How THE DUTCH BROKE

THE JAPANESE BLUE CODE
IN THE LATE 1930s

by JOOST RIJNEVELD

Bachelor Thesis in Computer Science
Supervised by Prof. Dr. BART JACOBS
RADBOUD UNIVERSITY NIJMEGEN
joostrijneveld@student.ru.nl
July 2013

Abstract

In a prelude to the Second World War, Japan sought to expand its
territories. The Japanese navy used several code systems to encrypt the
contents of their communication telegrams, most notably a code the in-
telligence department of the Dutch East Indies navy referred to as the
¢ code. Through breaking this code, Johannes Frans Willem Nuboer was
able to provide the Dutch with a valuable tactical insight in Japanese
naval communications in the late thirties. This thesis will explain how
the code worked and how the Dutch intelligence department broke the
‘. code. Through various examples, the inner workings of the code will
be made clear. Additionally, an implementation of the algorithm that was
used to break the cipher will be provided. Furthermore, evidence will be
provided that indicates that the ‘. code is the very same code that the
United States Navy refers to as the BLUE BOOK or BLUE CODE.

ii

Acknowledgements

First and foremost I would like to thank my supervisor, BART JACOBS,
for providing me with advice and feedback throughout the process of writ-
ing this thesis, as well as valuable new leads to pursue. Furthermore, I
would like to express my gratitude to the kind people at the NETHER-
LANDS INSTITUTE OF MILITARY HISTORY for their time and support, and
the historians at the CENTER FOR CRYPTOLOGIC HISTORY of the NSA
for guiding me to useful new sources.

To conclude, I want to mention Johannes Frans Willem Nuboer for
the excellent documentation and notes he left behind in the archives, for
me to explore.

iii

Contents

(1__Introductionl 1
2 v | 9
21 TensionmmtheFarFastl 2
[2.1.1 A shortage of resources] 2

[2.T.2~ Manchuria and the Second Sino-Japanese Wai] 2

2.1.3 Dutch Fast Indied 3

2.2 Founding of Department 1, Batavial. 3
2.3 _Johannes Frans Willem Nuboer| 3
2.4 Gathering intelligence| o L. 4
[2°4.T Press information and the diplomatic mission] 4

12.4.2 Photographs of Japanese vessels| 5

2.4.3 Room 14 and Japanese naval telegrams| 5

|3 Japanese telegrams| 6
8.1 _Address headersl 6
8.2 Telegram numbers| oo 7
[4__The Ni codel 8
4.1 Reciphered telegrams|. 0L 8

[Breaking the °.’ code] 9
5.1 'The breakthrough| 9
5.2 Permuting the columns|. 0., 9
9.3 Confirming the permutation| 10
[5.4 Finding the permutation manually] 10
B5 _The “"codebookl. 11

[6 The reciphered ‘.’ code] 13
6.1 A toy example, for the readers’ benefit| 13
6.1.1 Inventoryl 13

6.1.2 Encryption| L. 13

6.1.3 Decryption|l 14

6.2 Another breakthrough| 14
[6.3 Exploiting repetition| o000 15
[6.4 Permuting columns once more]. 16
6.5 Figuringitout| 17
6.6 Exploring an example|o 0oL, 19
6.6.1 Determining the lengths| 20

[6.6.2 Filling the figuref 21

[6.6.3 eading the plaintext| 21

[6.7 Generically finding permutations] 22
6.7.1 Identifying groups| 22

6.7.2 Placing the groups| L. 24

673 Deductionl 25

[6.7.4 Finding the permutation|. 28

6.8 inding the other permutations| 29
6.8.1 Theinput| oo 29

iv

16.8.2 Recognising common groups|.
16.8.3 Precomputing column combinations|
6.8.4 Finding a valid group| oL
I‘i.zi.;[i Ds:sl!l!:!ig!lﬂ
86 Resultdo
6.8.7 Work in progress..| oL
16.8.8 Scraping Nuboer’'snotes|

|7 Other ciphers|

Ir.1 TheSacodel.

|A Overview of telegraphic call signs|

[B Telegram 028101093, 029201093 (April 1st, 1935)|

[C Telegram 031005173 (April 5th, 1935)|

[D Kana alphabet and numerical values|

[F Formosa telegrams, November 9th, 1935|

|G Annotated Formosa telegrams|

[H Telegrams 301001071, 304001200 (July 1st, 1936)|

I Python program to find permutations|

33
33
33

34

35
35
36

38
39

40

41

43

46

47

48

50

51

53

1 Introduction

In the late nineteen thirties, the Japanese Imperial Navy was using an intricate
cryptographic system to secure their communications — all the while, the Dutch
were reading along. In this thesis, we will see how.

In times of war, it can provide an immense tactical advantage to be able to
listen in on the channels of the enemy, especially when this enemy considers his
communications private and secure. In the prelude to war, it is perhaps even
more important to know what is going on in the other camp.

Cryptography and cryptanalysis seem to form a constant contrast in the work
of any intelligence service, in both war and peacetime. While the two fields
of study are so opposite in their goals (that is, securing communication and
uncovering hidden content, respectively), they are clearly strongly intertwined.
In this thesis we will study the work of an officer of the Dutch Royal Navy,
tasked with setting up the intelligence department of the navy in the
capital of the Dutch East Indies. This officer is Johannes Frans Willem Nuboer.
While also playing an influential role in defining the usage of cryptography
to protect the Dutch communications, his most significant work was done in
cryptanalysis. In the years leading up to the Second World War, it was Nuboer’s
work that allowed the Dutch to read a large part of the Japanese telegrams. This
work, as available in Nuboer’s archives at the Netherlands Institute of Military
History, has provided the raw material for this thesis. Based on the descriptions
and notes that Nuboer has left behind, we will unravel how the Japanese code
worked, what its weaknesses were and how Nuboer was able to exploit these.

As we will see in sections [4] and [7] the Japanese used several different crypto-
graphy systems. One of these is head and shoulders above the others when it
comes to usage and tactical importance: a code that Nuboer calls the ‘.” code,
as each of the lines ends in a dot. This code will be our main focus, as it was
Nuboer’s. In section [0} we will provide strong (but not irrefutable) evidence
that suggests that this is the very same code that the United States Navy broke
and referred to as the BLUE CODE. Throughout the rest of this thesis we will
refer to the code by the name Nuboer gave it.

Before discussing all of the above in more depth, let us first begin by placing
the story of Nuboer and the ‘.” code in its historical context.

2 Historic context

2.1 Tension in the Far East

In the eastern part of the world, the Second World War was preluded by a series
of events that built up the tension in the pacific region. The most significant of
these is the Second Sino-Japanese War of 1937, which merged into the Second
World War with the bombing of Pearl Harbour. But let us back up to the start
of the decade.

2.1.1 A shortage of resources

The Japanese economy had been growing steadily throughout the first thirty
years of the twentieth century. At this time, the export mainly consisted of raw
silk and cotton fabrics — products of light industries. Until the rise of militarism
in 1930, natural (and mineral) resources were never a pressing issue (Yasuba,
1996). In 1931, the political and military opinion (and with it, the public opin-
ion) dictated that there would soon be a lack of fuel and raw materials to fulfil
the domestic need. This, along with the 1929 Great Depression, presumably
formed the major reason for the Japanese military expansionism. This mili-
tary build-up, as well as the related heavy industries, did require more natural
resources. This caused the previously non-existent shortage of oil and coal to be-
come very real (Yasubal [1996]). The only apparent solution was the occupation
of the resource-rich regions of [Manchuria] (northern China) and Mongolia.

2.1.2 Manchuria and the Second Sino-Japanese War

On September 18", 1931, a Japanese lieutenant set off an explosion on the
tracks of the Japanese-owned South Manchurian Railway, in the suburbs of
Mukden — this event would be known as the Mukden Incident. The explosion
was intended to damage the tracks and derail the incoming train, but no harm
was done. Nonetheless, the Japanese accused the Chinese of the bombing, and
used this staged event as a pretext for invading a day later (Duus,
1989). was then renamed Manchukuo and turned into a state under
Japanese control. The occupation would last until the end of the Second World
War.

From 1932 to 1937, the Japanese continued to fight the Chinese on numerous
occasions, both for the sake of expansion and for access to natural resources.
The increased tensions were finally ignited in 1937, when on July 7" Chinese
and Japanese troops exchanged fire near Marco Polo. This skirmish, referred
to as the Marco Polo Bridge Incident, is often recognised as the beginning of
the Second Sino-Japanese War (Crowleyl, [1963). This war would last until 1945,
after becoming a part of the greater Pacific War in 1941. In the process, the
Chinese capital of Nanking was captured and both China and Japan suffered
great losses. The implications of conflict for the Dutch (and Dutch intelligence)
will be discussed in more detail in section [l

2.1.3 Dutch East Indies

The relevance of the hostilities between China and Japan for the Dutch East
Indies is not immediately clear. It is to be found in the reason for the Japanese
expansionism: the Japanese were after natural resources, and the Indies had
large depots of oil, rice, sugar and tin. The developing conflict with China
increased this demand, and an expansion southwards would greatly strengthen
the Japanese international military position. Additionally, the inhabitants of
the Indies formed a large potential market for Japanese export (Haslachl |1985)).
With so much to gain, it was unlikely that the strong empire of Japan would
sit idly by.

The army of the Dutch East Indies was poorly staffed and poorly equipped, and
the large borders of the Indies were considered to be very difficult to defend in
case of a all-out war. This forced the Dutch to seek refuge in a strictly organised
and well-informed diplomatic campaign to remain neutral and limit Japanese
(societal and economical) influence (Haslachl [1985). In order to be able to derail
the Japanese propaganda campaigns and keep an eye out for military threats
while at the same time maintain diplomatic neutrality, the Dutch had to rely
on an entirely different form of warfare. Signal intelligence.

2.2 Founding of Department 1, Batavia

In 1933, the Dutch navy went through an immense organisational overhaul,
shaping it into three foundations. Department 1, Intelligence, Department 2,
Operations and Department 3, Organisation. This model was being used by the
French navy at the time, designed by admiral Raoul Castex (Nuboer| [1977g).
A student at the Netherlands Naval War College was selected to set up the
intelligence department in the capital of the Dutch East Indies. This
student was Johannes Nuboer.

The newly formed Department 1 was tasked with gaining insight in the plans
and actions of the naval forces that were of strategic importance to the Dutch
position in the Far East: the British Royal Navy, the U.S. Navy, the French Na-
tional Navy, and the Imperial Japanese Navy (Nuboer} [1977i). The intelligence
department would focus mainly on the Japanese, as Department 1 of the naval
staff in The Hague would study the Western naval forces. Given the growing
tension in the area, as described above, as well as the Japanese role in these
matters, this was not going to be an easy task.

2.3 Johannes Frans Willem Nuboer

Johannes Frans Willem Nuboer was born in the Dutch East Indies city of Pon-
tianak on October 274, 1901 (Bosscher, [1994). He moved to the Netherlands
during his childhood, where he enrolled in the Naval Academy at age 17, gradu-
ating as a naval officer in 1921. He specialised in the field of the liaison service,
and followed a course in cryptography in 1930, taught by major Henri Koot. He
ended up playing a significant role in the navy’s adoption of the Enigma cipher
machine in 1931. From 1932 to 1934, Nuboer followed a course that involved

working in various departments of the navy. Bosscher| (1994) mentions that it
was typical for Nuboer to rapport his unvarnished critique on the war-readiness
of the various parts of the navy. In 1934, Nuboer was dispatched to the Dutch
East Indies with the task of founding Department 1.

For the next four years, Nuboer would play an important role in breaking
Japanese cryptography, as will be described in the following sections.

In 1938 he returned to the Netherlands, where he took on the position of a
teacher and acting director at the Higher Naval Academy (Hoogere Marine
Krijgsschool). However, before and during the Second World War, Nuboer was
attached to the naval staff and, from London, served as an advisor to Admiral
Furstner and Prime Minister Gerbrandy (Visser, [2005)).

At his discharge in 1953 he was decorated for his remarkable service to the navy
and awarded the title of schout-bij-nacht (equivalent to that of rear admiral).
Nuboer was likeable and behaved himself with modesty. Although he often
made a shy impression, his intelligence, perseverance and high moral standards
demanded respect of his co-workers (Bosscher} 1994)).

2.4 Gathering intelligence

In command of the newly formed Department 1, Nuboer intended to supply the
other departments of the navy with monthly reports of his findings. The dis-
tribution of this intelligence material would be limited only to the Commander
of the Navy, the Chief of the Naval staff in The Hague, several local military
authorities as well as the head of the general intelligence service for East Asia
(DOAZ), Antonius Lovink, who provided intelligence to the Governor-General
(Nuboer} [1977g). As Japanese pressure increased and started influencing the
political agenda, Lovink and his staff shifted more and more focus towards Japan
(Meijer, [2002) and the information provided by Department 1. These reports
consisted of information gathered from a wide variety of sources.

The lack of human intelligence operations is quite striking. The use of human
espionage was considered to be impossible from a practical point of view, as the
Japanese society was very closed and private at the time. A foreign visitor would
be noticed immediately, especially when found wandering off the beaten track
or when exhibiting interest in military sites and affairs. This made Department
1 especially dependent on other ways of gathering intelligence (Nuboer] |1981]).

2.4.1 Press information and the diplomatic mission

The staff in[Batavia] kept a close watch on the information that was published in
the Japanese press. Additionally, the Dutch diplomatic mission in Tokyo often
sent letters to in which they would provide background and context
to international news. Lieutenant at sea J.A.L. Muller, the Dutch adjunct
marine attaché to the diplomatic mission in Tokyo, would often send along
noteworthy fragments of Japanese newspapers describing changes in the military
organisation (Nuboer} 1977g|). What might seem like public information to the

Japanese was valuable (and hard to obtain) for the intelligence service back in

[Batavial

2.4.2 Photographs of Japanese vessels

The work of Department 1 was greatly aided by photographs of various Japanese
military vessels. Nuboer did not want to actively involve civil ships that sailed
the Java-China-Japan route in order to keep them from trouble, but when, in
1935, a private captain approached him with photographs of the aircraft carrier
Ryujo, Nuboer happily obliged. These photographs showed a remarkable level
of detail. In 1934, lieutenant Muller, still in Tokyo, had even managed to send
Nuboer a book with a complete collection of photographs of Japanese ships.
This book is further mentioned in section as it provided ship names that
were very useful cribs while breaking the code.

2.4.3 Room 14 and Japanese naval telegrams

In the General Staff employed its own intelligence bureau. Room 14,
as it was called, housed two cryptographers, Lt. Col. J. A. Verkuyl and Lt.
Col. W. van der Beek. Both had been instructed by Henri Koot, who had also
taught Nuboer. The cryptographic efforts of Room 14 focussed on Japanese
diplomatic ciphers that were used by the Japanese ministry of Foreign Affairs
and their consulate in [Batavia] This would provide valuable diplomatic context
to the Dutch Indies’ military leader, and Nuboer was happy to include it in the
reports.

The telegraphic interception station at mainly monitored naval inter-
cepts. These intercepts were sent to Room 14 in but were generally
filed and archived unprocessed, as the small staff was immensely occupied with
the diplomatic communication. For Nuboer, as we are to see in the next sections,
these marine telegrams formed the utmost important source of information, and
many of his reports were centred around these findings. (Nuboer} [19771)

Now is as good a place as any to introduce lieutenant at sea J.M. Schalkwyk,
who was to join the cryptanalysts of Room 14 in June 1935. Trained in the
Netherlands, he was recruited by Department 1 and immediately detached to
Room 14 in[Bandungl With Schalkwyk’s detachment, the interest of Room 14 in
naval telegrams grew 51gn1ﬁcantly Much of the work was still done in
but Schalkwyk made great progress in preprocessing the data. Schalkwyk would
turn out to be a valuable colleague to Nuboer.

3 Japanese telegrams

As the telegraphists became more familiar with the telegrams, several were in-
tercepted each night. The transmissions originated from the Tokyo radio station
as well as the stations of Bako and [Formosaland warships in the area. This infor-
mation was readily available, as the address headers were always transmitted in
plain text, even when the message itself was enciphered. This changed August
1937, when Japan started hostilities towards China and changed to wartime
standards (as is mentioned in more detail in section |8)) (Nuboer} [1981)).

The telegrams were fitted into grids of ten by ten, filling a page per grid. Each
such grid was called a ‘hone’ and multiple grids were used for longer telegrams,
labelled ‘hone 2’, ‘hone 3’ etcetera. For enciphered telegrams, the last square of
each row contained an indicator symbol signifying which code was used — most
commonly a ‘., but also ‘Ni’, ‘Sa’ and ‘I’ occurred. The telegrams listed in

appendix [B] and [C] adhere to this format and were encoded using the ‘. cipher.
While decrypting them, Nuboer referred to the code systems by these symbols.

3.1 Address headers

The address header always started with ‘ate’, which is loosely equivalent to ‘to’.
Then followed the call sign of the addressed recipients, optionally followed by
a quotation mark (or hyphen) and the call signs of any other recipients that
received the message for information (much like a carbon copy in present-day
email). This was then followed by an equals sign and the call sign of the sender
(Nuboer} [19771). See figure [1| for a comparison to email headers.

ate Onka Erika " 12 Kutashi Saekikotashi, Mohaka = Kurechishichi

~ ~-

To cC Fme

Figure 1: Illustrating the telegram header format by comparison

Based on the contents of readable telegrams, as well as the ever increasing
level of insight in the organisational structure of the Imperial Navy, the Dutch
were able to grasp the meaning of most of the call signs. For example, Da
was used by the Chief of the Naval staff and Reichi indicated the Commander
in Chief of the Combined Fleet. These call signs could also be combined by
concatenation: Shika meant commander and Ren was used for the training
squadron, so Renshika was the commander of the training squadron. For a
more complete list, see appendix [A]

In his memoirs, Nuboer provides an example to show the relevance of the address
headers. On March 29" 1935, four encrypted telegrams were intercepted, with
the following headers: (Nuboer, |1977g)

ate Renshika " Yokochi, Kurechi, Sahochi, 1, 2, 3, Shichi, Omiyo, Maiyo,
Chinyo, Bayo, Riyoyo, Chimaka Shika, Kigachi, Hegachi = Da

ate Natoka " Hieka, Sunoka, Chichimuchi, Naza = Yokochishichi

ate Onka, Erika " 12 Kutashi, Saekikotashi, Mohaka = Kurechishichi

ate Notoroka, 27 Sesutashi " Tomosuka, Sataka, Setaika, Sesutashi,
Hakuroka, Araka, Nachika = Sahochishichi

From the headers it can be seen that this was a message sent by the Chief of the
Naval staff (Da) to the bases of[Yokosuka] (Yokochi), Kure (Kurechi) and Sasebo
(Sahochi) — the -chi postfix incidates a base. The Commanders in Chief of
the respective bases then sent a message to their ships, likely forwarding the
original message (see the ‘senders’ of the last three headers: Yokochishichi,
Kurechishichi and Sahochishichi).

Amongst the stations that were directly addressed (i.e. not just for information)
were the training squadron (Renshika) and the tankers Ondo (Onka) and Erimo
(Erika), all of which were abroad. The training squadron would soon arrive in
Singapore (on April 15%) and the tankers were transporting oil from California.
It was thus likely that the message somehow concerned ships that were abroad.

From this, the Dutch concluded that the other addressed ships were also on a
mission abroad (Nuboer, [1977g)). This included the cruiser Natori, the aircraft
carrier Notoro and the 27" submarine division. Other than the fact that this
provided valuable tactical information, these messages also gave further insight
in the organisational structure of the Japanese Navy. Most notably, they showed
which ships were not included in numbered fleets, and which ships were under

the command of [Yokosuka] Kure or Sasebo.

3.2 Telegram numbers

Every telegram started with a group of nine digits that uniquely identified each
telegram and allowed a receiver to order them chronologically (Nuboer] [19771).

The first three digits indicated the sequence number of the telegram with respect
to the sender. Each sender started with sequence number zero on January 15¢,
midnight. The fourth digit indicated a sequence number that could be used
when multiple telegrams were used to transmit a large message. This was usually
zero. The fifth and sixth digit indicated the day of the month. Interestingly, the
month was not included in the code, indicating that every sender would have to
transmit at least monthly for the full date to be deducible from the code. Due
to the speed of telegraphy (as opposed to letter-writing), specifying the month
was generally considered redundant. Digit seven to nine indicated the time in
hours and tens of minutes — 024 would indicate 2 hours and 40 minutes, or 02:40
in the morning.

For illustration purposes, let us apply this to the numbers of the telegrams listed
in appendix and appendix |Cl The April 15 telegrams were marked 028101093
and 029201093. Grouping the numbers according to the aforementioned groups,
we get [028][1][01][093] and [029][2][01][093]. This shows that the telegrams were
sent sequentially and were part of some larger message, and both telegrams were
sent on the first day of the month, at 09:30.

The April 5*® telegram was marked [031][0][05][173]. Apparently the sender
transmitted one other telegram (number 030) between April 15¢ and April 50,
and this telegram was not part of a larger message. It was transmitted at 17:30.

4 The Ni code

Telegrams in which the last symbol of each line was Ni, were encoded using a
code book system that was not encrypted, other than by the obscurity the code
book provided. Such a code book scheme relied greatly on the secrecy of the
system, but was broken efficiently by analysing the message structure, finding
often recurring combinations of code groups and, perhaps most significantly, by
comparing the contents of telegrams with the actual occurance of real-life events
and military actions (Nuboer} [19771).

The code consisted of groups of three Kana symbols (a Japanese alphabet of
forty-four symbols — see appendix @7 of which the third symbol was a control
symbol — in case one of the three characters was garbled in transmission, it could
be reconstructed from the other two. This meant there was only room for 1936
(44?%) unique groups. The code contained systematic tables of numbers, dates,
timestamps and names of ships — including British, American and French navy
ships stationed in the Eastern-Asiatic area. It also contained codes signifying
single (or pairs of) characters that allowed the user to spell words for which
there was no code available (Nuboer, [19771). All of the aforementioned left
only a small amount of groups for other expressions, mostly build up of codes
indicating naval movements. Accordingly, the contents of most messages for
which this code was used concerned the movement of British, American and
French vessels in China. Because of the large number of structured codes, the
Dutch were able to reconstruct nearly the entire code book by filling in gaps in
the tables and data structures (Nuboer} |1981)).

4.1 Reciphered telegrams

Sometimes Ni telegrams were received that did not adhere to the codes of the
code book. Using frequency analysis, Schalkwyk concluded that these telegrams
contained a recipherment of the original Ni code. The frequencies with which
the symbols occurred matched those of the original code groups, indicating a
transposition cipher (Nuboer, [1977g).

In 1936, Nuboer and Schalkwyk were able to uncover the workings of this reci-
pherment. The code groups were copied into a figure along the diagonals, after
which the columns were read in a specified order. Certain pieces of the figure
were left empty, as to further conceal the code groups. The figure also included
fields of which the contents would be omitted entirely during decryption, serving
as noise. This recipherment is very similar to the recipherment system detailed
in section [6 and could be considered a variation.

After decryption, it turned out that many of the re-encrypted messages con-
cerned movements of the Japanese Imperial Navy (rather than information
about the British or French navies, which made up the content of most of
the original Ni messages) (Nuboer) [1977g). Unfortunately, no actual Ni code
telegrams or recipherment figures appear to have survived.

5 Breaking the ‘.’ code

5.1 The breakthrough

On February 20", 1935, a Japanese training squadron left port at
After brief visits to Keelung, Hongkong, Manilla and Bangkok, it visited Singa-
pore on March 28th. The squadron left Singapore on April 1st and docked in
from April 3rd to April 5th. It would continue its journey southwards,
sojourning in Melbourne and Sydney before heading east towards Honolulu and
back to the ports of [Yokosuka] late July, 1935 (Nuboer] [1977i).

After leaving the port of Singapore on April 1st, and again when leaving the
port of on April 5th, the squadron sent out a remarkable encrypted
telegram (see appendix [Bfand appendix for both complete telegrams). These
telegrams were especially intriguing, as they contained many repetitions.

After studying the telegrams thoroughly, Nuboer and the staff at
noticed that the last line of hone 1 of the April 1st telegram (028101093) and
the fourth line of hone 2 of the April 5th telegram (031005173) contained eight
identical symbols (Nuboer, [1977a)). These lines read:

April 1st: Hi Shi He Tsu So Yu Ke Ta Wa
April 5th: Ta Ke Hi Shi He Wa Se Tsu So

5.2 Permuting the columns

All symbols occur in both lines, except for the Yu in the first line and Se in
the second. This could indicate that a cipher system was used that permutes
nine columns of plaintext. The Yu symbol can be either the first or last symbol
of the plaintext line, grouping the other eight symbols together. As the same
permutation is applied to both lines of text and the Yu and Se symbols are in
different positions, one of the two has to be the first symbol while the other has
to be the last.

In his memoirs, Nuboer does not explicitly specify how they found the per-
mutation that leads to an identical ordered sequence of symbols for both lines.
Mentioning that he arbitrarily selected the case where the Yu symbol gets placed
at the back, he declares finding the permutation 5-2-6-3-7-9-1-4-8 (signifying
that the first symbol is mapped to position five, the second to position two, the
third to position six, etcetera) (Nuboer} [1977a)). Applying this permutation to
both of the aforementioned lines of ciphertext results in the following plaintext
sequences:

April 1st: Ke Shi Tsu Ta Hi He ©So Wa Yu
April 5th: Se Ke Shi Tsu Ta Hi He So Wa

After Nuboer had found a candidate permutation that might have been used to
encipher the telegrams, he applied it to the entire ciphertext. He soon found that
his suspicions had been correct: suddenly, groups of symbols started recurring
throughout the ciphertext at a spectacular rate. At first it seemed like the
symbols were paired together, but upon closer inspection the repetitions turned

out to affect groups of four Kana symbols, indicating a recipherment of existing
code groups (Nuboer} [1977al).

5.3 Confirming the permutation

Using computer systems available today, finding a permutation of nine symbols
that results in a common sequence of eight symbols is fairly trivial. Simply
trying all permutations, albeit resulting in an algorithm of complexity O(n!)
(as there are 9 -8 - ... - 1 permutations), can be done within seconds. Using
Python, it might look something like this:

from itertools import permutations

linel = [’Hi’, *Shi’, 'He’, 'Tsu’, 'So’, 'Yu’, 'Ke’, 'Ta’, 'Wa’]
line2 = ['Ta’, 'Ke’, 'Hi’, ’Shi’, 'He’, 'Wa', ’Se’, 'Tsu’, ’So’]

for p in permutations(range(1,10)):
linelp = list(linel)
line2p list (line2)
for i, a, b in zip(p, linel, line2):
linelp[i — 1], line2p[i — 1] = a, b
if linelp[1:9] = line2p [0:8] or linelp [0:8] = line2p [1:9]:
print p

Running this algorithm presents us with two permutations, 5-8-4-7-3-1-9-6-2
and 5-2-6-3-7-9-1-4-8, exactly matching the two cases described earlier — one
where the Yu symbol is mapped to 1, and one where it is mapped to 9. Note that
for this to work, we first had to observe two lines of ciphertext that contained
nearly identical sets of symbols.

5.4 Finding the permutation manually

It is clear that simply verifying all permutations in a brute-force manner was an
infeasible approach back in 1935. It is that unlikely Nuboer found the permu-
tation by guessing either, as he would have to try nearly a hundred thousand
permutations before this would become likely. He must have used a more struc-
tured approach.

Let A = (a1, 2, ...,a9) and B = (81, fa, ..., Bg) be 9-tuples representing the lines
of ciphertext, and A = (a1, as, ...,a9) and B = (b1, ba, ..., bg) 9-tuples represent-
ing the respective plaintexts, where each «a;, §8; a; and b; represent individual
Kana symbols. Eight out of nine symbols occur in both A and B. Define a
symbol to be unique when it only occurs in A or B, but not in both. Nuboer
distinguishes between the cases where the unique symbol in A is permuted to
the front or the end of the plaintext and arbitrarily chooses the latter case. The
other case can be handled analogously.

Let m = (m,m2,...,m9) be a permutation. We can write this permutation in-
terchangeably as a bijective function that maps positions in the ciphertext to
positions in the plaintext 7 : n + m,. Thus a; = a@;) and B; = by(;).

Observing the Kana symbols above, ag is not contained in B and (7 is not
contained in A. Because of this uniqueness of ag and 37, these symbols can only

10

be in position 1 and 9. In any other case, the sequence of 8 identical symbols
would be broken. Since ag and f7 are in different positions, they cannot both be
mapped to position 9 — the permutation is bijective. From this we can conclude
that, since ag was originally in the last position (by Nuboer’s assumption), 37
was originally in the first position. Thus 7 = 9 and 77 = 1.

From the above observation, it follows that the symbols in A are shifted one
position to the left with respect to their occurrences in B. Thus a; = b;41 for
1 <4 < 8 (as ag is the unique symbol Yu).

Now the repetition of symbols in .4 and B is important. We see that a; is Hi,
and (33 is Hi as well. Thus a; = 3, and from a; = ar(;) and B = by it now
follows that ar(1) = br(z). From a; = b;j11, we then see that m3 = m + 1.

Applying this course of action to the entire tuples A and B, we find the relations
as listed in table below (as Yu only occurs in A, there is no matching position
in B). The Hi column matches the example above.

H Hi Shi He Tsu So Yu Ke Ta Wa
1 2 3 4 5 6 7 8 9
3 4 5 8 9 n.a. 2 1 6

B
Table 5.1: Symbol positions in ciphertext

Earlier we have seen that mg = 9. As the table shows that mg = 79 + 1 (see
the Wa column), we know that mg = 8. Continuing along the table, we now see
that m9 = w5 + 1, thus 75 = 7, etcetera. Now the entire permutation 7 can be
deduced:

m=(526,3,7,9,1,4,8)

5.5 The ‘.’ code book

After discovering the permutation that lay at the base of the ‘.’ code, the crypto-
analysts of Department 1 were able to decipher an immense mass of material that
had been intercepted over the past months. This allowed for the reconstruction
of a significant part of the code book (Nuboer) 1981).

For the ‘.’ code, the Japanese used the Romaji alphabet in lexicographical order.
The Kana character set was used with omission of the N and Nu symbols. The
Kana sequence is as follows: A-E-Ha-He-Hi-Ho-Fu-I-Ka-Ke-Ki-Ko-Ku-Ma-Me-Mi-Mo-
Mu-Na-Ne-Ni-No-0-Ra-Re-Ri-Ro-Ru-Sa-Se-Shi-So-Su-Ta-Te-Chi-To-Tsu-U-Wa-Wi-Ya-
Yo-Yu.

The " code is formed by groups of four Kana symbols, of which the fourth
symbol is a control symbol. The control symbol was found by adding the nu-
merical value of each Kana symbol (A = 1, E = 2, etcetera), subtracting one
and converting the value back to a Kana symbol (modulo 44). Analogous to
the control symbol as used in the Ni-code, this checksum system allowed for the
reconstruction of the group in case one of the symbols was lost (Nuboer, [1977¢)).
A table of the Kana symbols and their numerical values is included in appendix
DI

11

Let us look at an example, to illustrate this checksum property. Observe the
code group So Me Mi. Converted to numerals, these symbols have the value 32,
15 and 16. Their sum is 63. After subtracting 1, 62 remains. This is equal to
18 modulo 44, so the checksum symbol is Mu. Thus, the complete code group is
So Me Mi (Mu) (which respresents the Kamoi ship).

As each code group is effectively defined by three of its symbols, the code is
significantly larger than the Ni-code: there is room for roughly 85.000 (443)
groups. To use this space effectively, the code contains several table structures.
A large part of the code has been reserved for dates, timestamps, number and
character groups, as well as individual characters. This encompassed the groups
from A A A (E) to Se Yu Yu (Sa). The rest of the book was reserved for
various common words and phrases .

The codes for ships start with So. Light cruisers are indicated with So Ku and
codes for heavy cruisers start with So Ko. So Ra, So Ri and So Ro indicate
destroyers, and So Se is used for submarines. Coincidentally, Lieutenant Muller,
stationed in Tokyo, had sent Nuboer a book with photographs of Japanese
marine vessels (see section [2.4.2). The order soon turned out to match that
of the ships listed in the So-table, and showed that the ships were ordered
according to the date of their commissioning (Nuboer} (1977c).

The code also contains a table of authorities, starting with Shi, and geographical
names, starting with To and Tsu. The geographical table is structured according
to the actual geographical locations of the sites — starting from Tokyo, traversing
around the Japanese islands and southbound along the coast of Eastern Asia,
through the Dutch Indies towards the mandated territories (Nuboerl [1977c).

As more of the ‘.’-telegrams were decrypted, hundreds of other code groups were
uncovered, including groups signifying numbers, dates and timestamps. For a
tabular overview of a part of the code groups, see appendix [E]

12

6 The reciphered ‘.’ code

In August 1935, all .’ code telegrams suddenly became completely undecipher-
able. When applying the permutation as shown before, the resulting messages
would contain unknown code groups and combinations of known code groups
that did not form a coherent message. However, based on frequency analysis,
Schalkwyk and Nuboer concluded that it concerned yet another transposition
of the same base code.

6.1 A toy example, for the readers’ benefit

The following subsection is not in line with the chronological decryption process
that will be described in the rest of this section, but is perhaps a valuable
shortcut to a basic understanding of the reciphered . code cryptosystem. This
example will be provided without historical context or notes illustrating how
or why the system was unravelled. To be better able to understand how the
system was broken, it is convenient to be familiar with the way the system was
used for encryption and decryption.

6.1.1 Inventory

The cryptosystem we will be exploring uses a combination of two keys to encrypt
and decrypt: a permutation and a grid figure. For our example, we will use the
permutation 2-5-1-3-4 and the five by five grid as shown in table below.
The grid contains three types of fields: (empty) fields, blanked out fields and
fields with negation (N) symbols. For convenience, we can combine the two keys
by writing the permutation below the figure, effectively labelling the columns.

2 5 1 3 4

Table 6.1: The key figure

6.1.2 Encryption

We will now use the figure and permutation as defined above to encrypt the
plaintext “The cake is a lie”. We begin by filling the plaintext into the empty
fields of the figure, from left to right and top to bottom. In fields with a negation
symbol, we fill in any arbitrary symbol — for this example, we choose X and Y.
See the figure with the plaintext included in table below.

13

5 1 3 4

Table 6.2: The filled figure

We now read off the columns in the order defined by the permutation. As there
is a 1 underneath the third column, we start with that one. We then continue
to the first column, the fourth, the fifth and finally the second. Reading off the
columns from top to bottom in this order, we find the strings XE, EIL, HCS, AAE,
TYKI. We concatenate these to form the ciphertext: XEEILHCSAAETYKT.

6.1.3 Decryption

Decryption is quite literally the inverse procedure of encryption. We take the
same key figure as shown in table [6.1] and we fill the ciphertext into the figure
vertically. Start with the column labelled ‘1’, then proceed to fill the remainder
into the column labelled ‘2’, etcetera. This time we do fill the fields with the
negation symbols. We should end up with the same filled figure as we have seen
earlier, in table [6.2] If we have done it right, the symbols X and Y should end
up exactly in the negated fields — after all, they were not part of the original
plaintext.

Now we can simply read the plaintext from the figure starting at the top-left
and reading down along rows horizontally, ignoring the symbols in the negated
fields. Doing this, we find the strings TH, ECA, KE, ISA and LIE. Concatenating
these strings gives us our original plaintext: THECAKEISALIE.

6.2 Another breakthrough

In early September 1935, the Dutch intercepted two nearly identical ‘.’ code
telegrams, transmitted by a ship near that had apparently made an
error and sought to correct it. From this message, Nuboer was able to conclude
that the recipherment most likely consisted of ten or eleven columns that were

transcribed vertically (Nuboer, 1977g). As Nuboer was otherwise occupied in

B al at the time, he would not be able to further investigate the code until
he arrived in in November. As luck would have it, the interception
station had received an interesting new series of telegrams just days earlier, again
originating from a ship off the coast of It transmitted a sequence of

telegrams at thirty minute intervals, showing many repetitions (Nuboer), [1977i
1977d).

These telegrams are included fully in appendix [F]

14

6.3 Exploiting repetition

As Nuboer and Schalkwyk had correctly established, the recipherment was a
transposition cipher. Specifically, this meant that strings of symbols of equal
length and position would be transpositioned in an identical way. After sorting
the telegrams by length and similarity, and writing them down in a grid on
one line each, Nuboer noticed an interesting pattern. By connecting repeated
symbols with a red pencil line, a pattern of vertical lines emerged that seemed to
make jumps to the right (Nuboer, [1977d). As the earlier telegrams had aroused
suspicions that the columns were transcribed vertically, it was justifiable to
assume that the groups that emerged were columns in a figure. Wherever a
jump occurred, a column ended.

He Wi| U Ta Ta|Mu Ri--Wi Mo Ma Ra|Ku No Ni U
Ew‘i Na| Wi Wi Te|Shi Su Tsu U A\NAi ;
Ku He Te| Yo Wi To |Na N6 Ra So
ﬁe Tsu Na| Yo Jo 0 N% He Ri
I Tsu Na| Yo iTsuIN‘\Rf Kei
E Tsu Na| U Wi Mi R:i\Ra\ So
ja\A Ku Tsu Na :\a Wi |Chi No He
So E Ra Na i Ni Chi|Re Jo e
S‘o A i i He CI

0082: Ho Ru Na
0083: Mo Ke NL
0075: Ho Ho Ru
0077: Ho Ma Na Ni
0078: Ho Ku NL Sa
0081: Ho Wi Ra Sa
0076: Ho To Na Sa
0079: Ho Wi NL Sa Wi
0084: Mo Te Ta Sa Ma

Tsu Na i|Ho Su He

Table 6.3: Connecting identical symbols. Completed in appendix [G]

The table above (table contains the first twenty symbols of the telegrams,
along with annotations showing the columns. Thin lines indicate identical sym-
bols, while thick lines indicate where columns end. A more complete annotated
version is included in appendix [G] Some more obscure connections, albeit reaf-
firming the pattern, have been omitted for the sake of clarity. This includes
connecting the He in telegram 0082 on position six to the He on position seven
in telegram 0077, and the Ri symbols in telegram 0082 and 0081. These two
examples have been indicated with dashed grey lines in the table above.

For the sake of completeness, it is perhaps worth mentioning that Nuboer’s
assumption that the ciphertexts were build up of transcribed columns was not
unanimously supported. Schalwyk was approaching the issue from a different
vantage point, assuming a more arbitrary transposition that combined the Kana
symbols to known code groups. He found a transposition for the first forty
symbols of the telegrams that formed the symbols into a remarkable amount
of valid code groups. Schalkwyk was so convinced of the correctness of this
discovery (and Nuboer’s columnar theory had been stuck in a rut) that Nuboer
accepted it for the time being (Nuboer| |1977g). The pair ended up working on
it fruitlessly for months. The staff of Room 14 had not yet gathered sufficient
insight in the code to realise that the decrypted texts were not at all well-formed
code.

15

6.4 Permuting columns once more

As mentioned above, Nuboer believed that the groups of symbols represented
columns. As the telegrams grew larger, the lines that separated the columns
made jumps. These jumps indicated to which columns an extra symbol was
appended. It soon appeared that the columns did not grow in the order in which
they were included in the text, but according to some permutation (Nuboer}
1977d).

Nuboer marked the symbols in positions that were newly filled as the telegrams
grew larger. Such a symbol is found by comparing the length of a column to the
length of the same column in one of the slightly shorter telegrams — preferably
one group shorter. For the first twenty characters, these are marked in table
Again the entire marked telegrams can be found in appendix [G]

0082: Ho Ru NafRe A He Wi|U Ta Ta|Mu Ri Wi Mo Ma Ra|Ku No Ni U
0083: Mo Ke Na|Sa A E Wi i Wi Wi Te|(Shi Su Tsu U A Ni

0075: Ho Ho Ru|Wi[So A Ku He :Tf_e_ Yo Wi To [Na No Ra So A
0077: Ho Ma Na Ni|So E He Tsu Na| Yo Wi To |0 No He Ri E
0078: Ho Ku Na E E Tsu Na| Yo Wi Tsu|I No Ra Ke E

0081: Ho Wi Ra E Tsu Na| U Wi Ya |[Mi Ri Ra So A
0076: Ho To Na Sa A Ku Tsu Na|Yo Wi Ya Chi No He
E
A

0079: Ho Wi Na Sa Wi|So E Ra Na|Yo Wi Ni Chi|Re No He
0084: Mo Te Ta Sa Ma|So E Tsu Na|Wi Wi He Chi|Ho Su He

Table 6.4: Marking appended symbols. Completed in appendix [G]

By marking the symbols, Nuboer saw that in the transition from 50 to 54
symbols (i.e. the difference between telegram 0082 and 0083), the symbols Na,
He, Wi, Na were added to the columns 2, 6, 7 and 9 respectively. At the end of the
same columns in the slightly larger telegram 0075, Nuboer found the symbols
Te, Ka, Ni and Ne (marked with dashes in appendix . If Nuboer’s suspicions
were correct, these symbols were to form a known code group. Indeed, arranging
the columns in the order 6-7-2-9 formed two known code groups: He Wi Na
(Na) and Ka Ni Te (Ne).

Similarly, in the transition from 54 to 58 symbols, the columns 1, 4, 5 and 11
were extended. The ordering 5-1-11-4 revealed known code groups as well.
This involved the groups He Wi Na (Na), Ka Ni Te (Ne), Ma Sa Re (0) and
Ma Sa No (Ne).

In the transition from 58 to 62 symbols, the columns 6, 7, 8 and 10 were ex-
tended. Two remarkable things happened here. The appended symbols were
identical in all telegrams, again forming the group He Wi Na (Na) and the or-
dering 10-8-6-7. This ordering overlaps with the one found in the first transi-
tion, combining to an ordering of 10-8-6-7-2-9.

The fourth extension from 62 to 66 symbols completed the puzzle. The columns
1, 3, 5 and 9 were extended and, after permuting them in the ordering 9-5-1-3,
showed the groups Ru Ra Ta (Wi) and Ro Ku Wi (Chi). Merging the 9-5-1-3

16

and 5-1-11-4 sequences to 9-5-1-3-11-4 can be done by naive trial and er-
ror based on the formed groups, as there are only several combinations. This
brings together the earlier found sequences to form a complete permutation:
10-8-6-7-2-9-5-1-3-11-4.

It is worth noting that finding these orderings can be made much easier by taking
the checksum property into account (as discussed in section . Let us have a
look at the symbols Te, Ka, Ni and Ne. Translating these into numbers according
to the Kana alphabet (see appendix @ gives us 35, 9, 21 and 20 respectively.
Recall that computing the checksum is done by summing the numerical values
of three symbols and reducing the result by one, modulo 44. One can now easily
observe that Ne is the only possible valid checksum symbol:

20+9+21—1#35 (mod 44)
35420421 —1#9 (mod 44)
3549+20—1%#21 (mod 44)
3549421 —1=20 (mod 44)

Now only six code groups need to be considered, rather than twenty-four. It
should be noted that this result is purely academic, as Nuboer had long since
memorised the common code groups by studying the earlier version of the
‘. code. He would have solved the anagram of Ka Ni Te (Ne) by recognition
rather than computation.

6.5 Figuring it out

Nuboer then provides the example of telegram 0076 after permuting the columns
according to the newly found permutation (Nuboer] 1977d)). This example is
included in table The columns show a remarkable difference length, and
Nuboer notes there were only few in-tact code groups to be observed. This
indicates that the underlying figure with which the telegrams were transcribed
contains many blank fields, causing much obscurity.

10 8 6 7 2 9 5 1 3 11 4

Ru Mu M@\Sﬁ“ﬂ(o\ﬂg Yo Re Chi
Yo Ko Ri So A e Ku To Wi Mi Mo

Ro Na A He Ku Yu To Na” Ya Ku He
Ma——Wa——No_w_' Tsu Hz},,A" Sa Wi Tsu U

Ha Ke ©No ©Na Na No Wa Ta Ki A
He Wi He Na Ma A Ko
No Ru Ra No Ne

Table 6.5: Telegram 0076 in re-ordered columns

Unfortunately, there seems to be little information available as to how the en-
cryption figure was then found. Nuboer notes that “through comparison with
other telegrams” the original text of the 0076 telegram was put together, and

17

the figure was reconstructed. This figure is included in table [6.6] below. N-
symbols (negation symbols) indicate fields where apparently random symbols
were inserted. This, combined with the obscurity created by the blanked out
fields, made the code groups especially hard to isolate.

However, in one of Nuboer’s manuscripts the above table is heavily annotated.
This sheds a slight ray of light on the process of constructing the figure. It
seems that by attempting to align common code groups, Nuboer was able to
draw conclusions about the relative positions of the symbols. An example is
included in the table above, where the group Ne Mi Sa (Ne) is marked. Notice
that the group starts with Ne, but it is in a column after Mi. This means that Ne
must have appeared at least one row above the other symbols, and there cannot
have been other symbols in between. Indeed, this is confirmed by applying the
(slightly altered — see below) permutation and filling in the group in table
The Ne symbol is in the first row, while the rest of the group is spread over
lower rows.

Table 6.6: Encryption figure (November 1935)

The groups were often much less straightforward to observe, as is shown by
the Ma No Wi (So) group that is marked in table with a dashed line, and
included in table[6.6] The difference in column length caused vertical offsets, and
the many blank fields tore the groups apart horizontally. This makes the fact
that Nuboer managed to crack this tremendous puzzle even more astonishing.

Note: to avoid overloading the terms group and column, from here on the
sequences of symbols identified in a telegram as a column (as separated by red
lines in table [6.3]and appendix [G]) will be called an array. This is done to avoid
confusion with the columns in the figure described below, and the code groups
used as words in the ‘" code (i.e. four Kana symbols).

The permutation found above turned out to be slightly off. One might notice
that the columns of table [6.5] do not fit in the columns of table Although
Nuboer does this implicitly in his notes, it requires a little explanation to get

18

correctly. Recall the permutation 10-8-6-7-2-9-5-1-3-11-4. Rather than
filling the tenth array of symbols into the first column of the figure, one must
start off with the seventh column. The eighth array goes into the eighth column,
the sixth array into the ninth, the seventh into the tenth, the second into the
eleventh, after which we loop around to place the ninth array into the first
column, etcetera. This is a consequence of the fact that the code group that was
used to identify the first four arrays of the sequence (10-8-6-7) encompassed
fields 59 to 62, which are found in column seven to ten (see table . This
effectively changes the permutation to 9-5-1-3-11-4-10-8-6-7-2. Applying
the permutation becomes more clear in section or the toy example in section
where we will look at an example decryption using the figure above.

The figure in table [6.6] has a particularly large number of available fields in the
last few rows — the rows where the symbols are added that caused the telegrams
to be of distinct lengths. More importantly, the last few rows contain relatively
large sequences of fields that are left uninterrupted by any blanked out fields.
This, above all, made the analysis that was described in section possible.
Had there been more blanked out fields, Nuboer would most likely have required
more telegrams to find the initial permutation. Recall that there was a slight
conflict when merging two parts of the permutation, 5-1-11-4 and 9-5-1-3.
We can now link this conflict to the blank field in column four, as this where
the third array was to be filled in. The sequence 5-1-11-4 was formed on the
penultimate row (fields 55 to 58), skipping the third array in column four, as
this field is blanked out (marked in table |6.6| with an !). The sequence 9-5-1-3
does include the third array, as it is a consequence of symbols in the last row,
where the field in column four is not blanked out. This shows how just one
blanked out field can cause a severe disruption. One might imagine what more
blanks would have done for the difficulty of finding the permutation.

6.6 Exploring an example

The above analysis is quite theoretical. To get a better understanding of the
actual workings of the system, it helps to work through a real decryption. In
the sections below, this decryption process is illustrated. Note that a smaller
example of both decryption and encryption was already included in section [6.1
but several complications were dropped that will now be included.

Let us use telegram 008209133, as shown below — any of the other telegrams
will behave analogous, but this is one of the shorter telegrams. This prevents
it from filling up the entire figure, adding a step to the decryption process.
The other telegrams are included fully in appendix [F}] We assume knowledge of
the permutation that was figured out earlier (9-5-1-3-11-4-10-8-6-7-2, after
correcting for the starting position), as well as the figure (see table [6.6)).

008209133 Ho Ru Na Re A He Wi U Ta Ta Mu Ri Wi Mo Ma Ra Ku No Ni U
Na Mu Ri E I Ne No Ya He A Mi So No Ma To Ro Fu Wi Na Ru Mo No A Sa
Hi I Ma To Na Ru

19

6.6.1 Determining the lengths

The first thing we need to do is separate the telegram into arrays that can
later be fitted into the figure. In section this was done by comparing it
to other telegrams and drawing a red line along the pattern. However, rather
than relying on other similar telegrams, we will now use the figure. We simply
count the length of the telegram — 50 symbols — and fill as many fields in the
figure (see below). Note that we also count the fields that contain a negation
symbol (N), as the symbols these fields produced during encryption have not
been filtered from the ciphertext yet.

9 5 1 3 11 4 10 8 6 7 2

Table 6.7: Determining array lengths

By writing the permutation along the bottom of the figure, we can now easily
find the lengths of the arrays by counting the filled fields in the associated
columns. Table [6.8] shows these totals, sorted according to the array numbers.

E
| 4

Table 6.8: Determining array lengths

Array No.

| 1 3
Length||3 |3|6|5|5|3|5|5|5|6|

Now that we know the array lengths, we can split the telegram accordingly. The
ending of each array is marked with a slash (/) character. Note that this is the
same division as found in table but this time the figure was used to find it,
rather than having to depend on similarities with other telegrams.

008209133 Ho Ru Na / Re A He Wi / U Ta Ta / Mu Ri Wi Mo Ma Ra / Ku
No Ni UNa / MuRi EI Ne / No Ya He / A Mi So No Ma / To Ro Fu Wi
Na / Ru Mo No A Sa / Hi I Ma To Na Ru

20

6.6.2 Filling the figure

The arrays of symbols can now be filled into the figure — keep in mind that we
are using the permutation 9-5-1-3-11-4-10-8-6-7-2. This indicates that the
ninth array is to be copied into the first column, the fifth array into the second
column, the tenth array into the third column, etcetera. See table [6.9] for the
fully filled figure, below. Symbols that were placed in a field with a negation
symbol are greyed out rather than omitted entirely in order to better illustrate
which arrays of symbols were placed in which columns.

[Ru

Table 6.9: Filling the figure

6.6.3 Reading the plaintext

After filling in the figure, the plaintext appears along the rows. It is now simply
a matter of reading the symbols in groups of four. One must be careful to
ignore the greyed out symbols, as these were random symbols added during the
encryption process rather than part of the original plaintext. The telegram now
reads:

008209133 Ku Hi Ru (A) - No Mu Re (Ro) - Ho U Ri (Ri) - A Fu Ni (Ru)
- Ma No Wi (So) - E U To (Mo) - A I Ta (Ya) — He Wi Na (Na) - Ma Sa
No (Ne) - He Wi Na (Na) - Ru Ra Ta (Ma)

To further increase the confidence in the validity of this plaintext, one can verify
the checksum property for each of the code groups (as described in section

using appendix @[)

21

6.7 Generically finding permutations

After finding the figure and permutation in early 1936, Nuboer noticed that
they were not able to decrypt all messages that had been accumulated over the
months. The figure only worked for the odd months in 1935 (since August,
as that was when the system was adopted), and the permutation only let to
well-formed code groups once every fifteen days. For telegrams sent after Jan-
uary 1%, 1936, the figure stopped working altogether. Apparently the Japanese
were using two different grids for the even and the odd months, and updated
the figures altogether every six months. Additionally, they replaced the fifteen
different column permutation&ﬂ (Nuboer, [1981). All these changes let to great
difficulty in decrypting. However, while finding an altogether new figure was
still a tedious process, finding the new permutation using an available figure
was a feat Nuboer soon mastered (Nuboer| [1977i).

To find a new permutation, Nuboer would require two sufficiently long telegrams
that were encrypted using the same permutation — either sent on the same day,
or fifteen days apart. Both telegrams would need to have at least enough symbols
to completely fill one figure. This guarantees that during encryption, the same
transposition is applied to the first parts of both telegrams.

In his notes, Nuboer presents a brief example of how two such telegrams allowed
him to find the permutation that was used on July 1°* (and thus on July 16}
and July 315%) (Nuboer}, 1977f). In this section, his example will be elaborated
upon and used to illustrate the underlying algorithm.

6.7.1 Identifying groups

Let us first start by having a look at the available resources. First and foremost,
this includes the relevant encryption figure (see table|6.10)) as found in Nuboer’s
notes on the July telegrams (Nuboer} [1977¢).

By counting the groups, we see that the figure has space for 84 symbols (21
groups of four), and contains 6 negation symbols. This means that the first
90 symbols of both telegrams have been transposed by a single instance of the
figure, and we can crop any symbols after this limit. For reference purposes,
the full telegrams are included in appendix [H The relevant prefixes are listed

below in tables [6.11] and [6.12

Earlier, we have established that both telegrams have been transposed in the
exact same way. This means that the symbols that made up the first code group
of telegram 301 were transposed to the same positions in the ciphertext as the
symbols of the first code group of telegram 304. This allows us to search for
a combination of symbols that form a known code group in one telegram, and
see if the symbols at the same positions in the other telegram form a valid code
group as well.

1From Nuboer’s manuscript notes, it appears that the same initial permutation was re-used
after every two months (i.e. on the 15 of July and the 15¢ of November), but the entire series
was replaced every six months along with the figures.

22

Encryption figure (July 1936)

Ki A Ni Hi Ho A Ta iNa; [Mi] So Ma Ke Hi Se Hi Re Se

Mu Shi Ru Ha Wa Yu Se Wa Hi NajE A 1IiYaNiMo O

E Ku Me Shi Ma No iNaTsu E Ya A Ru So

Ki
A

Te So Sa fl\ial:: 0

Mi]Ru A Ya Ra Na,Ta iNa, Sa RuWi Ho Ni FuRo Fu Yu
Me He He Ro Shi Se A A Ri MaSa Ho Yo Mo No [I iMo

Table 6.11: Ninety symbol prefix of 301001071

Once again Nuboer’s familiarity with the common code groups proves essential.
He notes that trying Mi Ra A (Wa),Ki Ke A (Ni) and Mo Na Ta (Re) did not
work out well. Although telegram 301 does contain those symbols, the symbols
at the same positions in telegram 304 did not line up to form a code group.

Then, when trying Mi I Wa (Na), Nuboer strikes gold (Nuboer} |1977f).

The symbols occur multiple times throughout the telegrams, and are marked
with different dashed boxes in table [6.11] The corresponding symbols in tele-
gram 304 are marked with identical boxes in table[6.12] Nuboer forms the group
Mo Na Ta (Re) from these symbols — another common group. Based on this,
we can now assume that telegram 301 contains the group Mi I Wa (Na), and

Ri Ni Me Shi Ra Tsu Ri iMe, Ke Te Ru
Ki Me Mi Tsu Ta Me Me Ha Ko iKi Ha Ne
Ko Tsu Tsu Wa To U Tsu;Re Ho Mu Ha Me
Yo Ru Ne Me Ke, U iRe| Ka Yo Yu

Ri Re Na |[Ru|] Ho Ho Mo Ma Ki Ka Ho So

Ya Ki Ka Ha
Nal Tsu Ko E
Ra Ni I Ra
Sa Mo Ho Se
Wa Se Hi Ka

Table 6.12: Ninety symbol prefix of 304001200

23

Te Mi
I I
i
Mo Re
o e

telegram 304 contains Mo Na Ta (Re) at the exact same position. The sym-
bols included in these groups have been shaded grey. Notice that there are five
marked symbols in each telegram — coincidentally, there are two pairs of Mo and
Mi symbols. Only one of them contributed to the groups we have just identified,
but it is still unclear which one.

6.7.2 Placing the groups

Now that we know that the Mi I Wa (Na) group is included, only the position of
the group remains. As can be seen in table there are twenty-one candidate
positions. At this point either one of them might have been the Mi I Wa (Na)
group we are trying to locate.

The telegram (table reveals a bit more about the positioning, though. By
counting the symbols, we see that the relevant Wa is at position 23, I is at 31, Mi
is at 55 or 56 and Na is at 63. This means that Wa and I are only 8 symbols apart,
and that Mi and Na are 7 or 8 symbols apart depending on which Mi symbol is
part of the group (recall that there are still two candidates). Combining this
with the fact that the figure is to be read off vertically, the position of the group
is quite restricted.

For each candidate group, we test if the distance from the third to the second
symbol is 8, and if the distance from the first and last symbol is 7 or 8. In table
[6-13] we see an example of calculating the distance from the Wa to the I symbol,
given that they are placed in the seventeenth group. Note that we count the
empty fields as well as the fields with a negation symbol, as these all contained
symbols that were transcribed to form the ciphertext.

Table 6.13: The distance between Wa and I is 10, not 8

From the example above, we see that the group cannot have been in the sev-
enteenth position. Similarly, many of the groups can be eliminated by checking

24

the distance from Wa to I and from Mi to Na. After this filter, however, there
are still several candidates to choose from.

After systematically working our way through all the groups and checking the
distance from Wa to I, only the seventh, eighth and nineteenth groups are valid
candidates. All the other groups showed a distance unequal to 8. Note that for
the groups with a smaller distance, adding another column in between the one
containing the Wa and I symbols never works: the shortest column contains 5
fields, while the shortest possible distance from Wa to I already takes 6 fields
(i.e. using the twelfth and twentieth groups). The sum of these distances, 11,
is easily larger than the required 8 field distance.

Now that the position has been narrowed down to the seventh, eighth and
nineteenth group, checking the distance between the Mi and Na symbols narrows
it down further to only the seventh group. Here the distance is 7, while the
eighth and nineteenth groups both result in a distance of 9 fields. Thus we can
be certain that the Mi I Wa (Na) code group is the seventh group in the figure.
As the distance from Mi to Na ended up being 7 rather than 8, we can now be
certain that the Mi symbol at position 56 in the telegram (see table was
included in the code group rather than the one at position 55.

6.7.3 Deduction

In the previous section we have managed to place a code group in the figure.
As the columns have been transcribed vertically to obtain the ciphertext, we
can now fill in the entire columns using the symbols that appear in telegram
301001071 around the symbols of the located code group. This results in the
figure as shown in table below.

[

Table 6.14: Filling columns six, seven, nine and ten

For the next step it is helpful to have a clear overview of the parts of the telegram
that have already been used. The four columns inserted in the figure above have
been coloured grey in the copy of the 301 telegram, in table [6.15] below.

25

Ki A Ni Hi Ho A Ta Na Mi So Ma Ke Hi Se Hi Re Se Ki
Mu [Shi Ru Ha Wa Ya Se Wa HiNa E [A I vaNiMo 0] A
E Ku MeShiMa No Na Tsu E Ya A Ru So Te So Sa [Na 0
Mi Mi Ru A Ya Ra Na] [Ta Na Sa Ru Wi] Ho Ni FuRo Fu Yu
Me He He Mi Ro Shi Se A A Ri Ma Sa HoYoMoNo I Mo

Table 6.15: Ninety symbol prefix of 301001071

By deduction, we will now attempt to fill the rest of the figure. The next steps
might appear vaguely similar to solving a sudoku puzzle.

When looking at the figure above, we observe two code groups that only miss
one symbol: the fourteenth and twentieth group. One can find these symbols
using the checksum property (the sum of the first three symbols minus one is
equal to the last symbol modulo 44 — see section . The fourteenth group
is A 7 Wa (Wi). Converting this to numerals (see appendix E[) gives us the
equation 1+ +40 — 1 =41 (mod 44). Thus the missing value is 1, indicating
the Kana symbol A. This forms the group A A Wa (Wi). Similarly we find that
the twentieth group (Ra 0 E ?) misses the He symbol, forming Ra 0 E (He).

This shows that the last symbol of the first column is He, but there are two He
symbols included in the telegram, in position 74 and 75. However, assuming that
the symbol in position 75 corresponds to the last field of column one orphans
the Ho symbol in position 67. This is impossible, as the columns should adjoin
seamlessly in the ciphertext telegram. This implies that the first He symbol
should be selected, and we can fill in the first column.

A similar strategy can be applied to the A symbol inserted in the fourteenth
group. This scenario is made slightly more complicated by the fact that there
are still six candidate A symbols available. However, the ones in position 2
and 36 do not have a large enough prefix of available symbols to fit the eighth
column. The A symbols in position 47 and 81 are also unsuitable, as they would
orphan a small amount of symbols in front or behind them. This leaves only the
symbols in position 6 and 80. Electing the symbol in position 6 would lead to a
slightly less obvious problem. The required array of symbols would be followed
by eleven available symbols, which, given the lengths of the remaining columns,
is too large to fit one column and too small to fit two. And so A symbol in
position 80 is the only remaining candidate.

Updating the figure and telegram results in the situation as shown in tables[6.16

and [6.17

Ki A Ni Hi Ho A Ta Na Mi So Ma Ke Hi Se Hi Re Se Ki
Mo [Shi Ru Ha Wa Yu Se Wa Hi Na EJ|A I YaNiMo 0] A
E Ku Me Shi Ma No Na Tsu E Ya A Ru So Te So Sa [Na 0
Mi Mi Ru A Ya Ra Na] [Ta Na Sa Ru Wi] [Ho Ni Fu Ro Fu Yu
Me He] [He Mi Ro Shi Se A A Ri] Ma Sa Ho YoMoNo I Mo

Table 6.16: Ninety symbol prefix of 301001071

26

Table 6.17: Filling the first and eighth columns

The next step is to proceed with another iteration of the same technique. Now
the twelfth group misses just one symbol: Se Ru ? (Yu). The missing symbol
is Shi, as 30+28+431—1 = 44 (mod 44). This allows us to fill in the last column
immediately, as there is only one available Shi symbol left in the telegram.

The ninth group is the exact same code group — it is ? Ru Shi (Yu), and by
comparing it to the twelfth group, we see that the missing symbol has to be
Se. There are two available Se symbols left in the telegram, but the symbol in
position 17 does not have sufficient postfix space. Thus the fifth column can
also be filled in.

This just leaves the second, third and fourth column unsolved. Respectively
the sixteenth, third and eighth code groups provide handles to solve these in an
identical fashion, by validating checksums. None of these lead to any new situa-
tions or complications and further details will be omitted for the sake of brevity.
It is worth noting that in this specific case the columns can be found even faster,
as the previous iteration left three non-neighbouring groups of unique lengths
in the ciphertext. These can be filled into the correct columns immediately, as
each only fits in one of the columns. The final figure and telegram now look as
shown in table and table , below.

[Ki A Ni HiHo A Ta ©Na Mi] [So Ma Ke Hi SeHi Re Se Ki
Mu|[Shi Ru HaWa Yu Se Wa Hi Na E || A I vaNi Mo o0 |[A&
E Ku Me ShiMa No|[NMa Tsu E Ya A Ru So TeSo Sa|[Na 0o
Mi Mi Ru A Ya Ra Na|[Ta Na Sa Ru Wi][Ho NiFu Ro Fu Yu
Me He|[He MiRoShi Se A A RiJ[Ma Sa Ho YoMo No I Mo]

Table 6.18: Ninety symbol prefix of 301001071

27

Table 6.19: Filling the first and eighth columns

6.7.4 Finding the permutation

Spelling out the permutation is now a matter of checking which array of symbols
from the ciphertext telegram is transcribed along each column in the figure. It
is easily verified that the permutation that can be used to decrypt this mes-
sage is 9-1-11-6-2-7-4-10-3-8-5. This indicates that the ninth array is to
be placed in first column, the first array in the second column, etcetera. Note
that it is important not to confuse this style of specifying a permutation with a
format that Nuboer occasionally used in his notes, where the numerals specify
for each array to which column it is mapped. This would result in the permu-
tation 2-5-9-7-11-4-6-10-1-8-3, specifying that the first array is placed in
the second column, the second array in the fifth column, etcetera. There is only
a minimal difference between the definitions, but the distinction is crucial in
order to correctly interpret a specified permutation.

Now we have found the permutation that was used on July 1%*. As the permu-
tations were rotated every fifteen days (see section , the same permutation
applies to July 16" and 31°t.

28

6.8 Finding the other permutations

In section [6.5] we discussed how Nuboer managed to find new encryption figures,
and in section we have examined a generic method that can be used to
find a permutation for a given encryption figure. The example that was used
to illustrate this generic method left us with one of the fifteen permutations.
However, by applying the method that Nuboer described, we should be able to
find the other permutations. The approach is clearly divided in three subtasks,
as shown in dictating sequential procedures. In this section several aspects
of a (Python) program based on this algorithmic approach will be illustrated.
We will then discuss the results of attempting to use this program to find the
other permutations.

The program is included in appendix [[] and is also accessible on GitHub at
https://github.com/joostrijneveld/blue-code-permutations. For future
reference, note that the GitHub repository will contain the latest version of the
program. The repository also includes ciphertext telegrams that can be and
have been used to reveal the permutations, as well as telegrams for which the
permutation is unknown.

6.8.1 The input

Nuboer’s archives include many original ciphertext intercepts. Unfortunately,
many of these originate from before August 1936, when the ‘.” code was reci-
phered. The only collection of telegrams encrypted with the reciphered code
that appear to be available are dated between the 15 and the 9" of July. Addi-
tionally, not all dates are as well-represented. Recall that the example in section

required at least two telegrams of sufficient length.

Fortunately, telegrams of 180 symbols or more encompass multiple figures, as
each sequence of ninety symbols was encrypted using a new copy of the figure.
This allows us to split large telegrams into groups of ninety symbols, effectively
creating more ciphertext telegrams to work with.

The exact procedure to finding the encryption figure is still somewhat uncertain,
as Nuboer’s notes only provided hints at the methods he used to solve these
intricate puzzles (see section . However, this becomes irrelevant when we
take into account that all the available ciphertext was constructed using the
July 1936 figure as depicted in table Thus we can safely abstract from this
part of the decryption algorithm without loss of information, and rely on the
figure that Nuboer provided. As only the two figures that we have seen in the
section above were included, even with the availability of ciphertext from other
months we would still be unable to find any other permutations.

6.8.2 Recognising common groups

The example of section [6.7] starts off by searching the ciphertext telegram for
code groups that Nuboer knew would occur with high frequency, and he had
learned to recognise them while working with the code. As there is no algorith-
mic way to determine if a code group is common or not, and the meaning of

29

https://github.com/joostrijneveld/blue-code-permutations

the code groups is largely unknown, we will have to rely on a different source.
The pre-1936 telegrams provide a decent basis for a frequency count, as the
plaintext of these telegrams was formed using the same code groups. Section [f]
shows how these telegrams were decrypted using a single permutation as the key.
Other than the ciphertext, Nuboer also conveniently provided several pages of
decrypted telegrams from early 1935 (Nuboerl, [1977b). To further aid the recog-
nition of common groups, we can use the list of fifteen common code groups that
Nuboer singles out in his notes (Nuboer, [1977c). Most of these groups coincide
with the groups that are already found in the plaintext telegrams used for train-
ing the memory, but the list can be used to add extra weight and priority.

Python provides a very suitable structure to keep track of code group frequencies
while reading through the plaintext telegrams: the collections.Counter data
type. Adding n groups can be done in a time complexity of O(n), provided the
groups are added using some sort of hashableﬂ format (as this is necessary to
be able to use them as dictionary keys). A convenient way to achieve this is by
converting each group to a tuple of integers. This is preferable to working with
strings, as later parts of the algorithm will force us to integers (e.g. to compute
checksum symbols). For consistency, we might as well convert the Kana symbols
to their numerical values (see appendix @ as soon as possible and work with
these values throughout.

6.8.3 Precomputing column combinations

The figure contains eleven columns of varying length — that is, each column
contains eleven fields, but a varying amount of these fields is blank. As there
are only eleven columns, only a limited set of lengths are available. Thus,
for a given piece of ciphertext it is non-trivial to see if there is a combination
of columns that provide the exact length that is required to span it. When
trying to validate if a position in the figure is valid for a given code group,
these combinations are used quite intensively. As there are 211 = 2048 different
subsets of columns, working our way through this set every time it is required
quickly gets out of hand. It is therefore useful and required to pre-compute a
map that provides a relation between possible lengths and sequences of columns
that can be used to construct it. See the precompute_colcombs function.

6.8.4 Finding a valid group

After having found a candidate group, an essential step in finding the permuta-
tion is positioning this group in the figure. By elimination, each of the groups
has to be checked. This is done by seeing if there exists a column sequence that
provides the relative distances between each of the symbols of the group. This
is fairly trivial for the cases where the distance in the telegram is either smaller
than or equal to the vertical distance between the symbols when there are no

2An object is hashable when there is a method available to compute a fixed-length hash
value such that equal objects have equal hash values. This generally allows for dictionary
keys to be computed in constant time rather than searched for in linear time, which makes
checking for containment much more efficient.

30

other columns between the two symbols; the group can immediately be elimi-
nated when the telegram distance is smaller. When the distance is larger than
the distance provided by simply concatenating the two columns, different sets of
columns have to be inspected to see if the required distance can be filled without
creating impossible situations such as orphaning symbols in between columns.
See the functions valid_group, valid_colset_comb and valid_colset_pair.

6.8.5 Deduction

The deduction procedure is the most straight-forward part of the process. For
each proposed position of the ‘common’ group, we fill it into the figure. The sym-
bols included in such a group immediately reveal the position of four columns.
Then we iterate over the same deduction process as described in section [6.7.3}
we check to see if there is a code group of which only one symbol is missing and
then attempt to find candidate symbols in the telegram. If exactly one candi-
date is valid (again constraints such as orphaning a symbol or overlapping other
columns limit validity), we can fill in another column. Repeating this process
either results in an empty queue of code groups to try, or a filled figure. See the
functions deduce, £i1l_col and valid_symbol.

6.8.6 Results

Running the program turned out to be less straight-forward, mostly due to
the nature of the ciphertext telegrams. As these telegrams were handwritten,
many of them contain manuscript errors or illegible symbols. As Nuboer’s
notes included plaintext for several of these, it was possible to reconstruct the
ciphertext manually by filling in the figure and matching the columns with the
ciphertext, which allowed for correcting some errors. This is a very precise and
tedious process. Additionally, as hinted at in section there was a lack of
available ciphertext for several dates.

Table below contains the permutations that were found using the program,
as well as a reference to the telegrams that produced the results. These can all
be found in the repository mentioned in section When a telegram number
is appended with a b or c, this signifies that the second or third block of ninety
symbols was used.

Date Permutation Telegrams used
July 1°° 1936 [2,5,9,7,11,4,6,10,1,8,3] 301001071, 304001200
July 2nd 1936 (7,2,4,11,10,8,5,1,9,3,6] 409002114, 307202231b
July 3'4 1936 (4,9,6,2,5,1,3,8,11,7,10] 3100031565, 297003153
July 5*" 1936 [10,3,7,1,9,5,11,8,6,4,2] 029005170, 320005191

Table 6.20: Permutations found by the program

31

6.8.7 Work in progress..

When it comes to a program such as the one described above, there are al-
ways improvements to be made, bugs to be fixed and exceptional cases to be
handled. In its current form, the program is quite strict on finding a perfect
match. As mentioned above, many of the telegrams contain some form of error.
Improvements to the program might be able to make it more fault-tolerant, or
additional modules could be included that allow the user to quickly locate and
fix the errors (rather than doing this manually). This should be considered an
initial attempt, and new versions should improve it significantly.

There is much ciphertext available from July 8" and some from July 9", so

hopefully it will be possible to perfect the program to find these permutations as
well. Additionally, as section [9] will illustrate the suspicion that the ‘.” code and
the BLUE BOOK are the same code, it could prove to be interesting to see if the
program is able to solve BLUE BOOK ciphertext. Any and every contribution
in the form of additional ciphertext is very welcome and can be submitted to
the GitHub repository as listed in section [6.8]

6.8.8 Scraping Nuboer’s notes

Nuboer did not only leave a series of ciphertext telegrams, but also included
many pieces of corresponding plaintext. Additionally, he listed various permu-
tations (Nuboer, [1977¢]), several of which the program was not (yet) able to
find. For reference purposes, these are included in table below.

Date Permutation
July 8% 1936 [8,4,10,2,9,6,5,1,3,7,11]
July 9*¢ 1936 [3,11,7,5,2,9,10,8,1,6,4]
July 14** 1936 [10,6,4,2,8,11,9,7,3,1,5]

Table 6.21: Permutations listed in Nuboer’s notes

32

7 Other ciphers

As mentioned in section [3] Nuboer and Schalkwyk came across two other codes,
other than the Ni and ‘.” codes described above. Telegrams written in these
codes were marked with Sa and I symbols in their bottom-right corner. As
these telegrams occurred much less frequently, less value was initially attached
to decryption schemes (Nuboer, [1981])).

7.1 The Sa code

In 1935, Schalkwyk focussed on the telegrams that were transmitted in Sa code.
He soon recovered the underlying code, which had been encrypted using a similar
column-based scheme. Nuboer concluded that they had come across a technical
code, as the address headers indicated technical support stations and made
mention of technical staff. In his memoirs, Nuboer goes on to remark that
they were not well acquainted enough with the Japanese language to try to
recover the meaning of the technical jargon, and the ‘.” code demanded their
full attention at the time (Nuboer, [1977h)). Unfortunately, no details about the
workings of the Sa code appear to have been preserved.

7.2 The I code

In early 1937E|, Dutch cryptanalysts discovered that the telegrams written in I
code were encrypted using the same scheme as the reciphered ‘.” code, albeit
using yet another different encryption figure. By the time this was discov-
ered, several large I telegrams had been intercepted (Nuboer, [1981). Most
significantly, a message from the Chief of the Naval staff addressed to the 12"
Squadron was decrypted. The 12t Battle Squadron of the Imperial navy was
well-equipped, consisting of minelayer Okinoshima, seaplane tender Kamoi and
destroyers Asanagi and Yunagi, as well as several seaplanes. The destroyers Oite
and Hayate were also part of the 12t® Squadron (Hackett & Kingsepp, 2011)),
but did not appear to have played a role in the mission at hand — none which
Nuboer was aware of, anyway.

The message contained instructions describing a surveillance journey through
the mandated territories, seeking new military support sites in the southern
districts (Nuboer} [1977h)). The decryption of these telegrams allowed the Dutch
naval forces to be on full alert for this important journey. This, combined with
the low frequency with which the I cipher system was used, let the Dutch to
believe that the cipher was meant for especially secret information (Nuboer)
1981). This was further established by observing the strictly limited group of
telegraphic stations that were mentioned in the address headers, including only
the highest authorities of the Imperial Navy.

3Nuboer is inconclusive in his memoirs whether it was 1936 or 1937, but movement records
of the Okinoshima (Hackett & Kingsepp) |2011)) and Kamoi (Hackett, Kingsepp, Alsleben, &
Cundall, [2006)) ships show that the 12" Battle Squadron had only been formed in December

1936, and the ships left late January 1937.

33

8 Wartime results and postlude

Nuboer stresses that the main result of the Dutch cryptanalytic efforts is the
amount of general tactical data that was gathered about the Japanese Impe-
rial Navy. This included organisational structures of the various squadrons and
fleets, but also positioning and even production information concerning the vari-
ous Japanese vessels. In 1936, a vast part of all Japanese Naval communications
was being read and carefully indexed by Department 1 in On multiple
occasions when the Dutch diplomatic mission in Tokyo warned for a possible
Japanese act of aggression, Department 1 was able to show that the fleet was
in port, preventing unnecessary tumult (Nuboer] [19771).

In early 1937, Nuboer and his staff noticed a build-up of tension with the
West. This manifested itself in the provocative participation of the recently
modernised cruiser Ashigara in the Coronation Review at Spithead, England
(Nuboer} [19771). During its journey homewards, the Japanese army provoked
the war that had been looming for months by advancing upon the Chinese army
in what is known as the Marco Polo Bridge incident (July 7", 1937) (Crowley,
1963). Judging by the intercepted communications, Nuboer concluded that the
Japanese Imperial Navy had long been reluctant to enter war. When the in-
cident resulted in the Japanese invasion of China and a full-scale attack on
Shanghai on August 13", the navy found itself forced to go along (Nuboer}
1981)).

As mentioned earlier in section the hostilities with China led to a com-
plete overhaul of the telegraphic and cryptographic organisational protocols.
The known list of telegraphic call signs was replaced by a more secret and ob-
scured list and plaintext telegrams (previously used for unimportant messages)
no longer occurred at all. The keys changed more frequency, and Nuboer recalls
that a new encryption figure was used every month. The keys were made longer
and the figures more intricate. This greatly inconvenienced the Dutch crypt-
analytic effort, but decryption was continued steadily with increased manpower
and by working even longer shifts (Nuboer, [1977h).

The mobilisation of the Japanese navy progressed swiftly, but the Dutch were
reading along with the instructions as soon as they were sent. The telegram
describing the advances upon Shanghai was decrypted promptly. In particular,
this made it possible to send the destroyer HNLMS Van Galen to Shanghai
and execute an evacuation of the Dutch staff before hostilities started (Nuboer,
19771, [1977g). The decryption also provided insight in the composition and
plans of the attack forces gathered in the newly established base on the Chasun
islands and on[Formosal as well as the progress of the blockade along the French-
Indonesian border. When the Tenth Army, having gathered on[Formosa landed
at Hangzhou Bay in November 1937 and effectively surrounded Shanghai in a
pincer grip (Wakeman, [1996)), the Dutch were long gone.

All in all, it is safe to say that the main goal of Department 1, to provide insight
in Japanese Naval movements and plans, had been accomplished formidably. As
for Johannes Nuboer, his job was done; in January 1938 he was transferred to
the HNLMS Sumatra — thoroughly worn out and exhausted. In June later that
year the ship set sail homeward (Nuboer| [1977h)).

34

9 The American effort

As early as World War I, the Americans were employing some form of crypto-
analytic work. This was done in a so-called Black Chamber (Pelletier} |1996)),
trying to solve Japanese communications from 1919 and onwards. A famous
example of the work of the Black Chamber is the insight it provided in the
Japanese communications during the Washington naval conference in 1921-22,
under Herbert O. Yardley (Kahn| 2004)).

In the late twenties, the American army and navy began to see the crucial im-
portance of cryptanalytic work and the tactical advantages that could be gained.
The American crypto-analytic effort was chronologically slightly ahead of the
Dutch — a formal cryptanalysis ‘short course’ was established as early as 1926,
and a school for intercept operators was formed in 1928 on the roof of ‘Main
Navy’ (accordingly, graduates were nicknamed the ‘On the Roof Gang’). As the
Americans were also aware of the expansionism that ruled the Japanese military
plans (see section , several interception sites were set up from 1928 to 1932,
overlooking the western Pacific area from Peking, Guam and the Philippines
(Parker}, [1994)).

The results of the signals intelligence and cryptanalytic group of the US Navy,
OP-20-G, were very similar to those of the Nuboer’s staff. They too were able
to follow the capabilities and movements of the Japanese navy. This revealed
Japan’s intentions to invade and, more worryingly, the fleet’s strate-
gic capability to wage a successful full-scale battle against the U.S. pacific fleet
(Parker}, [1994). Seemingly minor details could make great tactical differences —
using BLUE BoOoOK decrypts, the US Navy found that the Japanese battleships
had a speed of 26 knots, faster than the US ships by 2 knots. To be able to
outrun the Japanese, the navy immediately upgraded to 27 knots (Pearl Harbor
Review, 2009)). Also much like in Nuboer’s situation, the intelligence operations
were not quite able to cope with the enormous task at hand; lack of staff and
budget were greatly inhibiting the progress of OP-20-G. The demand grew
explosively, but education and logistics were unable to keep up.

While the organisational structures of the American military intelligence services
(and the disputes between the US Navy and the US Army’s signal intelligence
groups) are sufficiently interesting to provide for several additional sections, it
is irrelevant for the cryptographic side of the story. Let us instead focus on the
Japanese codes that the American cryptanalysts were breaking.

9.1 The Red Book

Early on in his book, [Parker| (1994)) makes mention of a RED BOOK cipher — also
called the ‘Japanese Navy Secret Operations Code 1918°. An initial solution to
this Japanese code book cipher was found in 1928 by the mathematician Agnes
Meyer Driscoll, discovering what is referred to as ‘transposition forms’ (Parker,
1994). This cryptanalytic feat followed earlier successes in what |Pelletier| (1996)
refers to as ‘practical cryptanalysis’: breaking and entering into the Japanese
consulate in New York City and making photographs of the code book. The

35

actual breaking of the code was greatly delayed by the lack of intercepted tele-
grams, but once accomplished, proved to be a great source of tactical infor-
mation. Lt. Wenger, credited with breaking the first key to the transposition
cipher, is quoted saying “The messages gave a comprehensive outline of the
Japanese-American war plan, and showed that the Japanese had made an ex-
cellent estimate of our war plan.” (Pelletier, |1996)). Pelletier claims at that
the RED BOOK is in some respects the most important Japanese cryptographic
system that was ever broken, as it not only foreshadowed Japanese military
intentions for years to come, but also provided great incentive to establish a
strong cryptanalytic force.

Unfortunately, the technical details of RED BOOK code do not match any of the
ciphers discussed in this thesis. The code consisted of 97,366 groups of three
Kana symbols, and the entire alphabet of 46 symbols was used (in contrast to
earlier ciphers we have seen, where two symbols were omitted) (Pelletier| |1996).
The code mostly consisted of tables of geographical locations and ship names,
and the books included an instruction stating that the code was never to be
used without additional encipherment — it called for a substitution or additive
cipher, but [Pelletier| (1996) notes that in practice only transpositions were used.
The RED BOOK was abandoned in November 1930, being superseded by the
BLUE Booxk (Parker} [1994).

9.2 The Blue Book

Pelletier| (1996)) notes that when they were trying to bring the RED BOOK up
to date in September 1931, Mrs. Driscoll wandered by and quickly found that
the new code consisted of groups of four Kana symbols rather than three. This
allowed the lieutenant working on the code to solve the transposition. However,
this single transposition did not amount to the full breaking of the code. There
were two transpositions; one relatively simple and the other significantly more
difficult. Albert Pelletier writes about the latter: “It employed a relatively
sophisticated columnar transposition involving both nulls and blanks. The garble
table, or differential feature, reduced the number of code groups to 85,184, nearly
the same as the Red book.” (Pelletier, |1996). Using frequency analysis based on
the RED BOOK, the cryptanalysts were able to make guesses about the meaning
of the most common groups in the new BLUE CODE.

What is especially striking about the above quotation is that the system de-
scribed by |[Pelletier| (1996]) is extremely similar to the ‘.” code that has been
decrypted by Nuboer and has been the main focus of most of the earlier sec-
tions of this thesis. Not only did both codes consist of groups of four symbols
out of a 44-symbol Kana alphabet and were identified by three of these (ac-
counting for the 443 = 85,184 code groups), but as we have seen in section @,
the (more difficult) reciphered variant of the ‘.” code is indeed also based on
columnar transposition with nulls and blanks.

The names of such code systems were entirely arbitrary. Recall that Nuboer
named the code after dot that appeared at the end of each line (see section .
The BLUE BOOK was named as such after two blue-covered loose leaf binders
that were used to collect the known fragments of the book as it was being recon-

36

structed (Pelletier} [1996]). Even though the initial code had been discovered, the
progress was slow and difficult. The Navy lacked budget and was not sufficiently
staffed to work on decrypting both the new BLUE BOOK and keep up working
on the legacy RED BOOK material, and after long negotiations a settlement
with the Army was reached and the labour divided (Parker} [1994)).

In 1933, the BLUE BOOK cipher was solved by Safford, Dyer and Driscoll.
Parker| (1994) writes that “. their success had followed what was possibly the
most difficult cryptanalytic task ever undertaken by the United States up to that
time.” and also that “In Safford’s opinion, Driscoll’s work in solving the system
may have been even more brilliant than the Army’s subsequent solution of the
Purple machine.” The decryption was also helped greatly by the IBM tabulating
machines (Parker, (1994)). If it is indeed the same system, this puts the work
of Nuboer in a remarkable perspective, especially considering the fact that the
Dutch did not have access to the RED BOOK. This breakthrough also matches
the time-frame of Nuboer’s discoveries, as the ‘.” code was initially recovered in
1935 (see section [5.1]).

Another mention of the BLUE BOOK in the article of [Pelletier| (1996]) adds to the
suspicion that Nuboer and Safford et al. were dealing with the same code. A
certain Arnold Conant was tasked with the duty of recovering the transposition

each day, indicating that the transposition was indeed changed every day, as
Nuboer had observed.

The cipher consisted of a grid, and the code groups were written in the grid’s
blank spaces from left to right. After this the Kana symbols were read off from
top to bottom (Pelletier] [1996). Pelletier then writes that the grid changed daily.
Nuboer’s view is a bit more nuanced, observing that the grid was the same for
a longer period of time and only the columns were permuted differently. This
slight difference can be accounted for by noting that Pelletier, as it appears that
at this point his task was limited to performing the decryption, might not have
had a complete overview of the entire system.

The exact date when the BLUE CODE was discontinued is slightly unclear:
Pelletier| (1996]) mentions June 1939 while [Parker| (1994) says it was replaced in
October 1938. In any case this confirms to Nuboer’s memoirs, where he mentions
the work on the ‘.” code still continued when he left for the Netherlands in the
summer of 1938 (Nuboer} [1977g]).

While the above similarities between the BLUE BOOK and the ‘.’ code should
not be interpreted as complete and fully conclusive evidence, it provides for
serious indications that Nuboer and the Americans were dealing with the same
cryptographic system. In other words, this would imply that the BLUE CODE
and the ‘.” code are indeed different names for the very same code.

37

10 Conclusions and discussion

The main focus of this thesis was to show how the Dutch broke the Japanese
naval codes in the decade preluding the Second World War. It soon became
clear that most work was done on the two variants of the so-called ‘.” code.
J.F.W. Nuboer, the lead cryptographer of the Dutch Indies Navy (see section
, also worked on several of the other cryptosystems that were used by the
Japanese Imperial Navy at the time, as discussed in sections [d and [7]] However,
the ‘.” code was of far more importance, as it was the de facto standard code
for Japanese naval communications.

In sections |5[and |§| we have seen how this code worked (both the standard and
reciphered version), and we have explored the techniques that were used to break
the cipher. While on first glance the code might appear rather simple, it proved
to be a serious challenge (and achievement) to break. The code is twofold.
First, the message is encoded using a code book system, translating words or
names to predefined code groups of four Kana symbols (the latter of which was
a checksum). This code book was a closely guarded secret and provided for
an extra layer of obscurity. Then a transposition cipher was applied. Initially,
the transposition consisted of writing the message in a grid of nine columns,
and permuting the columns along a certain permutation — it never changed, so
once Nuboer had uncovered this permutation, all messages could be decrypted.
In the summer of 1935, the Japanese changed the transposition cipher and
replaced it with a much more difficult system. This system consisted of a grid
with nulls and blanks, into which the plaintext was written after being encoded
into code groups. Then the columns of the grid were permuted, and were read
off vertically. On top of all this, the permutation changed daily and several
different grids were circulated. To break these systems, Nuboer heavily relied
on the repetition of common code groups in the plaintexts of the telegrams. By
comparing the ciphertext telegrams that showed only slight differences, much
could be learned about the transpositions that had been applied.

It is this last system that the Americans are most likely calling the BLUE BOOK
and BLUE CODE. In section [0 we have seen evidence that shows the American
Navy was breaking a very similar Japanese code system at the time. The proof
is not complete and should not be regarded as such, but it provides strong
indications that make it justifiable to assume that Nuboer and the American
Navy were in fact dealing with the same system. If this is the case, we are better
able to assess the work Nuboer has done by viewing it in a broader context. The
American Navy operated on a much larger scale than Department 1 could ever
hope to achieve, and even then it took several years to break the BLUE CODE —
only slightly ahead of Nuboer and his staff. Perhaps even more noteworthy, as
mentioned in section [J] is the fact that the Americans indeed considered it to
be “.possibly the most difficult cryptanalytic task ever undertaken by the United
States up to that time.” (Parker, |[1994). Taking into account the fact that the
Americans had access to a predecessor code (the RED BOOK) and were able
to use IBM machines makes Nuboer’s work perhaps even more impressive by
comparison.

Even without comparing it to the American assessments, the high level of obscu-
rity of the system is quite evident. First and foremost, the Japanese language

38

caused a great practical issue, as the difference between plaintext and cipher-
text is not even immediately clear for someone unfamiliar with the language.
The translation into code groups provided an additional hurdle, after which the
obscure and unstructured figure distorted the message even further. And then
there is the frequent changing of the keys. It is truly remarkable how such a
system can be unravelled by a slight tug on the correct loose ends.

The value of cracking the ‘.” code has been clarified in section [8] The informa-
tion gathered from the telegrams formed a great source of tactical data with re-
gards to the Japanese naval movements and were essential in anticipating these
advancements upon China, forming a defence plan and practising diplomatic
neutrality. The value that was attached to his achievements is also partially re-
flected in the decoration Nuboer received upon leaving the navy; that of titular
Rear Admiral (Bosscher] [1994]).

10.1 Improvements and future work

While the evidence provides very strong indications, it is still not fully proven
that the ‘.’ code and the BLUE BOOK are in fact the same system. As there
seems to be little information available on the subject of the BLUE BOOK, it
proved difficult to find actual solid proof. Finding a section of the actual BLUE
BooOK or a ciphertext or plaintext telegram written in the code could go a long
way as to delivering this proof.

In section we have briefly discussed a program (see appendix [I)) that at-
tempts to automates the algorithm that Nuboer used to find new permutations
for the ‘.” code. While this shows that it is possible (and feasible) to automate
the algorithm as used manually by Nuboer, several of the permutations that
were uncovered manually were not found by the program. This indicates there
is room for improvement. Additionally, it might prove possible to devise other,
more computationally intensive but more complete methods to achieve better
results.

Even though the Dutch considered their East Asian intelligence service (DOAZ)
to be one of the leading intelligence organisations in the Far East, their grasp on
the communication in the Pacific theatre was far from complete. It is conceivable
that neighbouring countries must have had similar cryptanalytic ambitions. Did
they, too, focus on the Japanese navy, in fear of expansion?

In a conflict of this proportion, it is unlikely that only one party had been listen-
ing in on the enemy-to-be, tactically preparing for an outburst of war. [Haslach
(1985) describes the human intelligence employed by the Japanese (mostly from
viewpoint of the Dutch counter-espionage) (Haslach, [1985)), but the signal in-
telligence effort seems less documented. What did the Japanese know? What
codes did the Dutch use, and to what extend were they broken?

39

Topography

Bandung

The present-day capital of the province of West Java, Bandung lies just
south of In the early twenties, the Dutch Indies Government
planned to move the capital from Batavia to Bandung, as its location
provides a much better natural defence system. These plans were cut
short by the preliminaries of the second World War (Ashworth) 2009)). It
housed the General Staff, including the illustrious ‘Room 14°.

Batavia

The city of Jakarta, the present-day capital of Indonesia, was known as
Batavia from 1619 to 1942. It served as the capital of the Dutch East In-
dies and housed the Dutch Indies Naval staff, amongst which was Depart-
ment 1 (Intelligence). This is where Nuboer did most of the cryptographic
work described above.

Formosa

The island and archipelago of Formosa is currently known as Taiwan.
Formosa was under Japanese rule between 1895 and 1945, serving as a
tactical vantage point for the Imperial Navy and a supply of foot soldiers
for the Imperial Army. Formosa suffered great losses during the war, as
many Formosan youth were killed while serving for the Japanese, as well
as in Allied bombing raids.

Manchuria

The north-east coastal region of China (just north of Beijing, spanning the
present-day provinces of Heilongjiang, Jilin and Liaoning) is historically
referred to as Manchuria. It is the east-most part of China, closest to
Japan. This tactical juncture of Russia, Japan and China has been subject
to much dispute over the years. By some definitions, parts of Mongolia
and Russia are included under the same name.

Yokosuka

Yokosuka is an ocean-side city just south of Tokyo, at the mouth of the
Tokyo Bay. The Yokosuka Naval District was one of the first administra-
tive naval districts, the others centring around Sasebo, Kure and Maizuru
(Evans & Peattie, [1997). The port was a valuable headquarters for the
Japanese Imperial Navy, having grown into this position because of its
strategic vantage point in the bay, as well as a centre for naval education
and telegraphy.

40

References

Ashworth, G. J. (2009). The Imperial capital that almost was: Bandung’s
colonial heritage and what to do with it.
(Sharing Cultures conference)

Bosscher, Ph. M. (1994). Nuboer, Johannes Frans Willem (1901-1984). In Bi-
ografisch Woordenboek van Nederland. Huygens ING - Den Haag. http://
www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn4/nuboer,

Crowley, J. B. (1963). A reconsideration of the Marco Polo Bridge Incident.
The Journal of Asian Studies, 22(3), 277-291.

Duus, P. (1989). The Cambridge History of Japan (Vol. 6). Cambridge Univer-
sity Press.

Evans, D. C., & Peattie, M. R. (1997). Kaigun: Strategy, tactics, and technology
in the Imperial Japanese Navy, 1887-1941. Naval Institute Press.

Hackett, B., & Kingsepp, S. (2011). IJN minelayer Okinoshima: Tabu-
lar record of movement. http://www.combinedfleet.com/Okinoshima
_t.htm. (Timeline of the movements of the battleship Okinoshima, revi-
sion 4)

Hackett, B., Kingsepp, S., Alsleben, A., & Cundall, P. (2006). IJN sea-
plane tender/oiler Kamoi: Tabular record of movement. http://wuw
.combinedfleet.com/Kamoi_t.htm. (Timeline of the movements of the
seaplane tender Kamoi)

Haslach, R. D. (1985). Nishi no kaze, hare. Nederlands-Indische inlichtingen-
dienst contra agressor Japan. Weesp: Van Kampen.

Kahn, D. (2004). The Reader of Gentlemen’s Mail: Herbert O. Yardley and the
Birth of American Codebreaking. Yale University Press.

Meijer, H. (2002). Lovink, Antonius Hermanus Johannes (1902-1995). In Bi-
ografisch Woordenboek van Nederland. Huygens ING - Den Haag. http://
www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn5/lovink.

Nuboer, J. F. W. (1977a). Bijlage 2: Het vinden van de hervercyfering van
de Japanse marine-code 1 in juni 1935. In collectie 070, inv.nr. 4.18.
Nederlands Instituut voor Militaire Historie, Den Haag.

Nuboer, J. F. W. (1977b). Bijlage 3: Tot open code ontcyferde telegrammen
uit begin 1935. In collectie 070, inv.nr. 4.18. Nederlands Instituut voor
Militaire Historie, Den Haag.

Nuboer, J. F. W. (1977c). Bijlage 4: De Japanse marinecode no. 1. In collectie
070, inv.nr. 4.18. Nederlands Instituut voor Militaire Historie, Den Haag.

Nuboer, J. F. W. (1977d). Bijlage 5: De ontcyfering van de sleutels van augustus
1935. In collectie 070, inv.nr. 4.18. Nederlands Instituut voor Militaire
Historie, Den Haag.

Nuboer, J. F. W. (1977e). Bijlage 6. In collectie 070, inv.nr. 4.18. Neder-
lands Instituut voor Militaire Historie, Den Haag. (Figuur juli 1936 en
permutatiesleutels)

Nuboer, J. F. W. (1977f). Bijlage 7: Het vinden van de formule voor de volgorde
van de kolommen van de hervercyfering by een bekende hervercyferings-
figuur. In collectie 070, inv.nr. 4.18. Nederlands Instituut voor Militaire
Historie, Den Haag.

Nuboer, J. F. W. (1977g). Geschiedenis van Afdeling 1 (Inlichtingen) Marinestaf

41

http://www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn4/nuboer
http://www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn4/nuboer
http://www.combinedfleet.com/Okinoshima_t.htm
http://www.combinedfleet.com/Okinoshima_t.htm
http://www.combinedfleet.com/Kamoi_t.htm
http://www.combinedfleet.com/Kamoi_t.htm
http://www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn5/lovink
http://www.historici.nl/Onderzoek/Projecten/BWN/lemmata/bwn5/lovink

Batavia van augustus 1934 tot januari 1938. In collectie 070, inv.nr. 4.18.
Nederlands Instituut voor Militaire Historie, Den Haag.

Nuboer, J. F. W. (1977h). Memoirs J. F. W. Nuboer. In collectie 070, inv.nr.
4.17 (pp. 48-55). Nederlands Instituut voor Militaire Historie, Den Haag.

Nuboer, J. F. W. (1977i). Oprichting en beginjaren van de Afdeling 1 van de
Marinestaf te Batavia. In collectie 070, inv.nr. 4.17. Nederlands Instituut
voor Militaire Historie, Den Haag.

Nuboer, J. F. W. (1981). A history of Afdeling I (Intelligence), Naval staff,
Batavia, Netherlands East Indies, from August 1934 to January 1938. In
(Vol. 47). The Cryptogram.

Parker, F. D. (1994). Pearl Harbor revisited: United States navy communi-
cations intelligence 1924-1941 (Vol. 6). Center for cryptologic history,
National Security Agency.

Pearl Harbor review - early Japanese systems. (2009). http://
www.nsa.gov/about/cryptologic_heritage/center_crypt_history/
pearl_harbor_review/early_japanese.shtml. National Security

Agency - Center for Cryptologic History.

Pelletier, A. (1996). Cryptography — Target Japan. In U.S. Naval Cryptologic
Veterans Association (p. 27-32). Turner Publishing Company.

Visser, J. (2005). Rear-admiral J.F.W. Nuboer. http://www.netherlandsnavy
.nl1/Men _nuboer.htm

Wakeman, F. (1996). The Shanghai badlands. Wartime terrorism and urban
crime (1937-1941). Cambridge University Press.

Yasuba, Y. (1996). Did Japan ever suffer from a shortage of natural resources
before World War II? The Journal of Economic History, 56(03), 543-560.

42

http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/pearl_harbor_review/early_japanese.shtml
http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/pearl_harbor_review/early_japanese.shtml
http://www.nsa.gov/about/cryptologic_heritage/center_crypt_history/pearl_harbor_review/early_japanese.shtml
http://www.netherlandsnavy.nl/Men_nuboer.htm
http://www.netherlandsnavy.nl/Men_nuboer.htm

A Overview of telegraphic call signs

The call signs listed below were used in the address headers of Japanese naval
telegrams to indicate the sending and receiving parties. See section

Da Chief of the Naval staff
Re Combined Fleet
Reichi Commander in Chief of the Combined Fleet
Kata Fleet

Sen Squadron

Kosen Aero squadron

Susen Destroyer squadron
Sesen Submarine squadron
Kutashi Destroyer division
Sesutashi Submarine division
Sutashi Torpedo boat division
Sotashi Minesweeper division
Kotashi Aircraft division

Ren Training squadron
Chi Base

Yo Support station

Ka Ship

Kuka Destroyer

Seka Submarine

Suka Torpedo boat

Shichi Commander in Chief
Shika Commander

Sachi Chief of staff

Fuka Adjutant

Shike Paymaster

Za Navy representative
Muchi Telegraphic station

43

B Telegram 028101093, 029201093 (April 1st,
1935)

This telegram was transmitted by the Japanese educational squadron upon de-
parting from the port of Singapore. Its interception was essential for the de-
cryption of the ‘.’ code, as detailed in section 5.1

028101093 ate Da - Reichi = Renshika

hone 1:

He Mi Ne No E No Mi Ka Re .

Ke Mu E No No U Ro Ki Tsu .

Mi He Yu Sa Ha Fu Mi Yu I

Se Ha Mo Yu Na Ke Ho Ru Ta

Ho A Chi No Re Ka Se 1 Ru

Ke Ko A Fu Ni Ho Shi Ki Mi

Ha Me Chi A Ke Ya Tsu Su E

Na Mi Ko I Mo Se Ka Wa E .

Hi ©Shi He Tsu So Yu Ke Ta Wa . <-

hone 2:

Se Na Yo Ta E Mo Mo Re Se
Ru Ru U Ko So ©Shi Ko Ke No
He Chi Ne Hi Ki Chi Ru Ko Se
Na Shi Ke Ku No Yo So Ne Ko
Ha Su Su Ma Mu No Na Ni Ka
To Na To Ko Chi Fu Mi Fu Ka
Mi Chi Mu Ka Me Ku Ni Tsu Yo .
Mu Ku Ne Ho Ya He Ri Yo Shi .
Fu Te Me So Ku Ne Ri He Ta .
Te Se Ku Ke Na Ra Hi Mi Shi .

hone 3:

Ma E I Chi Ki Fu Ke Ha So
Yo Mi Ku Ru Ri To Ho Me Ka
Ru He Ki I Mi Se Ha Ne I
0 Ne Ra Ma So Te Ka Ta Ra
Mi E I Te Wa He Me Fu Na
Me Tsu Ne So Ya Tsu Ra Na
Ro I I Ra Ho Tsu Re Te Me
Re Mo Ka Na Fu Ro Ma Ta Ko
Ni Te Ke Ya Hi Ma Ko Yu Te
Ne Ro Ya Se Mu Fu Ta A Ho

o

hone 4:

Ru Ki Ra So Te Ki Ni Na Ya
Sa Yo E Ri Shi Ka Mo A Fu
So Tsu He Ri Ra Mu O Te U
Wa Mi Ko Ra Fu Re Chi A Fu

44

Ho Mu Ma Wa Mo Mi Ni Ta Chi
Ha E He I Mu Se Ra Ko Ki
Ke So No Sa Ra Ka Chi Ru O

Ni Na Ma Su I So Ki Ma Ki
Mi Yo Ra E Ha Se Se Se Ya
Fu Ke Yo Te Ni Yu Wa Mi No

hone 5:

Shi Ta I Se Te Ri Ma Su Sa
He Me Yo Ta Shi Na Tsu Sa Ro
Te Sa Se Mi Me Mi Ru Ra To
Ne Me Mi A Te Mu O Hi Ko
Na To To Yo Ya I Se Ni Ka
Yo Ya Ta Ma Ka

029201093 ate Da -Reichi = Renshika

hone 1:

Ko Te Ta Sa He Mi No I Hi
Tsu He Yu Yo Na Ka Ra Ri Ki
0 Re A Mi Ha Ru Ho Fu Yu
Se Mi Ri O Tsu Na Se Chi Yu
Re I Fu Shi Ho Mi Mi Ke To
A Yo No Ni I Chi Fu Se Ho
Ko No Fu Ka Ki A Re Shi Ke
A I Ra Ho Ta Te Ni So No
Fu He Ke Ma E No Sa E Mu

hone 2:

Mu Yu He Ku Ka Se Ke No Se
Yu A Ya Wa A Ya Ke He Se
Ha I Ri Ma I Ni Re Ke Ro
Ma Na Ho So Chi No Ki Ku Re

Wa Re Ku So No No Su Ma Me
Ma Se Yo Ni Ri To Tsu Ka To
Ha Ne Sa Ya A Ta Ki Se Hi

Mi Ta Ha Re Ho I Na So Yu

45

C Telegram 031005173 (April 5th, 1935)

This telegram was transmitted by the Japanese educational squadron when
departing from after a three-day visit. This telegram was also critical
for the decryption of the ‘.’ code, as mentioned in section

031005173 Da - Reichi = Renshika

hone 1:

He Mi Ne No E No Mi Ka Re .
Ke Na E 0 No I Ri Ki Tsu .
Mi Ta Yu Sa Ha Fu Yu Yu I

U Ra Ha Ku Su Ka Ho Ha Mu
Ho A Chi No Re Ka Se I No .
i Wa Shi Shi Tsu .

Mi Ko Ma Fu M

Ne Ne Hi A I Yu Shi Sa Yo
Ni Ki Se Ke A Ko Ho A Ri
Ko Ku Ki Sa U Yo Ka Ho Mo

hone 2:

Mi Mi Ra Mo A Mi Shi Na Wa
Su Tsu Ha Me Chi E Ho A Ka
Wa Ka Na Mi Ko E Ya I Mo .
Ta Ke Hi ©Shi He Wa Se Tsu So . <-
Tsu Yo Yo Ku E Mo Me Ri Se
Ru Ru U Ko So Na Ko Ke Mo
Mi Re Ni Mo I Ya Ta Su Ma
Fu Ka Ri Shi Ro Mi Na Ko I
Shi Ha Ku He A Ro Ko Mu Yu
No So Ko Ma Yo Ro Yu Ke To

hone 3:

A Su Hi Ma Ma Ha Na Ni Na
Ya Te Mu Mo Ne Ro Ri Hi Re
Ha Mi Shi Se He I Ka Yo Ri
Me Mi No Wa Ro Mi To He Sa
Tsu Tsu U Yu Mi Sa Ri Na He
I Sa Yu Mo Ta He He Tsu Ka
No Ne Ka Tsu Ru E Ka Tsu Ma
Tsu Mi Mi Chi Re Su Yo Shi To
Ra I So U Ra E Ru Se Te
Mu Ta Shi He Mo Mi Ku Ku E

Ta Mu Ra Na

46

D Kana alphabet and numerical values

This table provides a translation between Kana symbols and numerical values,
to be used to compute the checksum of a three symbol code group. This is
explained in section [5.5

A 11 8 Me 15 || No 22 || Sa 29 || Chi 36 || Yo 43
E 2| Ka 9 Mi 16 || O 23 || Se 30 || To 37 || Yu 44
Ha 3 ||Ke 10 || Mo 17 || Ra 24 || Shi 31 || Tsu 38
He 4 || Ki 11 || Mu 18 || Re 25 || So 32 (| U 39
Hi 5| Ko 12 || Na 19 || Ri 26 || Su 33 || Wa 40
Ho 6 || Ku 13 || Ne 20 || Ro 27 |l Ta 34 || Wi 41
Fu 7 || Ma 14 || Ni 21 || Ru 28 || Te 35 || Ya 42

47

E Overview of the ‘.’ code book

Naval vessels

So * * (%) Various ships

So Ku * (x) Light cruisers

So Ku Ku (Ku) Cruiser Tatsuta

So Ku Mi (Mi) Cruiser Kuma

So Ko * (%) Heavy cruisers

So Ma He (Hi) Gunboat Saga

So Me Mi (Mu) Seaplane tender Kamoi

So Mu To (Ya) Oiler Tsurumi

So Ra * (%)
So Ri * () Destroyers
So Ro * (%)

So Ra To (He) Destroyer Minazuki
So Se Hi (No) Submarine I-59 or I-60

Ma I Ki (So) -maru suffix
Geography
Ta * * (%)
Te * * (%) Various Japanese locations
Chi * (%)

To % * (%) Formosg] (Taiwan) area

To A So (R1) Bako (Magong)

To He So (Rw) Takao (Kaohsiung)

Tsu * * (*) Chinese and southern locations

Tsu Tsu No (Ka) Bangkok

Tsu U Mi (He) Singapore

Tsu Wi Yu (Ta)

U * * (%) Philippines and the mandated territories
0 Nu ()] Davao
0 Ke (Ro) Cebu

48

Authorities

Shi * (x) Various authorities

Shi Ta A (Ni) Commander in Chief of the Combined Fleet

Shi Ta Ku (Sw) Commander in Chief of the 24 Fleet

Shi Wa Fu (Suw) Commander in Chief of the 3'¢ Air Force Squadron

Time

Ko Ku Te (Ha) 10:00

Ko Re Ri (Mw) 11:00

Ko To Ni (Re) 12:00

Ku Hi Ru €Y 13:00

Ku Mo Ku (Yo) 14:00

Ne Mi Sa (Ne) 0 minutes

Ne Mu So (Ro) 30 minutes
Numbers

A Tsu (U) 1

A Wa (Wi)

A Ha Wa (Yo)

A He Na (O 2

A He Ni (Re)

A Hi Ma (Na) 3

A Fu Na (R1) 5

A Fu Ni (Rw)

A I Ta (Ya) 6

A I To (A

A Ka 0 (S0) 7

A Ko Ya (Ke) 8

A Mi Ma (Se) 11

A Mo Mu (Te) 12

A Ni Ni (Ya) 13

A No To (Me) 14

A Wi Ka (Ho) 37

A Yu To (To) 40

49

F Formosa telegrams, November 9th, 1935

This series of telegrams was transmitted at thirty minute intervals by a ship
off the coast of [Formosa] early November 1935. The large amount of repetition
in these telegrams led to the initial breaking of the reciphered ‘.” code. This
is explained in section [6] Unforunately, the address headers were lost. As the
ten-column hone structure was disregarded by the cipher system, the telegrams
can be written sequentially without loss of information.

007509103 Ho Ho Ru Wi So A Ku He Te Yo Wi To Na No Ra So A I Na Ko
Mo Ka Ka Wa He Mu Ri A No Wi Ka No So Mu Ni Ha So Na Se A Chi Ro Wi
Ha Fu Ne Te E Ro Ma Ki Ku Ki Ku Ka Ki A Na

007609110 Ho To Na Sa Ta Sa A Ku Tsu Na Yo Wi Ya Wi Chi No He U A Ko
Ne Ko Ku To A Wa Ma Ra Mi Ri A No No He Na Ne So He Wi Na Mu Ko Na
Wa Ke Wi I Ne Yu Ha No Na Ru Ru Yo Ro Ma Ha He Re Mi Ku Tsu Ki A No

007709113 Ho Ma Na Ni So E He Tsu Na Yo Wi To O No He Ri E I Ne Ko
Ke Ki Fu To Ka Mu Ri A No E He Na No So He Wi Na Mu Ko Ru No A Wi To
Wa E U No Na Ri Shi Fu Ma Ho He Re U Mu Na Su Ke Te

007809120 Ho Ku Na Sa Sa E E Tsu Na Yo Wi Tsu I No Ra Ke E A 0 Ko Chi
Fu Ko To Ma Mi Ri A No Ma He Na Ne So He Wi Na Re Yo Na Ki U Wi Mi
Ne Hi U No Na Ni Ko Ro Ma Mi He To Ku No Su A Re

007909123 Ho Wi Na Sa Wi So E E Ra Na Yo Wi Ni Chi Re No He 0O A Ne
Ne Ko Ta So He To Ma Ku Mu Ri A No Fu He Na No So Ku Wi Na Re 0 Ru
Ka Ru Wi Yo Ro I U Ro Na Ro Ni Me Fu Ma Ya He To Shi Mu Na Su A No

008109130 Ho Wi Ra Sa Sa A E Tsu Na U Wi Ya Mi Ri Ra So A Ko 0O Ku Shi
Wa Ka To Ma Mi Ri A No Ke He .. Ne So Wi .. Na A Ko Na Mu .. Ma Yo
. AUNo .. Ne Yo Tsu He Hi Ta Ku 0 Su A Re

008209133 Ho Ru Na Re A He Wi U Ta Ta Mu Ri Wi Mo Ma Ra Ku No Ni U
Na Mu Ri E I Ne No Ya He A Mi So No Ma To Ro Fu Wi Na Ru Mo No A Sa
Hi I Ma To Na Ru

008309140 Mo Ke Na Sa A E Wi Na Wi Wi Te Shi Su Tsu U A Ni Ku Ki Yo
A To Mi E A No Ro He Ne So He Wi Yo Tsu Na Wi Ne Ka .. Ko Ki Na Na
Ku Ku No Ma Se Mo Na Ke He Tsu Su

008409143 Mo Te Ta Sa Ma So A E Tsu Na Wi Wi He Chi Ho Su He Ru A I

Ne Ku Mu Mu Fu To Ma Ku Mu E A No Yo He Na No So Ro He Na Ya Ta Na
Na A Wi I Ro Mo Ku No Na Ro Ku Ku Ro Ma Re He Mo Ka Ku Ni Su A No

50

G Annotated Formosa telegrams

ON V Mg IN Ny ®) O[{|eH oY B o MY MY [oy BN ON MY oW oY

ON V Mg ®N N TUS OL|®H X ®W N ®{ IN (oM BN o4 n I oy

ON ¥V TM NSL MY TW oY |oH ®H ®W o4 OX nY [my|eN oN eH nx oN

4 Y NS 0 nY ®BL TH|eH msl o oN|"* oN

® Yy TS ON MY OL[®H TW ®W o4 ©0j IN|eN ON

°L oY NS eN WY N 9Y¥[eH| OH BN N4 TUS TH[EN ON

[en| v TSI e mi T WY |[TM eW oy F

ng nsl o o) BN OW |°oS

ny ey OL
Ok ON ¥V d Wi | ey oL md My ny mi| N I V TNY °H NS OH|TUD H TM TM|eN nsl d
nj ON V TY MW MY BW O ®H oS ®L O¥| ®N ©ON V 0 ©OH ON ©y[TuD IN TM Ok|eN ®H d
ON ON V TH TW [ed]eWw ®M v oL my od| eN o ¥V n °H ON Tud|[tm|eAx TM ox|eN msI mny
ON|'" ®H ®Y ON V TH TH|®eW OL ®Y ®BM TUS 0 ®Y TH TH| BA TM 0| BN nsL
oN|eN ®H ®BW ON V TH TW|®W OL o mi Tud 0 ®Y ON I [NSL TM OX| BN msL
on [eN| eH ON ¥V TY Mj|®d OL nd TH o) ®H ON 0| OL TM Ok| ®N nsL
og ON YV TY Tj[eH|®M ®X ®Y O ey ON eN| oL TM ok|!sl; °H

ox[tn]eH og eN Eom oN ¥V A TW|oL V¥ n nsp ng tug|el M M| [eN]T

ON oS TW V |®H ®A ON|eW I & TH M{ |eN B OW TM TH nW|el =l 0

ol
oH
oH
oH
oH
oH
oH
ol
oH

*¥800
*6.00
+9.00
+1800
:8L00
+1,00
*5L00
+€800
12800

51

H Telegrams 301001071, 304001200 (July 1st,
1936)

These telegrams were used as examples in section[6.7] to illustrate the algorithm
of finding a new permutation using sufficiently long ciphertext telegrams.

301001071 ate Kosentsusa Kamotsu " Meu Ao Haru Kakutsu = Retsusa

hone 1:

Ki A Ni Hi Ho A Ta Na Mi
So Ma Ke Hi Se Hi Re Se Ki
Mu Shi Ru Ha Wa Yu Se Wa Hi
Na E A I Ya Ni Mo O A

E Ku Me Shi Ma Mo Na Tsu
Ya A Ru So Te So Sa Na O

Mi Mi Ru A Ya Ra Na Ta Na
Sa Ru Wi Ho Ni Fu Ro Fu Yu
Me He He Mi Ro Shi Se A A

m

hone 2:

Ri Ma Sa Ho Yo Mo No I Mo
Fu Mu Na Ro Yo Ya Yo Ra Na
Se Re Se Ne Ri Ka Shi A Na
Tsu No Mi Fu Hi Ki Ne To Ni
Ru Hi Fu Yu Fu Ro Ki A So

304001200 ate Bayotsusa " 2 Tsusa = Retsusa

hone 1:

Ri Ni Me Shi Ra Tsu Ri Me Ri
Ke Te Ru Ya Ki Ka Ha Te Mi
Ki Me Mi Tsu Ta Me Me Ha Ko
Ki Ha Ne Na Tsu Ko E I I
Ko Tsu Tsu Wa To U Tsu Re Ho
Mu Ha Me Ra Ni T Ra Yu Ma
Mo Mo Yo Ru Ne Me Ke U Re
Ka Yo Yu Sa Mo Ho Se Mo Re
Ri Re Na Ru Ho Ho Mo Ma Ki

hone 2:

Ka Ho So Wa Se Hi Ka Ro Ne
Mo Ni Yo Te Ru So Ne He Se
So Ri Su No Su Mo Ha Wi Ka
Se So Wa Ha I Ni Ya Ya Su
Yu Ni Wa Na Ma Ra No

52

W N =

— O © 0O Utk

—

13
14

15
16
17
18
19
20
21

23
24
25
26
27
28
30
31
32
33
34
35
36
37

38
39

40

41

I Python program to find permutations

The program listed below is the program that was described in section [6.8] and
was used to find the permutations mentioned in [6.8:6] It is also available on
GitHub at https://github.com/joostrijneveld/blue-code-permutations.
Note that the program will possibly be improved over time, and the GitHub
repository will contain the latest version. The repository also includes the ci-
phertext telegrams.

#! /usr/bin/env python

from itertools import combinations, izip-longest , product, chain,
count

from copy import deepcopy

from collections import Counter

import glob

import time

def powerset(s):
?7” Ttertools recipe. Returns the powerset of a list.
return chain.from_iterable (combinations(s, r) for r in range(
len(s) + 1))

RIRE]

def grouper(iterable, n, fillvalue=None):
???”Jtertools recipe. Collect data into fixed—length chunks or
blOCkS”””
args = [iter(iterable)] * n
return izip_-longest (fillvalue=fillvalue , %args)

class TwoWayDict(dict):

def __init__(self, iterable):
dict. __init__(self)
for (c, n) in zip(iterable, count(1l)):
self.__setitem__(c, n)
self.__setitem__(n, c)

def __len__(self):
return dict.__len__(self) / 2

def __setitem__(self, key, value):
dict. __setitem__(self , key, value)
dict. __setitem__(self, value, key)

MEMORYPATH = ” plaintext /«” # telegrams that provide code groups
for frequency count

TELEGRAMPATHS = (”telegrams/2 3010010717, ”telegrams/3 304001200”)
Finds July 1st permutation

TELEGRAMPATHS = (7telegrams/8 4090021147, "telegrams/4 307202231b
7) # Finds 02—09

TELEGRAMPATHS = (”telegrams/18 38100031557, ”telegrams /14
297008153”) # Finds 03—09

TELEGRAMPATHS = (”telegrams/17 029005170”, ”"telegrams /20
820005191”) # Finds 05—09

ALPHABET = TwoWayDict((’A’, ’E’, ’Ha’, ’He’, 'Hi’, 'Ho’, ’Fu’, ’'I7,
7Ka7’ 7Ke7’ 7Ki7’
k)) k)) k)) k)) k) 1? k) K bl K k) K) 2)
Ko’, 'Ku’, 'Ma’, 'Me’, 'Mi’, 'Mo’, 'Mu’, ’Na’, ’Ne’,
Ni’, ’No’,
k)) b b k) R b 37 b) b) k)) k) 9’ k) 30 k)
O’, 'Ra’, 'Re’, 'Ri’, "Ro’, ’Ru’, ’Sa’, ’Se’, ’Shi’,
So’, ’'Su’,

53

https://github.com/joostrijneveld/blue-code-permutations

)
)
)
)
)
)
)
)

)

j

NUBOERGROUPS = ((’Sa’, 'He’, ’Sa’, 'Mo’),
(’Ka’, ’Ni’, ’Ta’, ’'Na’),
(’Ki’, ’Ke’, A’, 'Ni’),
("Mi’, "1’, "Wa’, °Na’),
(’Fu’, 'Me’, Ku’, 'Ta’),
(’Mo’, ’Na’, ’Ta’, 'Re’),
(’Mi’, "Ru’, ’No’, 'Ni’),
(’Mo’, ’Ko’, ’Ru’, 'Ko’),
(’A’, ’Shi’, A’, ’So’),
(’Mi’, ’1’, ’Ka’, ’So’),
(’Ha’, 'Wi’, 'Fu’, 'Ho’),
(’Ro’, ’Ne’, ’Ha’, 'Hi’),
('Ma’, ’Sa’, ’'No’, ’'Ne’),
(’Ra’, ’So’, ’Ra’, 'Te’))
fT = [[1n7,7 ’,7X77’ 7,7117,7 7,7)(’,7 77’ 577 a71 77}
[,’)n’, 2,’n’ 7 2)’n’) 0 n7)0 0 x0T]
[7,7 7, 0y o 0 o x) 0x) 0x]
[’x7,2 7ox7, 0 0) ok]
[2 7, 20 x 0 0 0 x0T]
[7 x0T o x))]
[’ 777 ’77 T, ’7, T0x77 ’7, 7 ,77X77]
[7 7, 7 k) x) x0T)) x0T)]
[’x2,2 2y 2y 0y o o o]
[’x7,2 7, 0 0y o ok 0x) x0T]
[7 x0T 0 kT x) %) 0x 0 0x]
f = [list(col) for col in zip(*fT)] # much easier to work with in
columns as opposed to rows
memory = Counter ()
computing several constants based on the figure

COLNUM = len(f)

ROWNUM = len (fT)

COLLEN = [ROWNUM — col.count(’x’) for col in f]
FIGLEN = sum(col.count(’ ’) for col in f)

SPACES = FIGLEN + sum(col.count(’n’) for col in f)
GCOUNT = FIGLEN / 4

def

precompute_colcombs () :
d = dict ()
for cols in powerset (zip (range(COLNUM), COLLEN)) :
colsum = sum([b for _, b in cols])
if colsum not in d:
d[colsum] = []
d[colsum].append(set ([a for a, - in cols]))
return d

COLCOMBS = precompute_colcombs ()

def

def

def

kana2int (c¢):
return 0 if ¢ = ”?” or ’.’ in c¢ else ALPHABET|c]

int2kana (1) :
return ’..’ if i = 0 else ALPHABET]i]

symbol_space(col):
return col.count(’ ’) + col.count(’'n’)

54

102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

def checksum(a, b, c):
x=(a+b+c—1) % 44
return x if x > 0 else 44 # since 0 isn’t wvalid, but 44 is

def missing_symbol(a, b, x):
?7” Computes one of the three code group symbols based on the
other two (a, b) and checksum x 77”
c=x—a—b+1
while ¢ <= 0:
c += 44
return c

def find_groups():
i=0
groups = []
for g in xrange(l, GOOUNT + 1):
group = []
while len(group) < 4:

X, y = i %COLNUM , i / COLNUM

if f[x][y] = ’x’ or f[x][y] = ’'n’:
i+=1

else:
group . append ((x, y))
i4=1

groups.append ((g, group))
return groups

A Functions for recognising common groups

def remember_groups(f):
for 1 in f.readlines():
for t in grouper(l.split (), 4):
if 7..” not in t:
a, b, ¢, x = map(kana2int, t)
if checksum(a, b, c¢) is x:
memory . update ([(a, b, ¢, x)]) # list of tuples
, as iterable is required

def parse_telegrams():
telegrams = []
tfiles = [open(fname, ’'r’) for fname in TELEGRAMPATHS]
for tgram in tfiles:
content = tgram.readline().split ()
if len(content) < SPACES:
raise Exception(”Supplied telegram is too short”)
telegrams .append (map(kana2int, content [:SPACES]))
return telegrams

def find_positions(telegram):
positions = [[] for i in range(ALPHACOUNT)]
for (n, i) in zip(telegram , xrange(SPACES)):
positions [n % 44].append (i)
return positions

def identify_group (telegram , positions):

groups = [a for a, _ in memory.most_.common ()]
for (g, x) in memory.most_common () :
p = [positions [n%44] for n in g]
for pos in product(xp): # all combinations of positions

if checksum (*[telegram[i] for i in pos[:3]]) =
telegram [pos [3]]:

55

161
162
163
164
165
166
167
168

169

170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188
189
190
191
192

193

194

195
196
197
198

199
200

201
202

203
204

205
206
207

208
209

#HAH End recognising common groups

if tuple([telegram/[i]

yield pos

for i in pos[:4]])

#HAH Functions for finding wvalid groups

def valid_colset_pair ((csetl,

def

def

777 Tests if two pairs of column—sets
possible
csetl, cset2 — tuples of form (cl,

are edges

pairedcols

cset2),

iterable containing pairs

columns 777
cla, cia, cna = csetl
clb, cib, cnb = cset2
seta = set ([cla, cna]) | cia
setb = set ([clb, cnb]) | cib
if not seta.isdisjoint (setb):
for a, b in pairedcols:
if cna =— a and clb = b:
return False
if cnb = a and cla = b:
return False
if cla in setb and cna in setb
return False
if clb in seta and cnb in seta
return False
if cna not in set([cnb]) | cib
cia:
return False
if cla not in set([clb]) | cib
cia:
return False
return True

valid_colset_comb (prod,

?7” Checks if a series of column—sets
possible

prod — 1iterable of form
are edges

pairedcols — iterable

93 9

for cl, ci, cn in prod:
cols = set([cl, cn]) | ci
for a, b in pairedcols:
if (a in ci and b not in ci and b != c¢n) or (b in ci
and a not in ci and a != cl):
return False
if (a = ¢l and b not in ci) or (a = cn and b in cols)
return False
if (b = cl and a in cols) or (b = cn and a not in ci)

return all(valid_-colset_pair(x
combinations (prod,

return False

2))

[(el,

pairedcols)

pairedcols):
are simultaniously

of neighbouring

and not seta <= setb:

and not setb <= seta:

and cnb

clb

pairedcols):

are simultaniously

[ci], cn)]

for x in

[ci], cn) where ¢l and cn

not in set ([cna])

not in set ([cla])

in groups:

where ¢l and cn

containing pairs of neighbouring columns

valid_group (group,

»7” hecks

pos) :

given the figure

group — tuple of four
— tuple of four positions

pos

(x,y)

56

if the supplied group conforms to

coordinates
within the

distances of pos,

telegram”””

210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225

226
227

228
229
230
231

232
233

234
235
236
237
238

239
240
241
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263

pairs = []
for (sl, s2) in combinations((0, 1, 2, 3), 2):
if pos[s2] < pos[sl]:
sl, s2 = s2, sl

pairs.append ((pos[s2] — pos[sl], sl, s2))
hardpairs = []
pairedcols = []
for (d, sl, s2) in pairs:

s
coll = f[group[sl][0]]
col2 = f[group[s2][0]]
if group[sl][0] == group([s2][0]: # if it concerns symbols
in the same column
dist = symbol_space(coll [group[sl][1]:group[s2][1]])

if dist != d:
return False
continue

dist = symbol_space(coll [group[sl][1]:]) + symbol_space(
col2 [:group[s2][1]])
if dist > d:
return False # if the actual distance is larger than
required , it 18 impossible
elif dist < d:
if d — dist not in COLCOMBS:
return False
hardpairs.append ((d — dist, group[sl][0], group[s2][0])
) # put off the difficult ones for later
else:
pairedcols.append ((group[s1][0], group[s2][0])) #
perfect fit, nmeed to be neighbouring sequences
if not hardpairs:
return True

usedcols = []
for (d, cl, ¢2) in hardpairs:
colsets = [(cl, x, ¢2) for x in COLCOMBS[d] if cl not in x

and c2 not in x|
if not colsets:
return False
usedcols.append(colsets)
return any(valid_colset_comb (prod, pairedcols) for prod in
product (x usedcols))

#HH#H End finding valid groups
A Functions for deduction

def

def

def

fill_colpart (fig, x, y, v, d, lim, used):
c =20
for j in xrange(lim):

if fig[x][y +j = d] !'= 'x’:

fig [x][y +]
used [v + ¢ *
c +=1

x* d] =v +c¢c xd
d] =

fill_col (fig, x, y, v, used, usedcols):
usedcols [x] = True

fill_colpart (fig, x, y, v, 1, ROWNUM — y, used)
fill_colpart (fig, x, y, v, —1, y + 1, used)

valid_symbol(n, na, nb, used, usedcols):

77” Checks to see if the symbol at position n in the telegram
is a valid candidate w.r.t. the column it is in

n —— the position in the telegram

na —— the required space before the symbol

o7

264 nb — the required space after the symbol

265 used —— list denoting used/unused, per symbols in the
telegram

266 usedcols — list denoting which columns have been filled”””

267 if n — na < 0 or n + nb >= SPACES:

268 return False

269 if any([used[x] for x in range(n — na, n + nb + 1)]):

270 return False

271 ca, cb =0, 0

272 for x in range(n — na — 1, —1, —1):

273 if used[x]:

274 break

275 ca =1

276 for x in range(n + nb + 1, SPACES):

277 if used[x]:

278 break

279 cb +=1

280 if (ca > 0 and ca not in COLCOMBS) or (cb > 0 and cb not in
COLCOMBS) :

281 return False

282 if ca > 0 and not [x for x in COLCOMBS[ca] if not any(usedcols|
c] for ¢ in x)]:

283 return False

284 if ¢cb > 0 and not [x for x in COLCOMBS[cb] if not any(usedcols]|
c] for ¢ in x)]:

285 return False

286 return True

287

288 def print_fig(fig):

289 fix_len = lambda x: str(x) + ’ > * (2 — len(str(x))) if
isinstance(x, int) else x + ’ ’

290 for a in [[fix_-len(x) for x in row]| for row in zip(xfig)]:

291 print a

292

293 def find_permutation(fig):

294 77? Extracts the permutation from a filled figure”””

295 permutation = zip ([next(x for x in xs if isinstance(x, int))
for xs in fig]|, count(1l))

296 permutation.sort ()

297 return [x for _, x in permutation]

298

299 def deduce(fig, pos, validgroups, groups, telegram):

300 ?7? Tries to fill the figure by deduction

301 fig — an unfilled copy of the figure

302 pos — the position in the telegram of the supposed
common’ group

303 validgroups — positions where it can be positioned

304 groups —— a list of positions of groups in the figure

305 telegram — the reference telegram, as a list of symbols ”””

306 for _, 1 in validgroups:

307 used = [False] * SPACES

308 usedcols = [False] x COLNUM

309 for i in range(4):

310 big (103 1[0]][1[i][1]] = pos|i]

311 fill_col (fig, 1[i][0], 1[i][1], pos[i], used, usedcols)

312 for x in filter (lambda x: isinstance(x, int), fig[l[i

110]]) ;

313 used [x] = True

314 todo_flag = True

315 while todo_flag:

316 todo_flag = False

317 queue = |[]

58

318
319

320
321

322
323

324
325

326
327
328
329

330
331
332

333
334
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

363
364
365
366
367
368
369
370

for _, group in groups:
ps = filter (lambda (x, y): isinstance(fig[x][y],

int), group)

if len(ps) = 3:
missing = [i for (x, y), i in zip(group, count
()) if not isinstance(fig[x][y], int)][0]
if missing = 3:
z = checksum (*[telegram [fig [x][y]] for (x,
y) in ps])
else:
z = missing_symbol (*[telegram [fig [x][y]]
for (x, y) in ps])
queue . append ((group [missing], z))

while queue:
for ((x, y), z) in queue:
candidates = [n for n in range(SPACES) if
telegram [n] = z]
na = symbol_space(f[x][:y])
nb = symbol_space(f[x]|[y + 1:])

candidates = filter (lambda n: valid_symbol(n,
na, nb, used, usedcols), candidates)

if len(candidates) = 1:
fig [x][y] = candidates [0]

fill_col (fig, x, y, candidates[0], used,
usedcols)
todo_flag = True
break
else:
break

print_fig(fig)

if any ([’ ’ in col for col in fig]):
print ”Figure incomplete”

else:
print ”"Permutation found!”, find_permutation(fig)
break

#HAH End deduction

def main() :

t0 = time.clock ()

for fname in glob.glob (MEMORYPATH) :
remember_groups (open(fname, ’'r’))

d = dict ((tuple (map(kana2int, x)), 50) for x in NUBOERGROUPS)

memory . update (d)

telegrams = parse_telegrams ()

for t in range(2):
print ”Using telegram ” + str(t + 1) + ” as a base..”
positions = find_positions (telegrams|[t])
group_-gen = identify_group (telegrams[l — t], positions)
groups = find_groups ()
for pos in group_gen:

validgroups = [(g, group) for (g, group) in groups if
valid_group (group, pos)]
print 7 Trying”, pos

if validgroups:
fig = deepcopy(f)
deduce (fig , pos, validgroups, groups, telegrams][t])

print time.clock() — t0, ”"seconds process time”
if __name_. = 7 __main__":
main ()

59

	Introduction
	Historic context
	Tension in the Far East
	A shortage of resources
	Manchuria and the Second Sino-Japanese War
	Dutch East Indies

	Founding of Department 1, Batavia
	Johannes Frans Willem Nuboer
	Gathering intelligence
	Press information and the diplomatic mission
	Photographs of Japanese vessels
	Room 14 and Japanese naval telegrams

	Japanese telegrams
	Address headers
	Telegram numbers

	The Ni code
	Reciphered telegrams

	Breaking the `.' code
	The breakthrough
	Permuting the columns
	Confirming the permutation
	Finding the permutation manually
	The `.' code book

	The reciphered `.' code
	A toy example, for the readers' benefit
	Inventory
	Encryption
	Decryption

	Another breakthrough
	Exploiting repetition
	Permuting columns once more
	Figuring it out
	Exploring an example
	Determining the lengths
	Filling the figure
	Reading the plaintext

	Generically finding permutations
	Identifying groups
	Placing the groups
	Deduction
	Finding the permutation

	Finding the other permutations
	The input
	Recognising common groups
	Precomputing column combinations
	Finding a valid group
	Deduction
	Results
	Work in progress..
	Scraping Nuboer's notes

	Other ciphers
	The Sa code
	The I code

	Wartime results and postlude
	The American effort
	The Red Book
	The Blue Book

	Conclusions and discussion
	Improvements and future work

	Topography
	References
	Overview of telegraphic call signs
	Telegram 028101093, 029201093 (April 1st, 1935)
	Telegram 031005173 (April 5th, 1935)
	Kana alphabet and numerical values
	Overview of the `.' code book
	Formosa telegrams, November 9th, 1935
	Annotated Formosa telegrams
	Telegrams 301001071, 304001200 (July 1st, 1936)
	Python program to find permutations

