
ARMed SPHINCS:
Computing a 41 KB signature in 16 KB of RAM

Andreas Hülsing1, Joost Rijneveld2, Peter Schwabe2

Technische Universiteit Eindhoven1

Radboud University, Nijmegen2

The Netherlands

2016-03-07
PKC 2016

2016-03-07 1 / 12



SPHINCS

I SPHINCS: Stateless, practical, hash-based, incredibly nice
cryptographic signatures [BHHLNPSW15].

I Post-quantum
I Hash functions do not fall to Shor (but halved by Grover)

I Hash-based schemes: conservative choice
I One-way functions necessary for signatures [Rom90]
I Tight security reductions

I Collision resilient

SPHINCS 2016-03-07 2 / 12



SPHINCS-256

I Large hash-tree, height h = 60
I Every d = 12-th layer: sign child node using an OTS

I Effectively a hypertree of h/d = 5 Merkle trees [Mer90]
I Trade signature size for time

I Sign messages using 260 leaf nodes

. . .

2d
h/d

. . .

d

SPHINCS 2016-03-07 3 / 12



SPHINCS-256

I Large hash-tree, height h = 60
I Every d = 12-th layer: sign child node using an OTS

I Effectively a hypertree of h/d = 5 Merkle trees [Mer90]
I Trade signature size for time

I Sign messages using 260 leaf nodes

I No need to remember index: stateless [Gol87]

. . .

2d
h/d

. . .

d

SPHINCS 2016-03-07 3 / 12



SPHINCS-256

I 41KB signatures, 1KB keys

I OTS

I Hash functions

I Key expansion function
I FTS

I Contains 16-layer Merkle tree (so 216 = 65536 leafs)
I Goal: 32 authentication paths, root node
I Paths start at (deterministically chosen) ‘random’ leafs
I Complete tree takes approx. 2MB RAM..

SPHINCS 2016-03-07 4 / 12



SPHINCS-256

I 41KB signatures, 1KB keys

I OTS: Winternitz OTS variant (WOTS+) [Hül13]

I Hash functions: BLAKE [ANWW13], πChaCha [Ber08]

I Key expansion function: ChaCha12
I FTS: HORST [BHHLNPSW15]

I Contains 16-layer Merkle tree (so 216 = 65536 leafs)
I Goal: 32 authentication paths, root node
I Paths start at (deterministically chosen) ‘random’ leafs
I Complete tree takes approx. 2MB RAM..

SPHINCS 2016-03-07 4 / 12



SPHINCS-256

I 41KB signatures, 1KB keys

I OTS: Winternitz OTS variant (WOTS+) [Hül13]

I Hash functions: BLAKE [ANWW13], πChaCha [Ber08]

I Key expansion function: ChaCha12
I FTS: HORST [BHHLNPSW15]

I Contains 16-layer Merkle tree (so 216 = 65536 leafs)
I Goal: 32 authentication paths, root node
I Paths start at (deterministically chosen) ‘random’ leafs
I Complete tree takes approx. 2MB RAM..

SPHINCS 2016-03-07 4 / 12



Platform

I STM32L100C development board

I Cortex M3, ARMv7-M

I libopencm3 firmware

I 32MHz, 32-bit architecture

I 16 registers

I 256KB Flash

I 16KB RAM

SPHINCS on the M3 2016-03-07 5 / 12



Treehash

I HORST tree is too large: 2MB!

I Treehash [Mer90]: only remember relevant nodes
I Maintain a stack: at most log(n) = 16 nodes

(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash

I HORST tree is too large: 2MB!
I Treehash [Mer90]: only remember relevant nodes

I Maintain a stack: at most log(n) = 16 nodes
(or log(8) = 3, in the example below)

SPHINCS on the M3 2016-03-07 6 / 12



Treehash considerations

I Goal: construct 32 HORST authentication paths

I Identify relevant nodes (320 of 131071)

I Identify relevant rounds (< 320 of 65536)

I Identify relevant nodes in relevant rounds (bitmasks)
I Observation: sort masks by round index

I Simply maintain a pointer
I Iterate while performing treehash

I Output in the appropriate order..

SPHINCS on the M3 2016-03-07 7 / 12



Treehash considerations

I Goal: construct 32 HORST authentication paths

I Identify relevant nodes (320 of 131071)

I Identify relevant rounds (< 320 of 65536)

I Identify relevant nodes in relevant rounds (bitmasks)
I Observation: sort masks by round index

I Simply maintain a pointer
I Iterate while performing treehash

I Output in the appropriate order..

SPHINCS on the M3 2016-03-07 7 / 12



Treehash considerations

I Goal: construct 32 HORST authentication paths

I Identify relevant nodes (320 of 131071)

I Identify relevant rounds (< 320 of 65536)

I Identify relevant nodes in relevant rounds (bitmasks)

I Observation: sort masks by round index
I Simply maintain a pointer
I Iterate while performing treehash

I Output in the appropriate order..

SPHINCS on the M3 2016-03-07 7 / 12



Treehash considerations

I Goal: construct 32 HORST authentication paths

I Identify relevant nodes (320 of 131071)

I Identify relevant rounds (< 320 of 65536)

I Identify relevant nodes in relevant rounds (bitmasks)
I Observation: sort masks by round index

I Simply maintain a pointer
I Iterate while performing treehash

I Output in the appropriate order..

SPHINCS on the M3 2016-03-07 7 / 12



Treehash considerations

I Goal: construct 32 HORST authentication paths

I Identify relevant nodes (320 of 131071)

I Identify relevant rounds (< 320 of 65536)

I Identify relevant nodes in relevant rounds (bitmasks)
I Observation: sort masks by round index

I Simply maintain a pointer
I Iterate while performing treehash

I Output in the appropriate order..

SPHINCS on the M3 2016-03-07 7 / 12



Streaming

I Cannot store signature → stream out immediately
I HORST inherently not ordered!

I Re-arrange on the host
I Tags (832 bytes total; 64 + 640 + 128)
I Alternatively: traverse tree on host

I Cannot store expanded key material

I Interleave ChaCha12 and Treehash

I Streaming message input
I Blockwise BLAKE512
I Stream twice: once for randomness, once for digest

SPHINCS on the M3 2016-03-07 8 / 12



Streaming

I Cannot store signature → stream out immediately
I HORST inherently not ordered!

I Re-arrange on the host
I Tags (832 bytes total; 64 + 640 + 128)
I Alternatively: traverse tree on host

I Cannot store expanded key material

I Interleave ChaCha12 and Treehash

I Streaming message input
I Blockwise BLAKE512
I Stream twice: once for randomness, once for digest

SPHINCS on the M3 2016-03-07 8 / 12



Streaming

I Cannot store signature → stream out immediately
I HORST inherently not ordered!

I Re-arrange on the host
I Tags (832 bytes total; 64 + 640 + 128)
I Alternatively: traverse tree on host

I Cannot store expanded key material

I Interleave ChaCha12 and Treehash

I Streaming message input
I Blockwise BLAKE512
I Stream twice: once for randomness, once for digest

SPHINCS on the M3 2016-03-07 8 / 12



Streaming

I Cannot store signature → stream out immediately
I HORST inherently not ordered!

I Re-arrange on the host
I Tags (832 bytes total; 64 + 640 + 128)
I Alternatively: traverse tree on host

I Cannot store expanded key material

I Interleave ChaCha12 and Treehash

I Streaming message input
I Blockwise BLAKE512
I Stream twice: once for randomness, once for digest

SPHINCS on the M3 2016-03-07 8 / 12



ChaCha12

I Core computation: ChaCha permutation
I 685818 calls per signature
I 65% of all computations

I 48 quarter-rounds of ADD, XOR and ROR
I Costs 542 cycles

I Note: slightly improved since proceedings version

I 512 bit state: 16 words of 32 bits each
I Fit precisely in the 16 registers..
I .. but we must preserve PC and SP
I → Reorder to minimize and group stack access

I Rotates on ARMv7 are (almost always) free!
I eor r6, r6, r11, ROR #29

SPHINCS on the M3 2016-03-07 9 / 12



ChaCha12

I Core computation: ChaCha permutation
I 685818 calls per signature
I 65% of all computations

I 48 quarter-rounds of ADD, XOR and ROR
I Costs 542 cycles

I Note: slightly improved since proceedings version

I 512 bit state: 16 words of 32 bits each
I Fit precisely in the 16 registers..

I .. but we must preserve PC and SP
I → Reorder to minimize and group stack access

I Rotates on ARMv7 are (almost always) free!
I eor r6, r6, r11, ROR #29

SPHINCS on the M3 2016-03-07 9 / 12



ChaCha12

I Core computation: ChaCha permutation
I 685818 calls per signature
I 65% of all computations

I 48 quarter-rounds of ADD, XOR and ROR
I Costs 542 cycles

I Note: slightly improved since proceedings version

I 512 bit state: 16 words of 32 bits each
I Fit precisely in the 16 registers..
I .. but we must preserve PC and SP
I → Reorder to minimize and group stack access

I Rotates on ARMv7 are (almost always) free!
I eor r6, r6, r11, ROR #29

SPHINCS on the M3 2016-03-07 9 / 12



ChaCha12

I Core computation: ChaCha permutation
I 685818 calls per signature
I 65% of all computations

I 48 quarter-rounds of ADD, XOR and ROR
I Costs 542 cycles

I Note: slightly improved since proceedings version

I 512 bit state: 16 words of 32 bits each
I Fit precisely in the 16 registers..
I .. but we must preserve PC and SP
I → Reorder to minimize and group stack access

I Rotates on ARMv7 are (almost always) free!
I eor r6, r6, r11, ROR #29

SPHINCS on the M3 2016-03-07 9 / 12



Performance

I Works on 16KB RAM X
I Uses less than 7KB

I Recall: 32MHz clock frequency

I Key generation: 28 205 671 cycles (0.88 seconds)

I Signing: 589 018 151 cycles (18.41 seconds)
I Verification: 16 414 251 cycles (0.51 seconds)

I (of which approx. 10M spent communicating)

I Note: slightly improved since proceedings version

I On 4-core Haswell:
“[..] signs hundreds of messages per second.”

Performance 2016-03-07 10 / 12



Performance

I Works on 16KB RAM X
I Uses less than 7KB

I Recall: 32MHz clock frequency

I Key generation: 28 205 671 cycles (0.88 seconds)

I Signing: 589 018 151 cycles (18.41 seconds)
I Verification: 16 414 251 cycles (0.51 seconds)

I (of which approx. 10M spent communicating)

I Note: slightly improved since proceedings version

I On 4-core Haswell:
“[..] signs hundreds of messages per second.”

Performance 2016-03-07 10 / 12



Performance

I Works on 16KB RAM X
I Uses less than 7KB

I Recall: 32MHz clock frequency

I Key generation: 28 205 671 cycles (0.88 seconds)

I Signing: 589 018 151 cycles (18.41 seconds)
I Verification: 16 414 251 cycles (0.51 seconds)

I (of which approx. 10M spent communicating)

I Note: slightly improved since proceedings version

I On 4-core Haswell:
“[..] signs hundreds of messages per second.”

Performance 2016-03-07 10 / 12



Cost of the state

I Implemented XMSSMT [HRB13], configured similarly
I BLAKE and ChaCha primitives, 256 bit
I Two layers, subtrees with 210 leafs each

I XMSSMT : Merkle trees linked with WOTS+

I Stateful: process leafs incrementally

I BDS traversal [BDS08], store partial trees (k = 6)

I Key generation: 8 857 708 189 cycles (276.80 seconds)

I Avg. signing: 19 441 021 cycles (0.61 seconds)

I Verification: 4 961 447 cycles (0.16 seconds)

I Note: slightly improved since proceedings version

Performance 2016-03-07 11 / 12



Cost of the state

I Implemented XMSSMT [HRB13], configured similarly
I BLAKE and ChaCha primitives, 256 bit
I Two layers, subtrees with 210 leafs each

I XMSSMT : Merkle trees linked with WOTS+

I Stateful: process leafs incrementally

I BDS traversal [BDS08], store partial trees (k = 6)

I Key generation: 8 857 708 189 cycles (276.80 seconds)

I Avg. signing: 19 441 021 cycles (0.61 seconds)

I Verification: 4 961 447 cycles (0.16 seconds)

I Note: slightly improved since proceedings version

Performance 2016-03-07 11 / 12



Cost of the state

I Implemented XMSSMT [HRB13], configured similarly
I BLAKE and ChaCha primitives, 256 bit
I Two layers, subtrees with 210 leafs each

I XMSSMT : Merkle trees linked with WOTS+

I Stateful: process leafs incrementally

I BDS traversal [BDS08], store partial trees (k = 6)

I Key generation: 8 857 708 189 cycles (276.80 seconds)

I Avg. signing: 19 441 021 cycles (0.61 seconds)

I Verification: 4 961 447 cycles (0.16 seconds)

I Note: slightly improved since proceedings version

Performance 2016-03-07 11 / 12



Conclusions

I Stateless is expensive, but not prohibitively so
I Signing 30x as expensive as XMSSMT

I Verification similar to XMSSMT

I (Key generation much cheaper)

I Feasible on limited platforms
I Verification is practical
I Non-interactive signatures (high latency)

I Further algorithmic improvements desirable

I Code is available (public domain):
https://joostrijneveld.nl/papers/armedsphincs/

Conclusions 2016-03-07 12 / 12

https://joostrijneveld.nl/papers/armedsphincs/


Reference I

Daniel J. Bernstein, Diana Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Peter Schwabe and Zooko
Wilcox O’Hearn.

SPHINCS: Stateless, practical, hash-based, incredibly nice cryptographic
signatures.

In Marc Fischlin and Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 368-397. Springer,
2015.

John Rompel.

One-way functions are necessary and sufficient for secure signatures.

In Proceedings of the twenty-second annual ACM symposium on theory of
computing, pages 387–394. ACM, 1990.

Ralph Merkle.

A certified digital signature.

In Gilles Brassard, editor, Advances in Cryptology – Crypto ‘89, volume
435 of LNCS, pages 218-238. Springer-Verlag, 1990.

References 2016-03-07 13 / 12



Reference II

Andreas Hülsing.

W-OTS+ – shorter signatures for hash-based signature schemes.

In Amr Youssef, Abderrahmane Nitaj and Aboul-Ella Hassanien, editors,
Progress in Cryptology – AFRICACRYPT 2013, volume 7918 of LNCS,
pages 173-188. Springer, 2013.

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn and
Christian Winnerlein.

BLAKE2: Simpler, smaller, fast as MD5.

In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel and
Reihaneh Safavi-Naini, editors, Applied Cryptography and Network
Security, volume 7954 of LNCS, pages 119-135. Springer, 2013.

Daniel J. Bernstein.

ChaCha, a variant of Salsa20.

SASC 2008: The State of the Art of Stream Ciphers, 2008.

References 2016-03-07 14 / 12



Reference III

Oded Goldreich.

Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In Andrew M. Odlyzko, editor, Advances in Cryptology – Crypto ‘86,
volume 263 of LNCS, pages 104-110. Springer-Verlag, 1987.

Andreas Hülsing, Lea Rausch and Johannes Buchmann.

Optimal Parameters for XMSSMT .

In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl
and Lida Xu, editors, Security Engineering and Intelligence Informatics,
volume 8128 of LNCS, pages 194-208. Springer, 2013.

Johannes Buchmann, Erik Dahmen and Michael Schneider.

Merkle tree traversal revisited.

In Johannes Buchmann and Jintai Ding, editors, Post-Quantum
Cryptography, volume 5299 of LNCS, pages 63-78. Springer, 2008.

References 2016-03-07 15 / 12


	SPHINCS
	SPHINCS on the M3
	Performance
	Conclusions
	References

