them in a later stage. �is approach

greatly reduces complexity [4] and also allows for a much more e�ciency-focused

design (such as an increased level of parallelism [5]).

2.1 CBC-MAC

One of the problems with using a block cipher in con�dentiality modes (such as CBC)

and applying a message authentication code (MAC) for authentication lies in the fact

that the individual blocks are not authenticated, but only the chain of blocks as a

whole. �is is not a problem when the chains are small, but when considering large

�les or even streaming data it is very tempting to perform operations on part of the

2



decrypted data before waiting for the MAC validation. In one of his blog posts [6],

Adam Langley illustrates this using a pipe from gpg to tar, where �les are actually

being wri�en to the �le system before the authenticity of the ciphertext has been

veri�ed. Langley does note that an AEAD scheme is not a plug-and-play solution

here, but suggests that it may be able to form the basis for a system that provides

authenticity for streaming data.

With regards to the use of CBC-MAC, SSL and TLS have seen a number of a�acks over

the past few years, o�en based on padding oracle a�acks (most recently POODLE,

the last variation of which also impacts a number of TLS 1.2 implementations [7]). In

early 2013, the Lucky 13 a�ack exposed a timing side channel in veri�cation of the

MACs [8], only brie�y a�er the BEAST a�ack against essentially all implementations

of TLS with block ciphers in CBC mode (most prominently AES-CBC) in 2011 [9].

For both a�acks, o�en-heard recommendations were to either switch to RC4 or use

TLS 1.2 [10], as it has support for AES in an AEAD mode (which will be discussed in

the next subsection). Of these options, switching to RC4 is the most widely chosen

alternative to AES-CBC when using TLS. However, as AlFardan, Bernstein, Paterson,

Poe�ering and Schuldt have shown [11], RC4 contains serious vulnerabilities that

make it unsuitable for use in TLS. While patching was viable for BEAST and Lucky

13, patching RC4 is largely considered to be o� the table [10].

2.2 AES-GCM

In 2004, McGrew and Viega proposed Galois/Counter Mode (GCM) [12] as a mode

of operation that is able to provide authenticated encryption. Internally, GCM is still

a combination of separate parts for encryption and authentication, mixing counter-

mode with Galois authentication. However, GCM has considerably be�er perfor-

mance properties than previous combined solutions, as the authentication is now

highly parallelisable. In addition to authenticated encryption, GCM can be used in

stand-alone mode for authentication (referred to as GMAC) when there is no need to

preserve con�dentiality of the data.

�e most common method when constructing an AEAD scheme using GCM is by

selecting AES as the block cipher, to form AES-GCM. �is is especially a�ractive on

platforms where AES has been implemented in hardware, such as is made available

through Intel’s AES-NI instructions. Benchmarks by Gueron [13], presented as base-

lines for CAESAR (see Section 3) show that it can perform at a rate of a minimum of 1

cycle per byte. On the so�ware side, however, the algorithm has proven to be di�cult

to implement securely while maintaining performance. In [14], Käsper and Schwabe

present multiple optimised implementations of AES-GCM. When relying on a lookup-

table based approach, they are able to achieve a speed of 10.68 cycles per byte. Note,

however, that table lookups are o�en susceptible to cache-timing a�acks [15]. To pre-

vent this, Käsper and Schwabe also present a constant-time implementation that runs

at 21.99 cyles per byte that does not have this vulnerability. �is signi�cant di�erence

makes it a�ractive to opt for an implementation that does use table lookups, but is

inherently vulnerable to side channel analysis.

In his talk at Real World Crypto 2013 [16], Adam Langley mentioned this as one of the

reasons why he believes that AES-GCM should be replaced. He illustrates that many

of the current implementations of AES-GCM’s core function, GHASH, remind him

3



of AES implementations of a decade ago. Presenting it as a controversial suggestion,

he goes on to argue that it would be preferable to pick a di�erent AEAD that can be

conveniently implemented in a secure fashion, instead. While AES-GCM is great on

chips with hardware support, it is far from ideal on platforms that have to rely on

so�ware implementations.

In [17], Gueron and Krasnov demonstrate a vulnerability that was included in the

AES-GCM implementation in the development repository of OpenSSL for a brief pe-

riod of time. While the speci�cs of the vulnerability are not immediately relevant in

the current context, they make an interesting observation with regards to the imple-

mentation of AES-GCM in OpenSSL. While the GCM mode allows for a high level of

integration between the encryption and authentication parts (i.e. CTR and GHASH),

the implementation in OpenSSL still keeps these quite separate, and treats them as

distinct functions. �is is intriguing, given the higher-level idea of close integration

between authentication and encryption in AEAD schemes, but not necessarily sur-

prising, as AES-GCM still has the look and feel of the ‘traditional’ AES block cipher

in a slightly di�erent role.

3 CAESAR

In the past, competitions in cryptographic research have provided a valuable stimu-

lus to the �eld. Examples of this include the well-known AES competition, as well

as the ECRYPT Stream Cipher competition (eSTREAM) [18], and the SHA-3 competi-

tion [19] that resulted in the standardisation of Keccak [20]. �ese competitions have

shown that the combination of de�ning a common purpose and encouraging a wide

range of members from the cryptographic community to submit their ideas is a very

e�cient and rewarding way of constructing a new direction for research to grow in.

�e open character of these competitions make them very valuable for the collective

understanding of the speci�c �eld that is being explored.

CAESAR (“Competition for Authenticated Encryption: Security, Applicability, and

Robustness”) aims to join the ranks of the above-mentioned competitions, and has

called for submissions that combine authentication and con�dentiality. �e competi-

tion is not an o�cial NIST initiative, but has received wide recognition and positive

acclaim, resulting in over ��y submissions for the �rst round. �e main goal of the

competition is to establish authenticated ciphers that provide advantages over AES-

GCM (see Section 2.2) and are ready for adoption by the �eld [21].

�e initial round of the CAESAR competition focusses on the security of the various

algorithms, as well as the suitability for high-performance so�ware implementations.

Submissions for this round were accepted until March 15, 2014. Each submission spec-

i�es a set of algorithms, referred to as a ‘family’, that can contain di�erent parametri-

sations of the same scheme, depending on security se�ings. With each submission,

CAESAR required so�ware reference implementations for the described (parametri-

sations of) the scheme. �ese are to be provided to support understanding of the pre-

cise details of the algorithm. Hardware implementations are to follow in the second

round, in early 2015 [21].

Schemes that provide authentication and encryption can generally be subdivided into

two categories; new algorithms designed for the purpose of use in an AEAD scheme,

4



and modes of operation for existing algorithms. �e earlier discussed AES-GCM

would fall in the second category. CAESAR accepts both types of submissions, and

has received a wide variety across the entire spectrum [22]. A signi�cant number of

submissions provide a way of applying a new or existing mode of operation to AES

in order to achieve authenticated encryption. Examples include AES-JAMBU [23],

Julius [24] and AES-COPA [25]. Common arguments for these schemes include the

level of scrutiny that has gone into establishing the security of AES over the years,

as well as the performance of AES, especially when hardware implementations are

concerned. �ese schemes greatly bene�t from hardware support for an AES round,

such as included in a wide range of modern Intel processors. On the other hand, the

competition has also a�racted a number of submissions proposing newly designed

schemes. �is set includes schemes where the block cipher and mode of operation

are co-designed or entirely integrated, as well as schemes that propose a new block

cipher or permutation using an existing mode of operation that allows it to be used

for AEAD (such as COPA and APE). In these categories, we �nd schemes such as

NORX [26] and Joltik [27]. Prøst [2] also belongs to the la�er category, and will be

discussed in detail in Section 5. Arguments for these schemes are o�en related to

so�ware performance, as this is an o�en discussed aspect of AES. When consider-

ing platforms that do not have support for hardware AES, some of these schemes

could be able to beat AES-based ciphers. �ese schemes are frequently designed with

cross-platform performance in mind, aiming at straightforward implementations and

inherent robustness against side-channel a�acks.

4 Vectorisation

Internal parallelism, or more speci�cally, vectorisation, is a way of computing the

same operation for multiple di�erent inputs at once. Programs that use this can be

computationally more e�cient by literally processing more data in the same time

frame. �is has been one of the major areas of improvement in modern CPUs. In

particular, loop vectorisation (i.e. computing multiple iterations of the same loop in

parallel) has lead to signi�cant performance gains.

While vectorisation has been the subject of extensive research when it was �rst intro-

duced in vector processors, the addition of SIMD (‘single instruction multiple data’)

units [28] to general-purpose processors has sparked a new interest. �ese SIMD

architectures provide very accessible instructions that enable programmers to use in-

ternal parallelism for the speci�c parts of an application where it is most relevant.

�is has been applied in a wide range of scenarios (including in graphic controllers in

the XBOX and PlayStation) and some form of SIMD is now included in most common

processor architectures [29].

While vectorisation can be powerful, it is not without constraints. Most notably, it

requires data independence. Sequential operations that intuitively result from imper-

ative programs o�en depend on the result of the previous operation as an input, and

can thus not always be vectorised. For automatic vectorisation by compilers, this has

been one of the main areas of research. With the introduction of SIMD operations,

new approaches have been devised to deal with this. In particular, vectorisation of

small blocks of instructions (rather than entire loops) can be sped up for SIMD archi-

tectures.

5



One might wonder why it is necessary or desirable to integrate the parallelism so

deeply into the implementation rather than use external parallelisation to simply run

multiple instances of the algorithm side by side. While internal parallelisation might

provide more e�ciency, a large motivation for this lies also in the fact that parallelis-

ing internally allows for a much more convenient API. �is way, the throughput of

the implementation does not depend on whether the user is able to supply it with

su�cient data at the same time.

4.1 ARM NEON

In ARMv6, AMD included a number of SIMD instructions that operated on the existing

32-bit general purpose registers. �ese operations split the registers into bytes or

double-byte blocks and were able to perform two or four operations in parallel.

ARM NEON is ARM’s current implementation of a SIMD architecture. NEON is not

merely an instruction set on the existing registers, but a coprocessor with its own

dedicated register set. Described as a ‘general-purpose SIMD engine’, the NEON in-

structions are advertised as a way to e�ciently process all sorts of digital media. While

the ARMv7 architecture contains sixteen 32-bit registers, the NEON instructions op-

erate on 64 or 128 bits of data grouped together in double-word and quad-word vector

registers. �ese registers are provided by a dedicated register bank of 2048 bits that is

viewed as a set of sixteen 128-bit registers (q0 to q15) or thirty-two 64-bit registers (d0

to d31), depending on which speci�c operation is used [30]. �e di�erent operations

provided by NEON can operate on di�erent sizes of operands, varying from 8-bit to

64-bit values for the Cortex A8. Depending on the relevance to the speci�c operation,

these can be interpreted as signed or unsigned values.

Many of the same operations that one typically uses on regular registers are also avail-

able for vector registers. �is includes regular data processing operations as well as

memory access and moving data between registers. As mentioned above, instructions

can operate on di�erent data types. �is functionality is speci�ed by parametrising

the di�erent instruction calls with the types and sizes of the input and output data

blocks. For example, in order to perform addition on 32 bit signed operands in two

quad-word registers, one would call VADD.S32 q0, q1, q2. �is would add four

operands from q1 to those in q2, and store the result in q0. Analogous, calling VSHR.U8

d0, d0, #3 would shi� each byte of the double-word d0 to the right by 3 bits, and �ll

the individual bytes from the le� with zeros.

�e NEON instruction set also includes a number of instructions that are especially

convenient when working with large vector registers, such as a set of prede�ned per-

mutations. Calling VREV32.8 q0, q0 would reverse the 8-bit sub-blocks that make

up each of the blocks of 32 bits in q0, and two registers can be interleaved by calling

VZIP.16 d1, d2. A particularly useful instruction in the context of Prøst is VTRN, per-

forming transpositions between two registers as if they were a 2x2 matrix. �is will

be discussed in some detail in Section 5.1. As all these internal permutation instruc-

tions can be parametrised to operate on di�erent block sizes, they can be combined to

construct intricate operations. For example, Figure 1 shows how to perform a transpo-

sition on four vector registers representing a 4x4 matrix using just three parametrised

VTRN instructions [31].

6



Figure 1: Transposing a 4x4 matrix [31]

Figure 2: Terminology for parts of the state [2]

5 The Prøst permutation

�is section provides an overview of the Prøst permutation, and outlines the opera-

tions that make up its construction. Prøst, as presented by Kavun, Lauridsen, Leander,

Rechberger, Schwabe and Yalçın in [2], forms the basis for a family of AEAD schemes

that have been submi�ed as candidates for the CAESAR competition (see Section 3).

�e permutation is used to instantiate the existing COPA [5], OTR [32] and APE [33]

modes of operation in order to construct AE schemes.

In [2], the authors specify two di�erent variants of Prøst: Prøst-128 and Prøst-256,

and de�ne n to be 128 and 256, respectively.

Prøst works on a state of 2n bits (so 256 and 512 bits, respectively), arranged as a

rectangular cuboid. See Figure 2 for the naming convention that is used to refer to

parts of the state. For both instances of Prøst, the width of a row and the height of

a column is 4. �is implies that the depth of a lane is 16 bits for Prøst-128 and 32
bits for Prøst-256 (from here on referred to as d). For the implementation discussed

in Section 6, only Prøst-128 is relevant, but the de�nition provided in this section is

applicable to both con�gurations.

7



�e operations that make up Prøst follow the familiar structure typically found in

iterated block ciphers. �e permutation consists of a number of rounds (sixteen for

Prøst-128 and eighteen for Prøst-256) that themselves consist of the operations Sub-

Rows, MixSlices, ShiftPlanes and AddConstants. Here the terminology described in

Figure 2 can be helpful when interpreting the operation names.

It should be noted that, as two of the operations included in Prøst depend on the round

number, the round number is zero-based (i.e. the round number for the �rst round is

0).

5.1 SubRows

Prøst includes a small 4-bit S-box. As the name of the operation indicates, the sub-

stitution is applied to each 4-bit row of the state. �e S-box is listed in Figure 3,

below.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 0 4 8 F 1 5 E 9 2 7 A C B D 6 3

Figure 3: S-box used in SubRows

�e authors stress that the S-box is designed to be e�cient to implement and to al-

low bit-slicing. �is is achieved by providing an equivalent and compact formula-

tion of the performed substitution. For (a, b, c, d) the four input bits, the output bits

(e, f, g, h) can be de�ned as follows (note that ⊕ represents bitwise xor and � rep-

resents bitwise and):

e = c⊕ (a� b)

f = d⊕ (b� c)

g = a⊕ (e� f)

h = b⊕ (f � g)

5.2 MixSlices

�e MixSlices operation is e�ectively a matrix multiplication. Each slice is placed in a

column vector by enumerating the bits from the top-le� to the bo�om-right, one row

at a time, and multiplied with the square matrix M as listed in Figure 4

�e authors clarify that each of the multiplications with a non-zero value is roughly

equivalent to one xor operation. In fact, the amount of xor operations increases

linearly with the amount of ones in the matrix (as each row consists of at least one bit).

�e chosen matrix contains a (locally
2
) minimal amount of bits while still satisfying

the security requirements. �e Hamming weight of the matrix is 88.

2
�e authors note that there is no guarantee that this solution is optimal, as this is generally unknown

and exhaustive search is not feasible.

8



M =



1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1


Figure 4: Matrix used in MixSlices

5.3 ShiftPlanes

�e Shi�Planes operation is a bitwise rotation to the right. �e name is perhaps a

bit confusing as to which part of the state is in fact rotated, but this becomes more

apparent when examining the reference implementation. Each of the lanes included

in a plane is shi�ed to the right, which is, in light of Figure 2, equivalent to a rotation

in the positive z-direction.

�e exact number of bits by which the lanes are rotated depends on the speci�c plane

as well as the parity of the round. For Prøst-128, this is a shi� of 0, 2, 4 or 6 bits for

even rounds and 0, 1, 8 or 9 bits for odd rounds. For Prøst-256, the lanes are shi�ed 0,

4, 12 or 26 bits in even rounds and 1, 24, 26 or 31 bits in odd rounds.

�e authors note that the shi�s were chosen in such a way that they would provide

maximal di�usion in as few rounds as possible, as well as result in convenient im-

plementations by minimising the total sum (excluding multiples of 8, which are o�en

free or very cheap to perform).

5.4 AddConstants

�e AddConstants operation performs a xor operation between a shi�ed constant and

each lane. �is operation is slightly more complex than the typical round-dependent

addition, as the constant also depends on the speci�c lane. Depending on the parity

of the lane, constant c1 = 0x75817b9d or c2 = 0xb2c5fef0 is used; c1 is used for even

lanes and c2 is used for odd lanes. For Prøst-128, these constants are truncated to c1 =
0x7581 and c2 = 0xb2c5 to accommodate for the 16 bits lane size.

For each lane, the constant is rotated to the le� by the sum of the round number and

the lane number, where the lanes are ordered in the same way as was done for the

vector in the MixSlices operation (Section 5.2). Like the rounds, the lanes are counted

zero-based.

�e constants used in Prøst are directly derived from the �rst 64 decimals of π; the

Prøst design document includes C code that can be used to recreate the constants. �e

rotation of the constants is chosen such that adding the same constant is avoided.

9



6 Implementing Prøst

In the previous section, we examined the design of Prøst. In this section, we will go

over details from the implementation of Prøst on the Cortex A8. �e speci�c platform

that was used for this implementation is the “BeagleBone Black” by Texas Instruments.

�is implementation heavily relies on the ARM NEON instructions, as discussed in

Section 4.1.

�e qhasm language [34] (discussed in more detail in the next subsection) was used

to create the implementation described here. �e produced qhasm source �les can

be found on GitHub at https://github.com/joostrijneveld/proest-cortex-a8. It

was created by incrementally replacing functions from the Prøst reference implemen-

tation with qhasm implementations while maintaining unit test satisfaction, and then

inlining, combining and unrolling the code to form an integral qhasm implementa-

tion.

As the Cortex A8 o�ers sixteen dedicated quad-word registers, it was possible to keep

the entire state in memory throughout the permutation. �e state is typically stored

in registers x and y (e�ectively storing each lane in an individual double-word regis-

ter).

While the initial intent of this research was to construct a fully optimised implemen-

tation of Prøst using internal vectorisation, time constraints have created the need to

limit this. While the low-hanging fruit has been taken into account, there is still some

potential for further optimisations that could be explored. Where relevant, concrete

suggestions are described in the following subsections. In general, the operations are

currently still quite distinct. Rescheduling of the di�erent instructions and combining

them across operation boundaries may also prove to be valuable.

6.1 qhasm

Qhasm [34] is a language that can be translated directly into assembly instructions,

at one line per instruction. �is is achieved by using machine description �les that

specify the mapping from qhasm syntax to actual architecture-speci�c assembly in-

structions. By writing code in qhasm rather than directly in the ARM assembly, the

program generally becomes much more readable and easier to write and edit. �e

fact that the qhasm syntax is largely consistent across various platforms also adds to

this ease of use, as well as providing re-usability. Additionally, qhasm includes a reg-

ister allocator. �is is a convenient abstraction that prevents having to worry about

manually keeping track of register usage.

Because of the way it uses machine descriptions to translate the code into assembly,

qhasm is highly extensible. While there was already an elaborate description avail-

able for the ARMv7 architecture, it has proven to be convenient to add a number of

additional operations for speci�c NEON assembly instructions.

10

https://github.com/joostrijneveld/proest-cortex-a8


6.2 SubRows

�e SubRows operation is perhaps the most straightforward of all parts of the permu-

tation, as the same operation is to be performed on all rows, allowing for convenient

internal parallelisation. �e substitution is de�ned as a sequence of xor and and

operations in Section 5.1. In contrast to other operations, however, this operation op-

erates on rows rather than lanes. As the state representation is a sequence of lanes, it

makes sense to modify this before performing the substitution, and restore this a�er-

wards. Luckily, the required transformation is precisely the transposition described

in Figure 4. �is results in a total of two sets of three VTRN instructions.

Performing the substitution is now a ma�er of performing the and and or operations

on the four double-word registers that contain a bit-sliced representation of the rows.

As is suggested by the formalisation in the Prøst paper, it makes sense to create a

temporary backup of the �rst two rows, as the original values are required a�er their

new values have been computed. �ese bits are conveniently grouped together in

the �rst quad-word register. Further optimisations could include writing to di�erent

state registers for alternating rounds in order to prevent this initial copying, as well as

exploring a di�erent state representation or incorporating the transposition in other

instructions.

6.3 MixSlices

�e MixSlices operation has proven di�cult to e�ciently parallelise internally. �is

operation remains very much a sequence of xor operations. It is implemented by shi�-

ing a temporarily used masked register along the state registers x and y to retrieve

the required lanes, xoring them into this register. As mentioned in Section 5.2, each

one-bit in the matrix roughly results in one xor operation. �is means that the com-

plete multiplication requires 72 xor operations. Because the planes are spread over

four double-word registers, lanes that are a multiple of four apart can be combined

without requiring individual shi�ing. �e results are stored in temporary quad-word

registers r and s that are copied back into x and y in the end.

Minor optimisations (such as allocating di�erent state registers for the results and

using those throughout the rest of the round) have been implemented, but this oper-

ation could bene�t from a more fundamental overhaul. A more intricate optimisation

could include a graph-theoretical solution that �nds a more optimal combination of

xor operations that allows for the re-use of intermediate results. Alternatively, this

could be used to �nd an ordering that is able to combine the shi�s of the temporary

register to use it more e�ciently.

�e qhasm code that implements this operation consists of sixteen very similar sets

of instructions, each again consisting of several similar instructions internally as well.

It proved convenient to generate this code using a short Python script that takes the

code from the reference implementation as input, as this speci�es the speci�c lane

numbers that are to be xored together. �is allows for quick testing and editing of

the resulting implementation. Speci�c optimisations have been applied manually a�er

generating the basic building blocks.

11



6.4 ShiftPlanes

As described in Section 5.3, the Shi�Planes operation consists of a number of rota-

tions by a constant amount, only in�uenced by the parity of the round number. As all

the rounds are unrolled, the implementation contains two di�erent blocks of instruc-

tions that implement the di�erent alternatives for Shi�Planes, interleaved through

the rounds. As all the lanes are grouped into a double-word register per plane, each

double-word register needs to be rotated by a single constant amount. Adding qhasm

instructions for shi�s on 16 bits has improved the performance here. Since the NEON

instruction set does not include atomic rotation instructions, bitwise rotation remains

a combination of shi�s.

6.5 AddConstants

Adding constants is generally not a di�cult operation. In Prøst, however, it is com-

plicated somewhat by requiring di�erent rotations for each lane and each round (see

Section 5.4). Fortunately, we are able to pre-compute the rotations beforehand. Recall

that the original constants are c1 = 0x7581 and c2 = 0xb2c5, truncated to the lane

size of 16 bits. For this implementation, the sixteen lane-dependent rotations have

been precomputed, requiring 256 bits of storage for the constants instead of the orig-

inal 32 bits. �e precomputed constants (see Cx and Cy , below) �t precisely in two

quad-word registers. �e constants are arranged in such a way that the positions of

the 16-bit constants match the positions of the lanes with the correct parity in the

state registers.

Cx = 0x 7581 658b d605 962d 5817 58b6 605d 62d9

Cy = 0x 8175 8b65 05d6 2d96 1758 b658 5d60 d962

During each round, a vectorised rotation is performed on each of these quad-word

registers, e�ectively rotating eight constants at once. Adding the constants is also

highly parallelisable, as this amounts to xoring each of the constants registers into

the respective state register. As was the case with the Shi�Planes operation, a more

e�cient way of rotating could improve the performance here.

6.6 Performance

While this implementation of Prøst has been optimised to some extent, the sections

above mention a few open suggestions that remain. With this in mind, we examine

the performance of the described implementation.

In Table 1, the cycle count for each operation as well as for the complete permutation

is listed. In order to establish a baseline, the ‘empty function’ was also benchmarked.

�is shows how many cycles are lost in overhead. Albeit necessary, it is interesting

to see what happens a�er removing this constant overhead from the measurements,

especially when examining benchmarks of a single execution of the component op-

erations (SubRows, MixSlices, Shi�Planes and AddConstants). In the table below, the

reduced measurements are listed, and the measurements including overhead are in-

cluded in parentheses.

12



1
st

quartile median 3
rd

quartile

Empty function 792 792 806

SubRows 12 (804) 12 (804) 12 (818)

MixSlices 272 (1064) 272 (1064) 260 (1066)

Shi�Planes 8 (800) 10 (802) 10 (816)

AddConstants 8 (800) 10 (802) 8 (814)

Prøst-128 5510 (6302) 5510 (6302) 5498 (6304)

Table 1: Cycle count for the individual operations

From this, we can compute the amount of cycles per byte. As Prøst-128 operates on

a state of 256 bits, the cycle count per byte can be computed by dividing the median

by 32. �is results in 6302/32 ≈ 196.94 cycles per byte.

7 Conclusion

By means of the implementation presented in this paper, we have seen that it is viable

to construct an e�cient implementation of the Prøst permutation, and that the permu-

tation can greatly bene�t from internal parallelisation. However, we have seen that

in particular the MixSlices step is non-trivial to implement in a way that it bene�ts

from vectorisation. As seen in table 1, this function is by and large the most signif-

icant contributor to the total cycle count. �is is no particular surprise, as it is by

far the most abstract function to translate into assembly instructions, and the current

implementation is still very sequential in nature. Further research and optimisation

towards implementing the MixSlices operation in a vectorised way could prove to be

worthwhile.

References

[1] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, version 2, 1999. http:

//csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf. 2

[2] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger,

Peter Schwabe, and Tolga Yalçın. Prøst v1.1. Submission to CAESAR, 2014. http:

//competitions.cr.yp.to/round1/proestv11.pdf. 2, 5, 7

[3] Mihir Bellare, Joe Kilian, and Phillip Rogaway. �e security of the cipher block

chaining message authentication code. Journal of Computer and System Sciences,
61(3):362–399, 2000. https://cseweb.ucsd.edu/∼mihir/papers/cbc.pdf. 2

[4] Charanjit S. Jutla. Encryption modes with almost free message integrity. In Ad-
vances in Cryptology – EUROCRYPT 2001, pages 529–544. Springer, 2001. http:

//researcher.ibm.com/researcher/files/us-csjutla/iapmproof 2012.ps. 2

[5] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-

chhauser, and Kan Yasuda. Parallelizable and authenticated online ciphers.

In Advances in Cryptology – ASIACRYPT 2013, pages 424–443. Springer, 2013.

http://homes.esat.kuleuven.be/∼eandreev/COPA.pdf. 2, 7

13

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://competitions.cr.yp.to/round1/proestv11.pdf
http://competitions.cr.yp.to/round1/proestv11.pdf
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
http://researcher.ibm.com/researcher/files/us-csjutla/iapmproof_2012.ps
http://researcher.ibm.com/researcher/files/us-csjutla/iapmproof_2012.ps
http://homes.esat.kuleuven.be/~eandreev/COPA.pdf


[6] Adam Langley. Encrypting streams. 2014. https://www.imperialviolet.org
/2014/06/27/streamingencryption.html [accessed 04-12-2014]. 3

[7] Adam Langley. �e POODLE bites again. 2014. https://www.imperialviolet.o
rg/2014/12/08/poodleagain.html [accessed 11-12-2014]. 3

[8] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS

and DTLS record protocols. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 526–540. IEEE, 2013. http://www.isg.rhul.ac.uk/tls/TLStiming.pdf.

3

[9] �ai Duong and Juliano Rizzo. Here come the ⊕ ninjas. Unpublished manuscript,
2011. urlh�p://www.hpcc.ecs.soton.ac.uk/ dan/talks/bullrun/Beast.pdf. 3

[10] Kenny Paterson. Authenticated encryption in TLS. In DIAC 2013, 2013. http:

//2013.diac.cr.yp.to/slides/paterson.pdf. 3

[11] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poe�er-

ing, and Jacob CN Schuldt. On the security of RC4 in TLS. In USENIX Security,

pages 305–320, 2013. http://www.isg.rhul.ac.uk/tls/RC4biases.pdf. 3

[12] David McGrew and John Viega. �e Galois/Counter mode of operation (GCM).

Submission to NIST, 2004. http://csrc.nist.gov/CryptoToolkit/modes/propo
sedmodes/gcm/gcm-spec.pdf. 3

[13] Shay Gueron. AES-GCM so�ware performance on the current high end CPUs

as a performance baseline for caesar competition. In DIAC 2013, 2013. http:

//2013.diac.cr.yp.to/slides/gueron.pdf. 3

[14] Emilia Käsper and Peter Schwabe. Faster and timing-a�ack resistant AES-

GCM. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems – CHES 2009, volume 5747 of Lecture Notes in Com-
puter Science, pages 1–17. Springer-Verlag Berlin Heidelberg, 2009. Document

ID: cc3a43763e7c5016ddc9cfd5d06f8218, http://cryptojedi.org/papers/#aes
bs. 3

[15] Daniel J. Bernstein. Cache-timing a�acks on AES, 2005. http://cr.yp.to/anti
forgery/cachetiming-20050414.pdf. 3

[16] Adam Langley. HTTPS: things that bit us, things we �xed and things that are

waiting in the grass. 2013. https://www.imperialviolet.org/2013/01/13/rw
c03.html [accessed 04-12-2014]. 3

[17] Shay Gueron and Vlad Krasnov. �e fragility of AES-GCM authentication al-

gorithm. In Information Technology: New Generations (ITNG), 2014 11th Inter-
national Conference on, pages 333–337. IEEE, 2014. https://eprint.iacr.org
/2013/157.pdf. 4

[18] eSTREAM: the ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org
/stream/ [accessed 11-12-2014]. 4

[19] NIST. SHA-3 competition, 2012. http://csrc.nist.gov/groups/ST/hash/sh
a-3/ [accessed 11-12-2014]. 4

[20] Guido Bertoni, Joan Daemen, Michaël Peeters, and GV Assche. �e Keccak ref-

erence. Submission to NIST (Round 3), 13, 2011. http://keccak.noekeon.org/K
eccak-submission-3.pdf. 4

14

https://www.imperialviolet.org/2014/06/27/streamingencryption.html
https://www.imperialviolet.org/2014/06/27/streamingencryption.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
http://2013.diac.cr.yp.to/slides/paterson.pdf
http://2013.diac.cr.yp.to/slides/paterson.pdf
http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://cryptojedi.org/papers/#aesbs
http://cryptojedi.org/papers/#aesbs
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.imperialviolet.org/2013/01/13/rwc03.html
https://www.imperialviolet.org/2013/01/13/rwc03.html
https://eprint.iacr.org/2013/157.pdf
https://eprint.iacr.org/2013/157.pdf
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf


[21] Daniel J. Bernstein. Cryptographic competitions. 2013. http://competitions

.cr.yp.to/caesar-call.html [accessed 21-09-2014]. 4

[22] Farzaneh Abed, Christian Forler, and Stefan Lucks. Classi�cation of the CAESAR

candidates. IACR Cryptology ePrint Archive, 2014:792, 2014. http://eprint.iac
r.org/2014/792. 5

[23] Hongjun Wu and Tao Huang. JAMBU lightweight authenticated encryption

mode and AES-JAMBU (v1). Submission to CAESAR, 2014. http://competitio

ns.cr.yp.to/round1/aesjambuv1.pdf. 5

[24] Lear Bahack. Julius: Secure mode of operation for authenticated encryption

based on ECB and �nite �eld multiplications. Submission to CAESAR, 2014. http:

//competitions.cr.yp.to/round1/juliusv10.pdf. 5

[25] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-

chhauser, and Kan Yasuda. AES-COPA v.1. Submission to CAESAR, 2014.

http://competitions.cr.yp.to/round1/aescopav1.pdf. 5

[26] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v1. Sub-
mission to CAESAR, 2014. http://competitions.cr.yp.to/round1/norxv1.pdf.

5

[27] Jérémy Jean, Ivica Nikolic, and �omas Peyrin. Joltik v1. Submission to CAESAR,

2014. http://competitions.cr.yp.to/round1/joltikv1.pdf. 5

[28] Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901–1909, 1966. 5

[29] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. Vectorization for SIMD

architectures with alignment constraints. In ACM SIGPLAN Notices, volume 39,

pages 82–93. ACM, 2004. http://researcher.watson.ibm.com/files/us-alexe
/paper-eichen-pldi04.pdf. 5

[30] ARM Limited. Introducing NEON - Development Article. 2009. Document ID:

DHT0002A http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/D
HT0002A introducing neon.pdf. 6

[31] ARM Limited. Coding for NEON - Part 5: Rearranging vectors. ARM Con-
nected Community, 2012. http://community.arm.com/groups/processors/b
log/2012/03/13/coding-for-neon--part-5-rearranging-vectors [accessed

06-12-2014]. 6, 7

[32] Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseu-

dorandom functions. In Advances in Cryptology – EUROCRYPT 2014, pages 275–

292. Springer, 2014. http://eprint.iacr.org/2013/628.pdf. 7

[33] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink,

Nicky Mouha, and Kan Yasuda. Ape: Authenticated permutation-based encryp-

tion for lightweight cryptography. IACR Cryptology ePrint Archive, 2013:791,

2013. http://homes.esat.kuleuven.be/∼eandreev/APE.pdf. 7

[34] Daniel J. Bernstein. qhasm: tools to help write high-speed so�ware. 2005. http:

//cr.yp.to/qhasm.html [accessed 27-09-2014]. 10

15

http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://eprint.iacr.org/2014/792
http://eprint.iacr.org/2014/792
http://competitions.cr.yp.to/round1/aesjambuv1.pdf
http://competitions.cr.yp.to/round1/aesjambuv1.pdf
http://competitions.cr.yp.to/round1/juliusv10.pdf
http://competitions.cr.yp.to/round1/juliusv10.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://competitions.cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round1/joltikv1.pdf
http://researcher.watson.ibm.com/files/us-alexe/paper-eichen-pldi04.pdf
http://researcher.watson.ibm.com/files/us-alexe/paper-eichen-pldi04.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/DHT0002A_introducing_neon.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/DHT0002A_introducing_neon.pdf
http://community.arm.com/groups/processors/blog/2012/03/13/coding-for-neon--part-5-rearranging-vectors
http://community.arm.com/groups/processors/blog/2012/03/13/coding-for-neon--part-5-rearranging-vectors
http://eprint.iacr.org/2013/628.pdf
http://homes.esat.kuleuven.be/~eandreev/APE.pdf
http://cr.yp.to/qhasm.html
http://cr.yp.to/qhasm.html

	Introduction
	AEAD
	CBC-MAC
	AES-GCM

	CAESAR
	Vectorisation
	ARM NEON

	The Prøst permutation
	SubRows
	MixSlices
	ShiftPlanes
	AddConstants

	Implementing Prøst
	qhasm
	SubRows
	MixSlices
	ShiftPlanes
	AddConstants
	Performance

	Conclusion

